This file is indexed.

/usr/lib/python3/dist-packages/seaborn/tests/test_distributions.py is in python3-seaborn 0.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

import nose.tools as nt
import numpy.testing as npt
from numpy.testing.decorators import skipif

from .. import distributions as dist

try:
    import statsmodels.nonparametric.api
    assert statsmodels.nonparametric.api
    _no_statsmodels = False
except ImportError:
    _no_statsmodels = True


class TestKDE(object):

    rs = np.random.RandomState(0)
    x = rs.randn(50)
    y = rs.randn(50)
    kernel = "gau"
    bw = "scott"
    gridsize = 128
    clip = (-np.inf, np.inf)
    cut = 3

    def test_scipy_univariate_kde(self):
        """Test the univariate KDE estimation with scipy."""
        grid, y = dist._scipy_univariate_kde(self.x, self.bw, self.gridsize,
                                             self.cut, self.clip)
        nt.assert_equal(len(grid), self.gridsize)
        nt.assert_equal(len(y), self.gridsize)
        for bw in ["silverman", .2]:
            dist._scipy_univariate_kde(self.x, bw, self.gridsize,
                                       self.cut, self.clip)

    @skipif(_no_statsmodels)
    def test_statsmodels_univariate_kde(self):
        """Test the univariate KDE estimation with statsmodels."""
        grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel,
                                                   self.bw, self.gridsize,
                                                   self.cut, self.clip)
        nt.assert_equal(len(grid), self.gridsize)
        nt.assert_equal(len(y), self.gridsize)
        for bw in ["silverman", .2]:
            dist._statsmodels_univariate_kde(self.x, self.kernel, bw,
                                             self.gridsize, self.cut,
                                             self.clip)

    def test_scipy_bivariate_kde(self):
        """Test the bivariate KDE estimation with scipy."""
        clip = [self.clip, self.clip]
        x, y, z = dist._scipy_bivariate_kde(self.x, self.y, self.bw,
                                            self.gridsize, self.cut, clip)
        nt.assert_equal(x.shape, (self.gridsize, self.gridsize))
        nt.assert_equal(y.shape, (self.gridsize, self.gridsize))
        nt.assert_equal(len(z), self.gridsize)

        # Test a specific bandwidth
        clip = [self.clip, self.clip]
        x, y, z = dist._scipy_bivariate_kde(self.x, self.y, 1,
                                            self.gridsize, self.cut, clip)

        # Test that we get an error with an invalid bandwidth
        with nt.assert_raises(ValueError):
            dist._scipy_bivariate_kde(self.x, self.y, (1, 2),
                                      self.gridsize, self.cut, clip)

    @skipif(_no_statsmodels)
    def test_statsmodels_bivariate_kde(self):
        """Test the bivariate KDE estimation with statsmodels."""
        clip = [self.clip, self.clip]
        x, y, z = dist._statsmodels_bivariate_kde(self.x, self.y, self.bw,
                                                  self.gridsize,
                                                  self.cut, clip)
        nt.assert_equal(x.shape, (self.gridsize, self.gridsize))
        nt.assert_equal(y.shape, (self.gridsize, self.gridsize))
        nt.assert_equal(len(z), self.gridsize)

    @skipif(_no_statsmodels)
    def test_statsmodels_kde_cumulative(self):
        """Test computation of cumulative KDE."""
        grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel,
                                                   self.bw, self.gridsize,
                                                   self.cut, self.clip,
                                                   cumulative=True)
        nt.assert_equal(len(grid), self.gridsize)
        nt.assert_equal(len(y), self.gridsize)
        # make sure y is monotonically increasing
        npt.assert_((np.diff(y) > 0).all())

    def test_kde_cummulative_2d(self):
        """Check error if args indicate bivariate KDE and cumulative."""
        with npt.assert_raises(TypeError):
            dist.kdeplot(self.x, data2=self.y, cumulative=True)

    def test_bivariate_kde_series(self):
        df = pd.DataFrame({'x': self.x, 'y': self.y})

        ax_series = dist.kdeplot(df.x, df.y)
        ax_values = dist.kdeplot(df.x.values, df.y.values)

        nt.assert_equal(len(ax_series.collections),
                        len(ax_values.collections))
        nt.assert_equal(ax_series.collections[0].get_paths(),
                        ax_values.collections[0].get_paths())
        plt.close("all")


class TestJointPlot(object):

    rs = np.random.RandomState(sum(map(ord, "jointplot")))
    x = rs.randn(100)
    y = rs.randn(100)
    data = pd.DataFrame(dict(x=x, y=y))

    def test_scatter(self):

        g = dist.jointplot("x", "y", self.data)
        nt.assert_equal(len(g.ax_joint.collections), 1)

        x, y = g.ax_joint.collections[0].get_offsets().T
        npt.assert_array_equal(self.x, x)
        npt.assert_array_equal(self.y, y)

        x_bins = dist._freedman_diaconis_bins(self.x)
        nt.assert_equal(len(g.ax_marg_x.patches), x_bins)

        y_bins = dist._freedman_diaconis_bins(self.y)
        nt.assert_equal(len(g.ax_marg_y.patches), y_bins)

        plt.close("all")

    def test_reg(self):

        g = dist.jointplot("x", "y", self.data, kind="reg")
        nt.assert_equal(len(g.ax_joint.collections), 2)

        x, y = g.ax_joint.collections[0].get_offsets().T
        npt.assert_array_equal(self.x, x)
        npt.assert_array_equal(self.y, y)

        x_bins = dist._freedman_diaconis_bins(self.x)
        nt.assert_equal(len(g.ax_marg_x.patches), x_bins)

        y_bins = dist._freedman_diaconis_bins(self.y)
        nt.assert_equal(len(g.ax_marg_y.patches), y_bins)

        nt.assert_equal(len(g.ax_joint.lines), 1)
        nt.assert_equal(len(g.ax_marg_x.lines), 1)
        nt.assert_equal(len(g.ax_marg_y.lines), 1)

        plt.close("all")

    def test_resid(self):

        g = dist.jointplot("x", "y", self.data, kind="resid")
        nt.assert_equal(len(g.ax_joint.collections), 1)
        nt.assert_equal(len(g.ax_joint.lines), 1)
        nt.assert_equal(len(g.ax_marg_x.lines), 0)
        nt.assert_equal(len(g.ax_marg_y.lines), 1)

        plt.close("all")

    def test_hex(self):

        g = dist.jointplot("x", "y", self.data, kind="hex")
        nt.assert_equal(len(g.ax_joint.collections), 1)

        x_bins = dist._freedman_diaconis_bins(self.x)
        nt.assert_equal(len(g.ax_marg_x.patches), x_bins)

        y_bins = dist._freedman_diaconis_bins(self.y)
        nt.assert_equal(len(g.ax_marg_y.patches), y_bins)

        plt.close("all")

    def test_kde(self):

        g = dist.jointplot("x", "y", self.data, kind="kde")

        nt.assert_true(len(g.ax_joint.collections) > 0)
        nt.assert_equal(len(g.ax_marg_x.collections), 1)
        nt.assert_equal(len(g.ax_marg_y.collections), 1)

        nt.assert_equal(len(g.ax_marg_x.lines), 1)
        nt.assert_equal(len(g.ax_marg_y.lines), 1)

        plt.close("all")

    def test_color(self):

        g = dist.jointplot("x", "y", self.data, color="purple")

        purple = mpl.colors.colorConverter.to_rgb("purple")
        scatter_color = g.ax_joint.collections[0].get_facecolor()[0, :3]
        nt.assert_equal(tuple(scatter_color), purple)

        hist_color = g.ax_marg_x.patches[0].get_facecolor()[:3]
        nt.assert_equal(hist_color, purple)

        plt.close("all")

    def test_annotation(self):

        g = dist.jointplot("x", "y", self.data)
        nt.assert_equal(len(g.ax_joint.legend_.get_texts()), 1)

        g = dist.jointplot("x", "y", self.data, stat_func=None)
        nt.assert_is(g.ax_joint.legend_, None)

        plt.close("all")

    def test_hex_customise(self):

        # test that default gridsize can be overridden
        g = dist.jointplot("x", "y", self.data, kind="hex",
                           joint_kws=dict(gridsize=5))
        nt.assert_equal(len(g.ax_joint.collections), 1)
        a = g.ax_joint.collections[0].get_array()
        nt.assert_equal(28, a.shape[0])  # 28 hexagons expected for gridsize 5

        plt.close("all")

    def test_bad_kind(self):

        with nt.assert_raises(ValueError):
            dist.jointplot("x", "y", self.data, kind="not_a_kind")

    @classmethod
    def teardown_class(cls):
        """Ensure that all figures are closed on exit."""
        plt.close("all")