This file is indexed.

/usr/lib/python3/dist-packages/sklearn/cluster/dbscan_.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding: utf-8 -*-
"""
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
"""

# Author: Robert Layton <robertlayton@gmail.com>
#         Joel Nothman <joel.nothman@gmail.com>
#         Lars Buitinck
#
# License: BSD 3 clause

import warnings

import numpy as np
from scipy import sparse

from ..base import BaseEstimator, ClusterMixin
from ..metrics import pairwise_distances
from ..utils import check_array, check_consistent_length
from ..utils.fixes import astype
from ..neighbors import NearestNeighbors

from ._dbscan_inner import dbscan_inner


def dbscan(X, eps=0.5, min_samples=5, metric='minkowski',
           algorithm='auto', leaf_size=30, p=2, sample_weight=None,
           random_state=None):
    """Perform DBSCAN clustering from vector array or distance matrix.

    Read more in the :ref:`User Guide <dbscan>`.

    Parameters
    ----------
    X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
            array of shape (n_samples, n_samples)
        A feature array, or array of distances between samples if
        ``metric='precomputed'``.

    eps : float, optional
        The maximum distance between two samples for them to be considered
        as in the same neighborhood.

    min_samples : int, optional
        The number of samples (or total weight) in a neighborhood for a point
        to be considered as a core point. This includes the point itself.

    metric : string, or callable
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string or callable, it must be one of
        the options allowed by metrics.pairwise.pairwise_distances for its
        metric parameter.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square. X may be a sparse matrix, in which case only "nonzero"
        elements may be considered neighbors for DBSCAN.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        The algorithm to be used by the NearestNeighbors module
        to compute pointwise distances and find nearest neighbors.
        See NearestNeighbors module documentation for details.

    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or cKDTree. This can affect the speed
        of the construction and query, as well as the memory required
        to store the tree. The optimal value depends
        on the nature of the problem.

    p : float, optional
        The power of the Minkowski metric to be used to calculate distance
        between points.

    sample_weight : array, shape (n_samples,), optional
        Weight of each sample, such that a sample with a weight of at least
        ``min_samples`` is by itself a core sample; a sample with negative
        weight may inhibit its eps-neighbor from being core.
        Note that weights are absolute, and default to 1.

    random_state: numpy.RandomState, optional
        Deprecated and ignored as of version 0.16, will be removed in version
        0.18. DBSCAN does not use random initialization.

    Returns
    -------
    core_samples : array [n_core_samples]
        Indices of core samples.

    labels : array [n_samples]
        Cluster labels for each point.  Noisy samples are given the label -1.

    Notes
    -----
    See examples/cluster/plot_dbscan.py for an example.

    This implementation bulk-computes all neighborhood queries, which increases
    the memory complexity to O(n.d) where d is the average number of neighbors,
    while original DBSCAN had memory complexity O(n).

    Sparse neighborhoods can be precomputed using
    :func:`NearestNeighbors.radius_neighbors_graph
    <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>`
    with ``mode='distance'``.

    References
    ----------
    Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
    Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
    In: Proceedings of the 2nd International Conference on Knowledge Discovery
    and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
    """
    if not eps > 0.0:
        raise ValueError("eps must be positive.")
    if random_state is not None:
        warnings.warn("The parameter random_state is deprecated in 0.16 "
                      "and will be removed in version 0.18. "
                      "DBSCAN is deterministic except for rare border cases.",
                      category=DeprecationWarning)

    X = check_array(X, accept_sparse='csr')
    if sample_weight is not None:
        sample_weight = np.asarray(sample_weight)
        check_consistent_length(X, sample_weight)

    # Calculate neighborhood for all samples. This leaves the original point
    # in, which needs to be considered later (i.e. point i is in the
    # neighborhood of point i. While True, its useless information)
    if metric == 'precomputed' and sparse.issparse(X):
        neighborhoods = np.empty(X.shape[0], dtype=object)
        X.sum_duplicates()  # XXX: modifies X's internals in-place
        X_mask = X.data <= eps
        masked_indices = astype(X.indices, np.intp, copy=False)[X_mask]
        masked_indptr = np.cumsum(X_mask)[X.indptr[1:] - 1]
        # insert the diagonal: a point is its own neighbor, but 0 distance
        # means absence from sparse matrix data
        masked_indices = np.insert(masked_indices, masked_indptr,
                                   np.arange(X.shape[0]))
        masked_indptr = masked_indptr[:-1] + np.arange(1, X.shape[0])
        # split into rows
        neighborhoods[:] = np.split(masked_indices, masked_indptr)
    else:
        neighbors_model = NearestNeighbors(radius=eps, algorithm=algorithm,
                                           leaf_size=leaf_size,
                                           metric=metric, p=p)
        neighbors_model.fit(X)
        # This has worst case O(n^2) memory complexity
        neighborhoods = neighbors_model.radius_neighbors(X, eps,
                                                         return_distance=False)

    if sample_weight is None:
        n_neighbors = np.array([len(neighbors)
                                for neighbors in neighborhoods])
    else:
        n_neighbors = np.array([np.sum(sample_weight[neighbors])
                                for neighbors in neighborhoods])

    # Initially, all samples are noise.
    labels = -np.ones(X.shape[0], dtype=np.intp)

    # A list of all core samples found.
    core_samples = np.asarray(n_neighbors >= min_samples, dtype=np.uint8)
    dbscan_inner(core_samples, neighborhoods, labels)
    return np.where(core_samples)[0], labels


class DBSCAN(BaseEstimator, ClusterMixin):
    """Perform DBSCAN clustering from vector array or distance matrix.

    DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
    Finds core samples of high density and expands clusters from them.
    Good for data which contains clusters of similar density.

    Read more in the :ref:`User Guide <dbscan>`.

    Parameters
    ----------
    eps : float, optional
        The maximum distance between two samples for them to be considered
        as in the same neighborhood.
    min_samples : int, optional
        The number of samples (or total weight) in a neighborhood for a point
        to be considered as a core point. This includes the point itself.
    metric : string, or callable
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string or callable, it must be one of
        the options allowed by metrics.pairwise.calculate_distance for its
        metric parameter.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square. X may be a sparse matrix, in which case only "nonzero"
        elements may be considered neighbors for DBSCAN.

        .. versionadded:: 0.17
           metric *precomputed* to accept precomputed sparse matrix.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        The algorithm to be used by the NearestNeighbors module
        to compute pointwise distances and find nearest neighbors.
        See NearestNeighbors module documentation for details.
    leaf_size : int, optional (default = 30)
        Leaf size passed to BallTree or cKDTree. This can affect the speed
        of the construction and query, as well as the memory required
        to store the tree. The optimal value depends
        on the nature of the problem.
    random_state: numpy.RandomState, optional
        Deprecated and ignored as of version 0.16, will be removed in version
        0.18. DBSCAN does not use random initialization.

    Attributes
    ----------
    core_sample_indices_ : array, shape = [n_core_samples]
        Indices of core samples.

    components_ : array, shape = [n_core_samples, n_features]
        Copy of each core sample found by training.

    labels_ : array, shape = [n_samples]
        Cluster labels for each point in the dataset given to fit().
        Noisy samples are given the label -1.

    Notes
    -----
    See examples/cluster/plot_dbscan.py for an example.

    This implementation bulk-computes all neighborhood queries, which increases
    the memory complexity to O(n.d) where d is the average number of neighbors,
    while original DBSCAN had memory complexity O(n).

    Sparse neighborhoods can be precomputed using
    :func:`NearestNeighbors.radius_neighbors_graph
    <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>`
    with ``mode='distance'``.

    References
    ----------
    Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
    Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
    In: Proceedings of the 2nd International Conference on Knowledge Discovery
    and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
    """

    def __init__(self, eps=0.5, min_samples=5, metric='euclidean',
                 algorithm='auto', leaf_size=30, p=None, random_state=None):
        self.eps = eps
        self.min_samples = min_samples
        self.metric = metric
        self.algorithm = algorithm
        self.leaf_size = leaf_size
        self.p = p
        self.random_state = random_state

    def fit(self, X, y=None, sample_weight=None):
        """Perform DBSCAN clustering from features or distance matrix.

        Parameters
        ----------
        X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
                array of shape (n_samples, n_samples)
            A feature array, or array of distances between samples if
            ``metric='precomputed'``.
        sample_weight : array, shape (n_samples,), optional
            Weight of each sample, such that a sample with a weight of at least
            ``min_samples`` is by itself a core sample; a sample with negative
            weight may inhibit its eps-neighbor from being core.
            Note that weights are absolute, and default to 1.
        """
        X = check_array(X, accept_sparse='csr')
        clust = dbscan(X, sample_weight=sample_weight, **self.get_params())
        self.core_sample_indices_, self.labels_ = clust
        if len(self.core_sample_indices_):
            # fix for scipy sparse indexing issue
            self.components_ = X[self.core_sample_indices_].copy()
        else:
            # no core samples
            self.components_ = np.empty((0, X.shape[1]))
        return self

    def fit_predict(self, X, y=None, sample_weight=None):
        """Performs clustering on X and returns cluster labels.

        Parameters
        ----------
        X : array or sparse (CSR) matrix of shape (n_samples, n_features), or \
                array of shape (n_samples, n_samples)
            A feature array, or array of distances between samples if
            ``metric='precomputed'``.
        sample_weight : array, shape (n_samples,), optional
            Weight of each sample, such that a sample with a weight of at least
            ``min_samples`` is by itself a core sample; a sample with negative
            weight may inhibit its eps-neighbor from being core.
            Note that weights are absolute, and default to 1.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            cluster labels
        """
        self.fit(X, sample_weight=sample_weight)
        return self.labels_