This file is indexed.

/usr/lib/python3/dist-packages/sklearn/cluster/k_means_.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
"""K-means clustering"""

# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Thomas Rueckstiess <ruecksti@in.tum.de>
#          James Bergstra <james.bergstra@umontreal.ca>
#          Jan Schlueter <scikit-learn@jan-schlueter.de>
#          Nelle Varoquaux
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause

import warnings

import numpy as np
import scipy.sparse as sp

from ..base import BaseEstimator, ClusterMixin, TransformerMixin
from ..metrics.pairwise import euclidean_distances
from ..utils.extmath import row_norms, squared_norm
from ..utils.sparsefuncs_fast import assign_rows_csr
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.fixes import astype
from ..utils import check_array
from ..utils import check_random_state
from ..utils import as_float_array
from ..utils import gen_batches
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils.random import choice
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..externals.six import string_types

from . import _k_means


###############################################################################
# Initialization heuristic


def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
    """Init n_clusters seeds according to k-means++

    Parameters
    -----------
    X: array or sparse matrix, shape (n_samples, n_features)
        The data to pick seeds for. To avoid memory copy, the input data
        should be double precision (dtype=np.float64).

    n_clusters: integer
        The number of seeds to choose

    x_squared_norms: array, shape (n_samples,)
        Squared Euclidean norm of each data point.

    random_state: numpy.RandomState
        The generator used to initialize the centers.

    n_local_trials: integer, optional
        The number of seeding trials for each center (except the first),
        of which the one reducing inertia the most is greedily chosen.
        Set to None to make the number of trials depend logarithmically
        on the number of seeds (2+log(k)); this is the default.

    Notes
    -----
    Selects initial cluster centers for k-mean clustering in a smart way
    to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
    "k-means++: the advantages of careful seeding". ACM-SIAM symposium
    on Discrete algorithms. 2007

    Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
    which is the implementation used in the aforementioned paper.
    """
    n_samples, n_features = X.shape

    centers = np.empty((n_clusters, n_features))

    assert x_squared_norms is not None, 'x_squared_norms None in _k_init'

    # Set the number of local seeding trials if none is given
    if n_local_trials is None:
        # This is what Arthur/Vassilvitskii tried, but did not report
        # specific results for other than mentioning in the conclusion
        # that it helped.
        n_local_trials = 2 + int(np.log(n_clusters))

    # Pick first center randomly
    center_id = random_state.randint(n_samples)
    if sp.issparse(X):
        centers[0] = X[center_id].toarray()
    else:
        centers[0] = X[center_id]

    # Initialize list of closest distances and calculate current potential
    closest_dist_sq = euclidean_distances(
        centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
        squared=True)
    current_pot = closest_dist_sq.sum()

    # Pick the remaining n_clusters-1 points
    for c in range(1, n_clusters):
        # Choose center candidates by sampling with probability proportional
        # to the squared distance to the closest existing center
        rand_vals = random_state.random_sample(n_local_trials) * current_pot
        candidate_ids = np.searchsorted(closest_dist_sq.cumsum(), rand_vals)

        # Compute distances to center candidates
        distance_to_candidates = euclidean_distances(
            X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)

        # Decide which candidate is the best
        best_candidate = None
        best_pot = None
        best_dist_sq = None
        for trial in range(n_local_trials):
            # Compute potential when including center candidate
            new_dist_sq = np.minimum(closest_dist_sq,
                                     distance_to_candidates[trial])
            new_pot = new_dist_sq.sum()

            # Store result if it is the best local trial so far
            if (best_candidate is None) or (new_pot < best_pot):
                best_candidate = candidate_ids[trial]
                best_pot = new_pot
                best_dist_sq = new_dist_sq

        # Permanently add best center candidate found in local tries
        if sp.issparse(X):
            centers[c] = X[best_candidate].toarray()
        else:
            centers[c] = X[best_candidate]
        current_pot = best_pot
        closest_dist_sq = best_dist_sq

    return centers


###############################################################################
# K-means batch estimation by EM (expectation maximization)

def _validate_center_shape(X, n_centers, centers):
    """Check if centers is compatible with X and n_centers"""
    if len(centers) != n_centers:
        raise ValueError('The shape of the initial centers (%s) '
                         'does not match the number of clusters %i'
                         % (centers.shape, n_centers))
    if centers.shape[1] != X.shape[1]:
        raise ValueError(
            "The number of features of the initial centers %s "
            "does not match the number of features of the data %s."
            % (centers.shape[1], X.shape[1]))


def _tolerance(X, tol):
    """Return a tolerance which is independent of the dataset"""
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
    else:
        variances = np.var(X, axis=0)
    return np.mean(variances) * tol


def k_means(X, n_clusters, init='k-means++', precompute_distances='auto',
            n_init=10, max_iter=300, verbose=False,
            tol=1e-4, random_state=None, copy_x=True, n_jobs=1,
            return_n_iter=False):
    """K-means clustering algorithm.

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------
    X : array-like or sparse matrix, shape (n_samples, n_features)
        The observations to cluster.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter : int, optional, default 300
        Maximum number of iterations of the k-means algorithm to run.

    n_init : int, optional, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    init : {'k-means++', 'random', or ndarray, or a callable}, optional
        Method for initialization, default to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': generate k centroids from a Gaussian with mean and
        variance estimated from the data.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, k and
        and a random state and return an initialization.

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

    tol : float, optional
        The relative increment in the results before declaring convergence.

    verbose : boolean, optional
        Verbosity mode.

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    copy_x : boolean, optional
        When pre-computing distances it is more numerically accurate to center
        the data first.  If copy_x is True, then the original data is not
        modified.  If False, the original data is modified, and put back before
        the function returns, but small numerical differences may be introduced
        by subtracting and then adding the data mean.

    n_jobs : int
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    return_n_iter : bool, optional
        Whether or not to return the number of iterations.

    Returns
    -------
    centroid : float ndarray with shape (k, n_features)
        Centroids found at the last iteration of k-means.

    label : integer ndarray with shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    best_n_iter: int
        Number of iterations corresponding to the best results.
        Returned only if `return_n_iter` is set to True.

    """
    if n_init <= 0:
        raise ValueError("Invalid number of initializations."
                         " n_init=%d must be bigger than zero." % n_init)
    random_state = check_random_state(random_state)

    if max_iter <= 0:
        raise ValueError('Number of iterations should be a positive number,'
                         ' got %d instead' % max_iter)

    best_inertia = np.infty
    X = as_float_array(X, copy=copy_x)
    tol = _tolerance(X, tol)

    # If the distances are precomputed every job will create a matrix of shape
    # (n_clusters, n_samples). To stop KMeans from eating up memory we only
    # activate this if the created matrix is guaranteed to be under 100MB. 12
    # million entries consume a little under 100MB if they are of type double.
    if precompute_distances == 'auto':
        n_samples = X.shape[0]
        precompute_distances = (n_clusters * n_samples) < 12e6
    elif isinstance(precompute_distances, bool):
        pass
    else:
        raise ValueError("precompute_distances should be 'auto' or True/False"
                         ", but a value of %r was passed" %
                         precompute_distances)

    # subtract of mean of x for more accurate distance computations
    if not sp.issparse(X) or hasattr(init, '__array__'):
        X_mean = X.mean(axis=0)
    if not sp.issparse(X):
        # The copy was already done above
        X -= X_mean

    if hasattr(init, '__array__'):
        init = check_array(init, dtype=np.float64, copy=True)
        _validate_center_shape(X, n_clusters, init)

        init -= X_mean
        if n_init != 1:
            warnings.warn(
                'Explicit initial center position passed: '
                'performing only one init in k-means instead of n_init=%d'
                % n_init, RuntimeWarning, stacklevel=2)
            n_init = 1

    # precompute squared norms of data points
    x_squared_norms = row_norms(X, squared=True)

    best_labels, best_inertia, best_centers = None, None, None
    if n_jobs == 1:
        # For a single thread, less memory is needed if we just store one set
        # of the best results (as opposed to one set per run per thread).
        for it in range(n_init):
            # run a k-means once
            labels, inertia, centers, n_iter_ = _kmeans_single(
                X, n_clusters, max_iter=max_iter, init=init, verbose=verbose,
                precompute_distances=precompute_distances, tol=tol,
                x_squared_norms=x_squared_norms, random_state=random_state)
            # determine if these results are the best so far
            if best_inertia is None or inertia < best_inertia:
                best_labels = labels.copy()
                best_centers = centers.copy()
                best_inertia = inertia
                best_n_iter = n_iter_
    else:
        # parallelisation of k-means runs
        seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
        results = Parallel(n_jobs=n_jobs, verbose=0)(
            delayed(_kmeans_single)(X, n_clusters, max_iter=max_iter,
                                    init=init, verbose=verbose, tol=tol,
                                    precompute_distances=precompute_distances,
                                    x_squared_norms=x_squared_norms,
                                    # Change seed to ensure variety
                                    random_state=seed)
            for seed in seeds)
        # Get results with the lowest inertia
        labels, inertia, centers, n_iters = zip(*results)
        best = np.argmin(inertia)
        best_labels = labels[best]
        best_inertia = inertia[best]
        best_centers = centers[best]
        best_n_iter = n_iters[best]

    if not sp.issparse(X):
        if not copy_x:
            X += X_mean
        best_centers += X_mean

    if return_n_iter:
        return best_centers, best_labels, best_inertia, best_n_iter
    else:
        return best_centers, best_labels, best_inertia


def _kmeans_single(X, n_clusters, x_squared_norms, max_iter=300,
                   init='k-means++', verbose=False, random_state=None,
                   tol=1e-4, precompute_distances=True):
    """A single run of k-means, assumes preparation completed prior.

    Parameters
    ----------
    X: array-like of floats, shape (n_samples, n_features)
        The observations to cluster.

    n_clusters: int
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter: int, optional, default 300
        Maximum number of iterations of the k-means algorithm to run.

    init: {'k-means++', 'random', or ndarray, or a callable}, optional
        Method for initialization, default to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': generate k centroids from a Gaussian with mean and
        variance estimated from the data.

        If an ndarray is passed, it should be of shape (k, p) and gives
        the initial centers.

        If a callable is passed, it should take arguments X, k and
        and a random state and return an initialization.

    tol: float, optional
        The relative increment in the results before declaring convergence.

    verbose: boolean, optional
        Verbosity mode

    x_squared_norms: array
        Precomputed x_squared_norms.

    precompute_distances : boolean, default: True
        Precompute distances (faster but takes more memory).

    random_state: integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    Returns
    -------
    centroid: float ndarray with shape (k, n_features)
        Centroids found at the last iteration of k-means.

    label: integer ndarray with shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia: float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    n_iter : int
        Number of iterations run.
    """
    random_state = check_random_state(random_state)

    best_labels, best_inertia, best_centers = None, None, None
    # init
    centers = _init_centroids(X, n_clusters, init, random_state=random_state,
                              x_squared_norms=x_squared_norms)
    if verbose:
        print("Initialization complete")

    # Allocate memory to store the distances for each sample to its
    # closer center for reallocation in case of ties
    distances = np.zeros(shape=(X.shape[0],), dtype=np.float64)

    # iterations
    for i in range(max_iter):
        centers_old = centers.copy()
        # labels assignment is also called the E-step of EM
        labels, inertia = \
            _labels_inertia(X, x_squared_norms, centers,
                            precompute_distances=precompute_distances,
                            distances=distances)

        # computation of the means is also called the M-step of EM
        if sp.issparse(X):
            centers = _k_means._centers_sparse(X, labels, n_clusters,
                                               distances)
        else:
            centers = _k_means._centers_dense(X, labels, n_clusters, distances)

        if verbose:
            print("Iteration %2d, inertia %.3f" % (i, inertia))

        if best_inertia is None or inertia < best_inertia:
            best_labels = labels.copy()
            best_centers = centers.copy()
            best_inertia = inertia

        shift = squared_norm(centers_old - centers)
        if shift <= tol:
            if verbose:
                print("Converged at iteration %d" % i)

            break

    if shift > 0:
        # rerun E-step in case of non-convergence so that predicted labels
        # match cluster centers
        best_labels, best_inertia = \
            _labels_inertia(X, x_squared_norms, best_centers,
                            precompute_distances=precompute_distances,
                            distances=distances)

    return best_labels, best_inertia, best_centers, i + 1


def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances):
    """Compute labels and inertia using a full distance matrix.

    This will overwrite the 'distances' array in-place.

    Parameters
    ----------
    X : numpy array, shape (n_sample, n_features)
        Input data.

    x_squared_norms : numpy array, shape (n_samples,)
        Precomputed squared norms of X.

    centers : numpy array, shape (n_clusters, n_features)
        Cluster centers which data is assigned to.

    distances : numpy array, shape (n_samples,)
        Pre-allocated array in which distances are stored.

    Returns
    -------
    labels : numpy array, dtype=np.int, shape (n_samples,)
        Indices of clusters that samples are assigned to.

    inertia : float
        Sum of distances of samples to their closest cluster center.

    """
    n_samples = X.shape[0]
    k = centers.shape[0]
    all_distances = euclidean_distances(centers, X, x_squared_norms,
                                        squared=True)
    labels = np.empty(n_samples, dtype=np.int32)
    labels.fill(-1)
    mindist = np.empty(n_samples)
    mindist.fill(np.infty)
    for center_id in range(k):
        dist = all_distances[center_id]
        labels[dist < mindist] = center_id
        mindist = np.minimum(dist, mindist)
    if n_samples == distances.shape[0]:
        # distances will be changed in-place
        distances[:] = mindist
    inertia = mindist.sum()
    return labels, inertia


def _labels_inertia(X, x_squared_norms, centers,
                    precompute_distances=True, distances=None):
    """E step of the K-means EM algorithm.

    Compute the labels and the inertia of the given samples and centers.
    This will compute the distances in-place.

    Parameters
    ----------
    X: float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
        The input samples to assign to the labels.

    x_squared_norms: array, shape (n_samples,)
        Precomputed squared euclidean norm of each data point, to speed up
        computations.

    centers: float64 array, shape (k, n_features)
        The cluster centers.

    precompute_distances : boolean, default: True
        Precompute distances (faster but takes more memory).

    distances: float64 array, shape (n_samples,)
        Pre-allocated array to be filled in with each sample's distance
        to the closest center.

    Returns
    -------
    labels: int array of shape(n)
        The resulting assignment

    inertia : float
        Sum of distances of samples to their closest cluster center.
    """
    n_samples = X.shape[0]
    # set the default value of centers to -1 to be able to detect any anomaly
    # easily
    labels = -np.ones(n_samples, np.int32)
    if distances is None:
        distances = np.zeros(shape=(0,), dtype=np.float64)
    # distances will be changed in-place
    if sp.issparse(X):
        inertia = _k_means._assign_labels_csr(
            X, x_squared_norms, centers, labels, distances=distances)
    else:
        if precompute_distances:
            return _labels_inertia_precompute_dense(X, x_squared_norms,
                                                    centers, distances)
        inertia = _k_means._assign_labels_array(
            X, x_squared_norms, centers, labels, distances=distances)
    return labels, inertia


def _init_centroids(X, k, init, random_state=None, x_squared_norms=None,
                    init_size=None):
    """Compute the initial centroids

    Parameters
    ----------

    X: array, shape (n_samples, n_features)

    k: int
        number of centroids

    init: {'k-means++', 'random' or ndarray or callable} optional
        Method for initialization

    random_state: integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    x_squared_norms:  array, shape (n_samples,), optional
        Squared euclidean norm of each data point. Pass it if you have it at
        hands already to avoid it being recomputed here. Default: None

    init_size : int, optional
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than k.

    Returns
    -------
    centers: array, shape(k, n_features)
    """
    random_state = check_random_state(random_state)
    n_samples = X.shape[0]

    if x_squared_norms is None:
        x_squared_norms = row_norms(X, squared=True)

    if init_size is not None and init_size < n_samples:
        if init_size < k:
            warnings.warn(
                "init_size=%d should be larger than k=%d. "
                "Setting it to 3*k" % (init_size, k),
                RuntimeWarning, stacklevel=2)
            init_size = 3 * k
        init_indices = random_state.random_integers(
            0, n_samples - 1, init_size)
        X = X[init_indices]
        x_squared_norms = x_squared_norms[init_indices]
        n_samples = X.shape[0]
    elif n_samples < k:
        raise ValueError(
            "n_samples=%d should be larger than k=%d" % (n_samples, k))

    if isinstance(init, string_types) and init == 'k-means++':
        centers = _k_init(X, k, random_state=random_state,
                          x_squared_norms=x_squared_norms)
    elif isinstance(init, string_types) and init == 'random':
        seeds = random_state.permutation(n_samples)[:k]
        centers = X[seeds]
    elif hasattr(init, '__array__'):
        centers = init
    elif callable(init):
        centers = init(X, k, random_state=random_state)
    else:
        raise ValueError("the init parameter for the k-means should "
                         "be 'k-means++' or 'random' or an ndarray, "
                         "'%s' (type '%s') was passed." % (init, type(init)))

    if sp.issparse(centers):
        centers = centers.toarray()

    _validate_center_shape(X, k, centers)
    return centers


class KMeans(BaseEstimator, ClusterMixin, TransformerMixin):
    """K-Means clustering

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------

    n_clusters : int, optional, default: 8
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter : int, default: 300
        Maximum number of iterations of the k-means algorithm for a
        single run.

    n_init : int, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    init : {'k-means++', 'random' or an ndarray}
        Method for initialization, defaults to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

    tol : float, default: 1e-4
        Relative tolerance with regards to inertia to declare convergence

    n_jobs : int
        The number of jobs to use for the computation. This works by computing
        each of the n_init runs in parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    verbose : int, default 0
        Verbosity mode.

    copy_x : boolean, default True
        When pre-computing distances it is more numerically accurate to center
        the data first.  If copy_x is True, then the original data is not
        modified.  If False, the original data is modified, and put back before
        the function returns, but small numerical differences may be introduced
        by subtracting and then adding the data mean.

    Attributes
    ----------
    cluster_centers_ : array, [n_clusters, n_features]
        Coordinates of cluster centers

    labels_ :
        Labels of each point

    inertia_ : float
        Sum of distances of samples to their closest cluster center.

    Notes
    ------
    The k-means problem is solved using Lloyd's algorithm.

    The average complexity is given by O(k n T), were n is the number of
    samples and T is the number of iteration.

    The worst case complexity is given by O(n^(k+2/p)) with
    n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
    'How slow is the k-means method?' SoCG2006)

    In practice, the k-means algorithm is very fast (one of the fastest
    clustering algorithms available), but it falls in local minima. That's why
    it can be useful to restart it several times.

    See also
    --------

    MiniBatchKMeans:
        Alternative online implementation that does incremental updates
        of the centers positions using mini-batches.
        For large scale learning (say n_samples > 10k) MiniBatchKMeans is
        probably much faster to than the default batch implementation.

    """

    def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300,
                 tol=1e-4, precompute_distances='auto',
                 verbose=0, random_state=None, copy_x=True, n_jobs=1):

        self.n_clusters = n_clusters
        self.init = init
        self.max_iter = max_iter
        self.tol = tol
        self.precompute_distances = precompute_distances
        self.n_init = n_init
        self.verbose = verbose
        self.random_state = random_state
        self.copy_x = copy_x
        self.n_jobs = n_jobs

    def _check_fit_data(self, X):
        """Verify that the number of samples given is larger than k"""
        X = check_array(X, accept_sparse='csr', dtype=np.float64)
        if X.shape[0] < self.n_clusters:
            raise ValueError("n_samples=%d should be >= n_clusters=%d" % (
                X.shape[0], self.n_clusters))
        return X

    def _check_test_data(self, X):
        X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES,
                        warn_on_dtype=True)
        n_samples, n_features = X.shape
        expected_n_features = self.cluster_centers_.shape[1]
        if not n_features == expected_n_features:
            raise ValueError("Incorrect number of features. "
                             "Got %d features, expected %d" % (
                                 n_features, expected_n_features))

        return X

    def fit(self, X, y=None):
        """Compute k-means clustering.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
        """
        random_state = check_random_state(self.random_state)
        X = self._check_fit_data(X)

        self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \
            k_means(
                X, n_clusters=self.n_clusters, init=self.init,
                n_init=self.n_init, max_iter=self.max_iter,
                verbose=self.verbose, return_n_iter=True,
                precompute_distances=self.precompute_distances,
                tol=self.tol, random_state=random_state, copy_x=self.copy_x,
                n_jobs=self.n_jobs)
        return self

    def fit_predict(self, X, y=None):
        """Compute cluster centers and predict cluster index for each sample.

        Convenience method; equivalent to calling fit(X) followed by
        predict(X).
        """
        return self.fit(X).labels_

    def fit_transform(self, X, y=None):
        """Compute clustering and transform X to cluster-distance space.

        Equivalent to fit(X).transform(X), but more efficiently implemented.
        """
        # Currently, this just skips a copy of the data if it is not in
        # np.array or CSR format already.
        # XXX This skips _check_test_data, which may change the dtype;
        # we should refactor the input validation.
        X = self._check_fit_data(X)
        return self.fit(X)._transform(X)

    def transform(self, X, y=None):
        """Transform X to a cluster-distance space.

        In the new space, each dimension is the distance to the cluster
        centers.  Note that even if X is sparse, the array returned by
        `transform` will typically be dense.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to transform.

        Returns
        -------
        X_new : array, shape [n_samples, k]
            X transformed in the new space.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        return self._transform(X)

    def _transform(self, X):
        """guts of transform method; no input validation"""
        return euclidean_distances(X, self.cluster_centers_)

    def predict(self, X):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to predict.

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0]

    def score(self, X, y=None):
        """Opposite of the value of X on the K-means objective.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data.

        Returns
        -------
        score : float
            Opposite of the value of X on the K-means objective.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)
        return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1]


def _mini_batch_step(X, x_squared_norms, centers, counts,
                     old_center_buffer, compute_squared_diff,
                     distances, random_reassign=False,
                     random_state=None, reassignment_ratio=.01,
                     verbose=False):
    """Incremental update of the centers for the Minibatch K-Means algorithm.

    Parameters
    ----------

    X : array, shape (n_samples, n_features)
        The original data array.

    x_squared_norms : array, shape (n_samples,)
        Squared euclidean norm of each data point.

    centers : array, shape (k, n_features)
        The cluster centers. This array is MODIFIED IN PLACE

    counts : array, shape (k,)
         The vector in which we keep track of the numbers of elements in a
         cluster. This array is MODIFIED IN PLACE

    distances : array, dtype float64, shape (n_samples), optional
        If not None, should be a pre-allocated array that will be used to store
        the distances of each sample to its closest center.
        May not be None when random_reassign is True.

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    random_reassign : boolean, optional
        If True, centers with very low counts are randomly reassigned
        to observations.

    reassignment_ratio : float, optional
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more likely to be reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    verbose : bool, optional, default False
        Controls the verbosity.

    compute_squared_diff : bool
        If set to False, the squared diff computation is skipped.

    old_center_buffer : int
        Copy of old centers for monitoring convergence.

    Returns
    -------
    inertia : float
        Sum of distances of samples to their closest cluster center.

    squared_diff : numpy array, shape (n_clusters,)
        Squared distances between previous and updated cluster centers.

    """
    # Perform label assignment to nearest centers
    nearest_center, inertia = _labels_inertia(X, x_squared_norms, centers,
                                              distances=distances)

    if random_reassign and reassignment_ratio > 0:
        random_state = check_random_state(random_state)
        # Reassign clusters that have very low counts
        to_reassign = counts < reassignment_ratio * counts.max()
        # pick at most .5 * batch_size samples as new centers
        if to_reassign.sum() > .5 * X.shape[0]:
            indices_dont_reassign = np.argsort(counts)[int(.5 * X.shape[0]):]
            to_reassign[indices_dont_reassign] = False
        n_reassigns = to_reassign.sum()
        if n_reassigns:
            # Pick new clusters amongst observations with uniform probability
            new_centers = choice(X.shape[0], replace=False, size=n_reassigns,
                                 random_state=random_state)
            if verbose:
                print("[MiniBatchKMeans] Reassigning %i cluster centers."
                      % n_reassigns)

            if sp.issparse(X) and not sp.issparse(centers):
                assign_rows_csr(X,
                                astype(new_centers, np.intp),
                                astype(np.where(to_reassign)[0], np.intp),
                                centers)
            else:
                centers[to_reassign] = X[new_centers]
        # reset counts of reassigned centers, but don't reset them too small
        # to avoid instant reassignment. This is a pretty dirty hack as it
        # also modifies the learning rates.
        counts[to_reassign] = np.min(counts[~to_reassign])

    # implementation for the sparse CSR representation completely written in
    # cython
    if sp.issparse(X):
        return inertia, _k_means._mini_batch_update_csr(
            X, x_squared_norms, centers, counts, nearest_center,
            old_center_buffer, compute_squared_diff)

    # dense variant in mostly numpy (not as memory efficient though)
    k = centers.shape[0]
    squared_diff = 0.0
    for center_idx in range(k):
        # find points from minibatch that are assigned to this center
        center_mask = nearest_center == center_idx
        count = center_mask.sum()

        if count > 0:
            if compute_squared_diff:
                old_center_buffer[:] = centers[center_idx]

            # inplace remove previous count scaling
            centers[center_idx] *= counts[center_idx]

            # inplace sum with new points members of this cluster
            centers[center_idx] += np.sum(X[center_mask], axis=0)

            # update the count statistics for this center
            counts[center_idx] += count

            # inplace rescale to compute mean of all points (old and new)
            centers[center_idx] /= counts[center_idx]

            # update the squared diff if necessary
            if compute_squared_diff:
                diff = centers[center_idx].ravel() - old_center_buffer.ravel()
                squared_diff += np.dot(diff, diff)

    return inertia, squared_diff


def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
                            n_samples, centers_squared_diff, batch_inertia,
                            context, verbose=0):
    """Helper function to encapsulte the early stopping logic"""
    # Normalize inertia to be able to compare values when
    # batch_size changes
    batch_inertia /= model.batch_size
    centers_squared_diff /= model.batch_size

    # Compute an Exponentially Weighted Average of the squared
    # diff to monitor the convergence while discarding
    # minibatch-local stochastic variability:
    # https://en.wikipedia.org/wiki/Moving_average
    ewa_diff = context.get('ewa_diff')
    ewa_inertia = context.get('ewa_inertia')
    if ewa_diff is None:
        ewa_diff = centers_squared_diff
        ewa_inertia = batch_inertia
    else:
        alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
        alpha = 1.0 if alpha > 1.0 else alpha
        ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
        ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha

    # Log progress to be able to monitor convergence
    if verbose:
        progress_msg = (
            'Minibatch iteration %d/%d:'
            ' mean batch inertia: %f, ewa inertia: %f ' % (
                iteration_idx + 1, n_iter, batch_inertia,
                ewa_inertia))
        print(progress_msg)

    # Early stopping based on absolute tolerance on squared change of
    # centers position (using EWA smoothing)
    if tol > 0.0 and ewa_diff <= tol:
        if verbose:
            print('Converged (small centers change) at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # Early stopping heuristic due to lack of improvement on smoothed inertia
    ewa_inertia_min = context.get('ewa_inertia_min')
    no_improvement = context.get('no_improvement', 0)
    if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
        no_improvement = 0
        ewa_inertia_min = ewa_inertia
    else:
        no_improvement += 1

    if (model.max_no_improvement is not None
            and no_improvement >= model.max_no_improvement):
        if verbose:
            print('Converged (lack of improvement in inertia)'
                  ' at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # update the convergence context to maintain state across successive calls:
    context['ewa_diff'] = ewa_diff
    context['ewa_inertia'] = ewa_inertia
    context['ewa_inertia_min'] = ewa_inertia_min
    context['no_improvement'] = no_improvement
    return False


class MiniBatchKMeans(KMeans):
    """Mini-Batch K-Means clustering

    Parameters
    ----------

    n_clusters : int, optional, default: 8
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter : int, optional
        Maximum number of iterations over the complete dataset before
        stopping independently of any early stopping criterion heuristics.

    max_no_improvement : int, default: 10
        Control early stopping based on the consecutive number of mini
        batches that does not yield an improvement on the smoothed inertia.

        To disable convergence detection based on inertia, set
        max_no_improvement to None.

    tol : float, default: 0.0
        Control early stopping based on the relative center changes as
        measured by a smoothed, variance-normalized of the mean center
        squared position changes. This early stopping heuristics is
        closer to the one used for the batch variant of the algorithms
        but induces a slight computational and memory overhead over the
        inertia heuristic.

        To disable convergence detection based on normalized center
        change, set tol to 0.0 (default).

    batch_size : int, optional, default: 100
        Size of the mini batches.

    init_size : int, optional, default: 3 * batch_size
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than n_clusters.

    init : {'k-means++', 'random' or an ndarray}, default: 'k-means++'
        Method for initialization, defaults to 'k-means++':

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    n_init : int, default=3
        Number of random initializations that are tried.
        In contrast to KMeans, the algorithm is only run once, using the
        best of the ``n_init`` initializations as measured by inertia.

    compute_labels : boolean, default=True
        Compute label assignment and inertia for the complete dataset
        once the minibatch optimization has converged in fit.

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    reassignment_ratio : float, default: 0.01
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more easily reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    verbose : boolean, optional
        Verbosity mode.

    Attributes
    ----------

    cluster_centers_ : array, [n_clusters, n_features]
        Coordinates of cluster centers

    labels_ :
        Labels of each point (if compute_labels is set to True).

    inertia_ : float
        The value of the inertia criterion associated with the chosen
        partition (if compute_labels is set to True). The inertia is
        defined as the sum of square distances of samples to their nearest
        neighbor.

    Notes
    -----
    See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
    """

    def __init__(self, n_clusters=8, init='k-means++', max_iter=100,
                 batch_size=100, verbose=0, compute_labels=True,
                 random_state=None, tol=0.0, max_no_improvement=10,
                 init_size=None, n_init=3, reassignment_ratio=0.01):

        super(MiniBatchKMeans, self).__init__(
            n_clusters=n_clusters, init=init, max_iter=max_iter,
            verbose=verbose, random_state=random_state, tol=tol, n_init=n_init)

        self.max_no_improvement = max_no_improvement
        self.batch_size = batch_size
        self.compute_labels = compute_labels
        self.init_size = init_size
        self.reassignment_ratio = reassignment_ratio

    def fit(self, X, y=None):
        """Compute the centroids on X by chunking it into mini-batches.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Coordinates of the data points to cluster
        """
        random_state = check_random_state(self.random_state)
        X = check_array(X, accept_sparse="csr", order='C', dtype=np.float64)
        n_samples, n_features = X.shape
        if n_samples < self.n_clusters:
            raise ValueError("Number of samples smaller than number "
                             "of clusters.")

        n_init = self.n_init
        if hasattr(self.init, '__array__'):
            self.init = np.ascontiguousarray(self.init, dtype=np.float64)
            if n_init != 1:
                warnings.warn(
                    'Explicit initial center position passed: '
                    'performing only one init in MiniBatchKMeans instead of '
                    'n_init=%d'
                    % self.n_init, RuntimeWarning, stacklevel=2)
                n_init = 1

        x_squared_norms = row_norms(X, squared=True)

        if self.tol > 0.0:
            tol = _tolerance(X, self.tol)

            # using tol-based early stopping needs the allocation of a
            # dedicated before which can be expensive for high dim data:
            # hence we allocate it outside of the main loop
            old_center_buffer = np.zeros(n_features, np.double)
        else:
            tol = 0.0
            # no need for the center buffer if tol-based early stopping is
            # disabled
            old_center_buffer = np.zeros(0, np.double)

        distances = np.zeros(self.batch_size, dtype=np.float64)
        n_batches = int(np.ceil(float(n_samples) / self.batch_size))
        n_iter = int(self.max_iter * n_batches)

        init_size = self.init_size
        if init_size is None:
            init_size = 3 * self.batch_size
        if init_size > n_samples:
            init_size = n_samples
        self.init_size_ = init_size

        validation_indices = random_state.random_integers(
            0, n_samples - 1, init_size)
        X_valid = X[validation_indices]
        x_squared_norms_valid = x_squared_norms[validation_indices]

        # perform several inits with random sub-sets
        best_inertia = None
        for init_idx in range(n_init):
            if self.verbose:
                print("Init %d/%d with method: %s"
                      % (init_idx + 1, n_init, self.init))
            counts = np.zeros(self.n_clusters, dtype=np.int32)

            # TODO: once the `k_means` function works with sparse input we
            # should refactor the following init to use it instead.

            # Initialize the centers using only a fraction of the data as we
            # expect n_samples to be very large when using MiniBatchKMeans
            cluster_centers = _init_centroids(
                X, self.n_clusters, self.init,
                random_state=random_state,
                x_squared_norms=x_squared_norms,
                init_size=init_size)

            # Compute the label assignment on the init dataset
            batch_inertia, centers_squared_diff = _mini_batch_step(
                X_valid, x_squared_norms[validation_indices],
                cluster_centers, counts, old_center_buffer, False,
                distances=None, verbose=self.verbose)

            # Keep only the best cluster centers across independent inits on
            # the common validation set
            _, inertia = _labels_inertia(X_valid, x_squared_norms_valid,
                                         cluster_centers)
            if self.verbose:
                print("Inertia for init %d/%d: %f"
                      % (init_idx + 1, n_init, inertia))
            if best_inertia is None or inertia < best_inertia:
                self.cluster_centers_ = cluster_centers
                self.counts_ = counts
                best_inertia = inertia

        # Empty context to be used inplace by the convergence check routine
        convergence_context = {}

        # Perform the iterative optimization until the final convergence
        # criterion
        for iteration_idx in range(n_iter):
            # Sample a minibatch from the full dataset
            minibatch_indices = random_state.random_integers(
                0, n_samples - 1, self.batch_size)

            # Perform the actual update step on the minibatch data
            batch_inertia, centers_squared_diff = _mini_batch_step(
                X[minibatch_indices], x_squared_norms[minibatch_indices],
                self.cluster_centers_, self.counts_,
                old_center_buffer, tol > 0.0, distances=distances,
                # Here we randomly choose whether to perform
                # random reassignment: the choice is done as a function
                # of the iteration index, and the minimum number of
                # counts, in order to force this reassignment to happen
                # every once in a while
                random_reassign=((iteration_idx + 1)
                                 % (10 + self.counts_.min()) == 0),
                random_state=random_state,
                reassignment_ratio=self.reassignment_ratio,
                verbose=self.verbose)

            # Monitor convergence and do early stopping if necessary
            if _mini_batch_convergence(
                    self, iteration_idx, n_iter, tol, n_samples,
                    centers_squared_diff, batch_inertia, convergence_context,
                    verbose=self.verbose):
                break

        self.n_iter_ = iteration_idx + 1

        if self.compute_labels:
            self.labels_, self.inertia_ = self._labels_inertia_minibatch(X)

        return self

    def _labels_inertia_minibatch(self, X):
        """Compute labels and inertia using mini batches.

        This is slightly slower than doing everything at once but preventes
        memory errors / segfaults.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        Returns
        -------
        labels : array, shap (n_samples,)
            Cluster labels for each point.

        inertia : float
            Sum of squared distances of points to nearest cluster.
        """
        if self.verbose:
            print('Computing label assignment and total inertia')
        x_squared_norms = row_norms(X, squared=True)
        slices = gen_batches(X.shape[0], self.batch_size)
        results = [_labels_inertia(X[s], x_squared_norms[s],
                                   self.cluster_centers_) for s in slices]
        labels, inertia = zip(*results)
        return np.hstack(labels), np.sum(inertia)

    def partial_fit(self, X, y=None):
        """Update k means estimate on a single mini-batch X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Coordinates of the data points to cluster.
        """

        X = check_array(X, accept_sparse="csr")
        n_samples, n_features = X.shape
        if hasattr(self.init, '__array__'):
            self.init = np.ascontiguousarray(self.init, dtype=np.float64)

        if n_samples == 0:
            return self

        x_squared_norms = row_norms(X, squared=True)
        self.random_state_ = getattr(self, "random_state_",
                                     check_random_state(self.random_state))
        if (not hasattr(self, 'counts_')
                or not hasattr(self, 'cluster_centers_')):
            # this is the first call partial_fit on this object:
            # initialize the cluster centers
            self.cluster_centers_ = _init_centroids(
                X, self.n_clusters, self.init,
                random_state=self.random_state_,
                x_squared_norms=x_squared_norms, init_size=self.init_size)

            self.counts_ = np.zeros(self.n_clusters, dtype=np.int32)
            random_reassign = False
            distances = None
        else:
            # The lower the minimum count is, the more we do random
            # reassignment, however, we don't want to do random
            # reassignment too often, to allow for building up counts
            random_reassign = self.random_state_.randint(
                10 * (1 + self.counts_.min())) == 0
            distances = np.zeros(X.shape[0], dtype=np.float64)

        _mini_batch_step(X, x_squared_norms, self.cluster_centers_,
                         self.counts_, np.zeros(0, np.double), 0,
                         random_reassign=random_reassign, distances=distances,
                         random_state=self.random_state_,
                         reassignment_ratio=self.reassignment_ratio,
                         verbose=self.verbose)

        if self.compute_labels:
            self.labels_, self.inertia_ = _labels_inertia(
                X, x_squared_norms, self.cluster_centers_)

        return self

    def predict(self, X):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            New data to predict.

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self, 'cluster_centers_')

        X = self._check_test_data(X)
        return self._labels_inertia_minibatch(X)[0]