This file is indexed.

/usr/lib/python3/dist-packages/sklearn/decomposition/dict_learning.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
""" Dictionary learning
"""
from __future__ import print_function
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause

import time
import sys
import itertools

from math import sqrt, ceil

import numpy as np
from scipy import linalg
from numpy.lib.stride_tricks import as_strided

from ..base import BaseEstimator, TransformerMixin
from ..externals.joblib import Parallel, delayed, cpu_count
from ..externals.six.moves import zip
from ..utils import (check_array, check_random_state, gen_even_slices,
                     gen_batches, _get_n_jobs)
from ..utils.extmath import randomized_svd, row_norms
from ..utils.validation import check_is_fitted
from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars


def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars',
                   regularization=None, copy_cov=True,
                   init=None, max_iter=1000, check_input=True, verbose=0):
    """Generic sparse coding

    Each column of the result is the solution to a Lasso problem.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        Data matrix.

    dictionary: array of shape (n_components, n_features)
        The dictionary matrix against which to solve the sparse coding of
        the data. Some of the algorithms assume normalized rows.

    gram: None | array, shape=(n_components, n_components)
        Precomputed Gram matrix, dictionary * dictionary'
        gram can be None if method is 'threshold'.

    cov: array, shape=(n_components, n_samples)
        Precomputed covariance, dictionary * X'

    algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
        lars: uses the least angle regression method (linear_model.lars_path)
        lasso_lars: uses Lars to compute the Lasso solution
        lasso_cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). lasso_lars will be faster if
        the estimated components are sparse.
        omp: uses orthogonal matching pursuit to estimate the sparse solution
        threshold: squashes to zero all coefficients less than regularization
        from the projection dictionary * data'

    regularization : int | float
        The regularization parameter. It corresponds to alpha when
        algorithm is 'lasso_lars', 'lasso_cd' or 'threshold'.
        Otherwise it corresponds to n_nonzero_coefs.

    init: array of shape (n_samples, n_components)
        Initialization value of the sparse code. Only used if
        `algorithm='lasso_cd'`.

    max_iter: int, 1000 by default
        Maximum number of iterations to perform if `algorithm='lasso_cd'`.

    copy_cov: boolean, optional
        Whether to copy the precomputed covariance matrix; if False, it may be
        overwritten.

    check_input: boolean, optional
        If False, the input arrays X and dictionary will not be checked.

    verbose: int
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    Returns
    -------
    code: array of shape (n_components, n_features)
        The sparse codes

    See also
    --------
    sklearn.linear_model.lars_path
    sklearn.linear_model.orthogonal_mp
    sklearn.linear_model.Lasso
    SparseCoder
    """
    if X.ndim == 1:
        X = X[:, np.newaxis]
    n_samples, n_features = X.shape
    if cov is None and algorithm != 'lasso_cd':
        # overwriting cov is safe
        copy_cov = False
        cov = np.dot(dictionary, X.T)

    if algorithm == 'lasso_lars':
        alpha = float(regularization) / n_features  # account for scaling
        try:
            err_mgt = np.seterr(all='ignore')

            # Not passing in verbose=max(0, verbose-1) because Lars.fit already
            # corrects the verbosity level.
            lasso_lars = LassoLars(alpha=alpha, fit_intercept=False,
                                   verbose=verbose, normalize=False,
                                   precompute=gram, fit_path=False)
            lasso_lars.fit(dictionary.T, X.T, Xy=cov)
            new_code = lasso_lars.coef_
        finally:
            np.seterr(**err_mgt)

    elif algorithm == 'lasso_cd':
        alpha = float(regularization) / n_features  # account for scaling

        # TODO: Make verbosity argument for Lasso?
        # sklearn.linear_model.coordinate_descent.enet_path has a verbosity
        # argument that we could pass in from Lasso.
        clf = Lasso(alpha=alpha, fit_intercept=False, normalize=False,
                    precompute=gram, max_iter=max_iter, warm_start=True)
        clf.coef_ = init
        clf.fit(dictionary.T, X.T, check_input=check_input)
        new_code = clf.coef_

    elif algorithm == 'lars':
        try:
            err_mgt = np.seterr(all='ignore')

            # Not passing in verbose=max(0, verbose-1) because Lars.fit already
            # corrects the verbosity level.
            lars = Lars(fit_intercept=False, verbose=verbose, normalize=False,
                        precompute=gram, n_nonzero_coefs=int(regularization),
                        fit_path=False)
            lars.fit(dictionary.T, X.T, Xy=cov)
            new_code = lars.coef_
        finally:
            np.seterr(**err_mgt)

    elif algorithm == 'threshold':
        new_code = ((np.sign(cov) *
                    np.maximum(np.abs(cov) - regularization, 0)).T)

    elif algorithm == 'omp':
        # TODO: Should verbose argument be passed to this?
        new_code = orthogonal_mp_gram(
            Gram=gram, Xy=cov, n_nonzero_coefs=int(regularization),
            tol=None, norms_squared=row_norms(X, squared=True),
            copy_Xy=copy_cov).T
    else:
        raise ValueError('Sparse coding method must be "lasso_lars" '
                         '"lasso_cd",  "lasso", "threshold" or "omp", got %s.'
                         % algorithm)
    return new_code


# XXX : could be moved to the linear_model module
def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars',
                  n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None,
                  max_iter=1000, n_jobs=1, check_input=True, verbose=0):
    """Sparse coding

    Each row of the result is the solution to a sparse coding problem.
    The goal is to find a sparse array `code` such that::

        X ~= code * dictionary

    Read more in the :ref:`User Guide <SparseCoder>`.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        Data matrix

    dictionary: array of shape (n_components, n_features)
        The dictionary matrix against which to solve the sparse coding of
        the data. Some of the algorithms assume normalized rows for meaningful
        output.

    gram: array, shape=(n_components, n_components)
        Precomputed Gram matrix, dictionary * dictionary'

    cov: array, shape=(n_components, n_samples)
        Precomputed covariance, dictionary' * X

    algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
        lars: uses the least angle regression method (linear_model.lars_path)
        lasso_lars: uses Lars to compute the Lasso solution
        lasso_cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). lasso_lars will be faster if
        the estimated components are sparse.
        omp: uses orthogonal matching pursuit to estimate the sparse solution
        threshold: squashes to zero all coefficients less than alpha from
        the projection dictionary * X'

    n_nonzero_coefs: int, 0.1 * n_features by default
        Number of nonzero coefficients to target in each column of the
        solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
        and is overridden by `alpha` in the `omp` case.

    alpha: float, 1. by default
        If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
        penalty applied to the L1 norm.
        If `algorithm='threhold'`, `alpha` is the absolute value of the
        threshold below which coefficients will be squashed to zero.
        If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
        the reconstruction error targeted. In this case, it overrides
        `n_nonzero_coefs`.

    init: array of shape (n_samples, n_components)
        Initialization value of the sparse codes. Only used if
        `algorithm='lasso_cd'`.

    max_iter: int, 1000 by default
        Maximum number of iterations to perform if `algorithm='lasso_cd'`.

    copy_cov: boolean, optional
        Whether to copy the precomputed covariance matrix; if False, it may be
        overwritten.

    n_jobs: int, optional
        Number of parallel jobs to run.

    check_input: boolean, optional
        If False, the input arrays X and dictionary will not be checked.

    verbose : int, optional
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    Returns
    -------
    code: array of shape (n_samples, n_components)
        The sparse codes

    See also
    --------
    sklearn.linear_model.lars_path
    sklearn.linear_model.orthogonal_mp
    sklearn.linear_model.Lasso
    SparseCoder
    """
    if check_input:
        if algorithm == 'lasso_cd':
            dictionary = check_array(dictionary, order='C', dtype='float64')
            X = check_array(X, order='C', dtype='float64')
        else:
            dictionary = check_array(dictionary)
            X = check_array(X)

    n_samples, n_features = X.shape
    n_components = dictionary.shape[0]

    if gram is None and algorithm != 'threshold':
        gram = np.dot(dictionary, dictionary.T)

    if cov is None and algorithm != 'lasso_cd':
        copy_cov = False
        cov = np.dot(dictionary, X.T)

    if algorithm in ('lars', 'omp'):
        regularization = n_nonzero_coefs
        if regularization is None:
            regularization = min(max(n_features / 10, 1), n_components)
    else:
        regularization = alpha
        if regularization is None:
            regularization = 1.

    if n_jobs == 1 or algorithm == 'threshold':
        code = _sparse_encode(X,
                              dictionary, gram, cov=cov,
                              algorithm=algorithm,
                              regularization=regularization, copy_cov=copy_cov,
                              init=init,
                              max_iter=max_iter,
                              check_input=False,
                              verbose=verbose)
        # This ensure that dimensionality of code is always 2,
        # consistant with the case n_jobs > 1
        if code.ndim == 1:
            code = code[np.newaxis, :]
        return code

    # Enter parallel code block
    code = np.empty((n_samples, n_components))
    slices = list(gen_even_slices(n_samples, _get_n_jobs(n_jobs)))

    code_views = Parallel(n_jobs=n_jobs, verbose=verbose)(
        delayed(_sparse_encode)(
            X[this_slice], dictionary, gram,
            cov[:, this_slice] if cov is not None else None,
            algorithm,
            regularization=regularization, copy_cov=copy_cov,
            init=init[this_slice] if init is not None else None,
            max_iter=max_iter,
            check_input=False)
        for this_slice in slices)
    for this_slice, this_view in zip(slices, code_views):
        code[this_slice] = this_view
    return code


def _update_dict(dictionary, Y, code, verbose=False, return_r2=False,
                 random_state=None):
    """Update the dense dictionary factor in place.

    Parameters
    ----------
    dictionary: array of shape (n_features, n_components)
        Value of the dictionary at the previous iteration.

    Y: array of shape (n_features, n_samples)
        Data matrix.

    code: array of shape (n_components, n_samples)
        Sparse coding of the data against which to optimize the dictionary.

    verbose:
        Degree of output the procedure will print.

    return_r2: bool
        Whether to compute and return the residual sum of squares corresponding
        to the computed solution.

    random_state: int or RandomState
        Pseudo number generator state used for random sampling.

    Returns
    -------
    dictionary: array of shape (n_features, n_components)
        Updated dictionary.

    """
    n_components = len(code)
    n_samples = Y.shape[0]
    random_state = check_random_state(random_state)
    # Residuals, computed 'in-place' for efficiency
    R = -np.dot(dictionary, code)
    R += Y
    R = np.asfortranarray(R)
    ger, = linalg.get_blas_funcs(('ger',), (dictionary, code))
    for k in range(n_components):
        # R <- 1.0 * U_k * V_k^T + R
        R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True)
        dictionary[:, k] = np.dot(R, code[k, :].T)
        # Scale k'th atom
        atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k])
        if atom_norm_square < 1e-20:
            if verbose == 1:
                sys.stdout.write("+")
                sys.stdout.flush()
            elif verbose:
                print("Adding new random atom")
            dictionary[:, k] = random_state.randn(n_samples)
            # Setting corresponding coefs to 0
            code[k, :] = 0.0
            dictionary[:, k] /= sqrt(np.dot(dictionary[:, k],
                                            dictionary[:, k]))
        else:
            dictionary[:, k] /= sqrt(atom_norm_square)
            # R <- -1.0 * U_k * V_k^T + R
            R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True)
    if return_r2:
        R **= 2
        # R is fortran-ordered. For numpy version < 1.6, sum does not
        # follow the quick striding first, and is thus inefficient on
        # fortran ordered data. We take a flat view of the data with no
        # striding
        R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,))
        R = np.sum(R)
        return dictionary, R
    return dictionary


def dict_learning(X, n_components, alpha, max_iter=100, tol=1e-8,
                  method='lars', n_jobs=1, dict_init=None, code_init=None,
                  callback=None, verbose=False, random_state=None,
                  return_n_iter=False):
    """Solves a dictionary learning matrix factorization problem.

    Finds the best dictionary and the corresponding sparse code for
    approximating the data matrix X by solving::

        (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
                     (U,V)
                    with || V_k ||_2 = 1 for all  0 <= k < n_components

    where V is the dictionary and U is the sparse code.

    Read more in the :ref:`User Guide <DictionaryLearning>`.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        Data matrix.

    n_components: int,
        Number of dictionary atoms to extract.

    alpha: int,
        Sparsity controlling parameter.

    max_iter: int,
        Maximum number of iterations to perform.

    tol: float,
        Tolerance for the stopping condition.

    method: {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    n_jobs: int,
        Number of parallel jobs to run, or -1 to autodetect.

    dict_init: array of shape (n_components, n_features),
        Initial value for the dictionary for warm restart scenarios.

    code_init: array of shape (n_samples, n_components),
        Initial value for the sparse code for warm restart scenarios.

    callback:
        Callable that gets invoked every five iterations.

    verbose:
        Degree of output the procedure will print.

    random_state: int or RandomState
        Pseudo number generator state used for random sampling.

    return_n_iter : bool
        Whether or not to return the number of iterations.

    Returns
    -------
    code: array of shape (n_samples, n_components)
        The sparse code factor in the matrix factorization.

    dictionary: array of shape (n_components, n_features),
        The dictionary factor in the matrix factorization.

    errors: array
        Vector of errors at each iteration.

    n_iter : int
        Number of iterations run. Returned only if `return_n_iter` is
        set to True.

    See also
    --------
    dict_learning_online
    DictionaryLearning
    MiniBatchDictionaryLearning
    SparsePCA
    MiniBatchSparsePCA
    """
    if method not in ('lars', 'cd'):
        raise ValueError('Coding method %r not supported as a fit algorithm.'
                         % method)
    method = 'lasso_' + method

    t0 = time.time()
    # Avoid integer division problems
    alpha = float(alpha)
    random_state = check_random_state(random_state)

    if n_jobs == -1:
        n_jobs = cpu_count()

    # Init the code and the dictionary with SVD of Y
    if code_init is not None and dict_init is not None:
        code = np.array(code_init, order='F')
        # Don't copy V, it will happen below
        dictionary = dict_init
    else:
        code, S, dictionary = linalg.svd(X, full_matrices=False)
        dictionary = S[:, np.newaxis] * dictionary
    r = len(dictionary)
    if n_components <= r:  # True even if n_components=None
        code = code[:, :n_components]
        dictionary = dictionary[:n_components, :]
    else:
        code = np.c_[code, np.zeros((len(code), n_components - r))]
        dictionary = np.r_[dictionary,
                           np.zeros((n_components - r, dictionary.shape[1]))]

    # Fortran-order dict, as we are going to access its row vectors
    dictionary = np.array(dictionary, order='F')

    residuals = 0

    errors = []
    current_cost = np.nan

    if verbose == 1:
        print('[dict_learning]', end=' ')

    # If max_iter is 0, number of iterations returned should be zero
    ii = -1

    for ii in range(max_iter):
        dt = (time.time() - t0)
        if verbose == 1:
            sys.stdout.write(".")
            sys.stdout.flush()
        elif verbose:
            print("Iteration % 3i "
                  "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)"
                  % (ii, dt, dt / 60, current_cost))

        # Update code
        code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha,
                             init=code, n_jobs=n_jobs)
        # Update dictionary
        dictionary, residuals = _update_dict(dictionary.T, X.T, code.T,
                                             verbose=verbose, return_r2=True,
                                             random_state=random_state)
        dictionary = dictionary.T

        # Cost function
        current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code))
        errors.append(current_cost)

        if ii > 0:
            dE = errors[-2] - errors[-1]
            # assert(dE >= -tol * errors[-1])
            if dE < tol * errors[-1]:
                if verbose == 1:
                    # A line return
                    print("")
                elif verbose:
                    print("--- Convergence reached after %d iterations" % ii)
                break
        if ii % 5 == 0 and callback is not None:
            callback(locals())

    if return_n_iter:
        return code, dictionary, errors, ii + 1
    else:
        return code, dictionary, errors


def dict_learning_online(X, n_components=2, alpha=1, n_iter=100,
                         return_code=True, dict_init=None, callback=None,
                         batch_size=3, verbose=False, shuffle=True, n_jobs=1,
                         method='lars', iter_offset=0, random_state=None,
                         return_inner_stats=False, inner_stats=None,
                         return_n_iter=False):
    """Solves a dictionary learning matrix factorization problem online.

    Finds the best dictionary and the corresponding sparse code for
    approximating the data matrix X by solving::

        (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
                     (U,V)
                     with || V_k ||_2 = 1 for all  0 <= k < n_components

    where V is the dictionary and U is the sparse code. This is
    accomplished by repeatedly iterating over mini-batches by slicing
    the input data.

    Read more in the :ref:`User Guide <DictionaryLearning>`.

    Parameters
    ----------
    X: array of shape (n_samples, n_features)
        Data matrix.

    n_components : int,
        Number of dictionary atoms to extract.

    alpha : float,
        Sparsity controlling parameter.

    n_iter : int,
        Number of iterations to perform.

    return_code : boolean,
        Whether to also return the code U or just the dictionary V.

    dict_init : array of shape (n_components, n_features),
        Initial value for the dictionary for warm restart scenarios.

    callback :
        Callable that gets invoked every five iterations.

    batch_size : int,
        The number of samples to take in each batch.

    verbose :
        Degree of output the procedure will print.

    shuffle : boolean,
        Whether to shuffle the data before splitting it in batches.

    n_jobs : int,
        Number of parallel jobs to run, or -1 to autodetect.

    method : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    iter_offset : int, default 0
        Number of previous iterations completed on the dictionary used for
        initialization.

    random_state : int or RandomState
        Pseudo number generator state used for random sampling.

    return_inner_stats : boolean, optional
        Return the inner statistics A (dictionary covariance) and B
        (data approximation). Useful to restart the algorithm in an
        online setting. If return_inner_stats is True, return_code is
        ignored

    inner_stats : tuple of (A, B) ndarrays
        Inner sufficient statistics that are kept by the algorithm.
        Passing them at initialization is useful in online settings, to
        avoid loosing the history of the evolution.
        A (n_components, n_components) is the dictionary covariance matrix.
        B (n_features, n_components) is the data approximation matrix

    return_n_iter : bool
        Whether or not to return the number of iterations.

    Returns
    -------
    code : array of shape (n_samples, n_components),
        the sparse code (only returned if `return_code=True`)

    dictionary : array of shape (n_components, n_features),
        the solutions to the dictionary learning problem

    n_iter : int
        Number of iterations run. Returned only if `return_n_iter` is
        set to `True`.

    See also
    --------
    dict_learning
    DictionaryLearning
    MiniBatchDictionaryLearning
    SparsePCA
    MiniBatchSparsePCA

    """
    if n_components is None:
        n_components = X.shape[1]

    if method not in ('lars', 'cd'):
        raise ValueError('Coding method not supported as a fit algorithm.')
    method = 'lasso_' + method

    t0 = time.time()
    n_samples, n_features = X.shape
    # Avoid integer division problems
    alpha = float(alpha)
    random_state = check_random_state(random_state)

    if n_jobs == -1:
        n_jobs = cpu_count()

    # Init V with SVD of X
    if dict_init is not None:
        dictionary = dict_init
    else:
        _, S, dictionary = randomized_svd(X, n_components,
                                          random_state=random_state)
        dictionary = S[:, np.newaxis] * dictionary
    r = len(dictionary)
    if n_components <= r:
        dictionary = dictionary[:n_components, :]
    else:
        dictionary = np.r_[dictionary,
                           np.zeros((n_components - r, dictionary.shape[1]))]

    if verbose == 1:
        print('[dict_learning]', end=' ')

    if shuffle:
        X_train = X.copy()
        random_state.shuffle(X_train)
    else:
        X_train = X

    dictionary = check_array(dictionary.T, order='F', dtype=np.float64,
                             copy=False)
    X_train = check_array(X_train, order='C', dtype=np.float64, copy=False)

    batches = gen_batches(n_samples, batch_size)
    batches = itertools.cycle(batches)

    # The covariance of the dictionary
    if inner_stats is None:
        A = np.zeros((n_components, n_components))
        # The data approximation
        B = np.zeros((n_features, n_components))
    else:
        A = inner_stats[0].copy()
        B = inner_stats[1].copy()

    # If n_iter is zero, we need to return zero.
    ii = iter_offset - 1

    for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches):
        this_X = X_train[batch]
        dt = (time.time() - t0)
        if verbose == 1:
            sys.stdout.write(".")
            sys.stdout.flush()
        elif verbose:
            if verbose > 10 or ii % ceil(100. / verbose) == 0:
                print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)"
                       % (ii, dt, dt / 60))

        this_code = sparse_encode(this_X, dictionary.T, algorithm=method,
                                  alpha=alpha, n_jobs=n_jobs).T

        # Update the auxiliary variables
        if ii < batch_size - 1:
            theta = float((ii + 1) * batch_size)
        else:
            theta = float(batch_size ** 2 + ii + 1 - batch_size)
        beta = (theta + 1 - batch_size) / (theta + 1)

        A *= beta
        A += np.dot(this_code, this_code.T)
        B *= beta
        B += np.dot(this_X.T, this_code.T)

        # Update dictionary
        dictionary = _update_dict(dictionary, B, A, verbose=verbose,
                                  random_state=random_state)
        # XXX: Can the residuals be of any use?

        # Maybe we need a stopping criteria based on the amount of
        # modification in the dictionary
        if callback is not None:
            callback(locals())

    if return_inner_stats:
        if return_n_iter:
            return dictionary.T, (A, B), ii - iter_offset + 1
        else:
            return dictionary.T, (A, B)
    if return_code:
        if verbose > 1:
            print('Learning code...', end=' ')
        elif verbose == 1:
            print('|', end=' ')
        code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha,
                             n_jobs=n_jobs, check_input=False)
        if verbose > 1:
            dt = (time.time() - t0)
            print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60))
        if return_n_iter:
            return code, dictionary.T, ii - iter_offset + 1
        else:
            return code, dictionary.T

    if return_n_iter:
        return dictionary.T, ii - iter_offset + 1
    else:
        return dictionary.T


class SparseCodingMixin(TransformerMixin):
    """Sparse coding mixin"""

    def _set_sparse_coding_params(self, n_components,
                                  transform_algorithm='omp',
                                  transform_n_nonzero_coefs=None,
                                  transform_alpha=None, split_sign=False,
                                  n_jobs=1):
        self.n_components = n_components
        self.transform_algorithm = transform_algorithm
        self.transform_n_nonzero_coefs = transform_n_nonzero_coefs
        self.transform_alpha = transform_alpha
        self.split_sign = split_sign
        self.n_jobs = n_jobs

    def transform(self, X, y=None):
        """Encode the data as a sparse combination of the dictionary atoms.

        Coding method is determined by the object parameter
        `transform_algorithm`.

        Parameters
        ----------
        X : array of shape (n_samples, n_features)
            Test data to be transformed, must have the same number of
            features as the data used to train the model.

        Returns
        -------
        X_new : array, shape (n_samples, n_components)
            Transformed data

        """
        check_is_fitted(self, 'components_')

        # XXX : kwargs is not documented
        X = check_array(X)
        n_samples, n_features = X.shape

        code = sparse_encode(
            X, self.components_, algorithm=self.transform_algorithm,
            n_nonzero_coefs=self.transform_n_nonzero_coefs,
            alpha=self.transform_alpha, n_jobs=self.n_jobs)

        if self.split_sign:
            # feature vector is split into a positive and negative side
            n_samples, n_features = code.shape
            split_code = np.empty((n_samples, 2 * n_features))
            split_code[:, :n_features] = np.maximum(code, 0)
            split_code[:, n_features:] = -np.minimum(code, 0)
            code = split_code

        return code


class SparseCoder(BaseEstimator, SparseCodingMixin):
    """Sparse coding

    Finds a sparse representation of data against a fixed, precomputed
    dictionary.

    Each row of the result is the solution to a sparse coding problem.
    The goal is to find a sparse array `code` such that::

        X ~= code * dictionary

    Read more in the :ref:`User Guide <SparseCoder>`.

    Parameters
    ----------
    dictionary : array, [n_components, n_features]
        The dictionary atoms used for sparse coding. Lines are assumed to be
        normalized to unit norm.

    transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
    'threshold'}
        Algorithm used to transform the data:
        lars: uses the least angle regression method (linear_model.lars_path)
        lasso_lars: uses Lars to compute the Lasso solution
        lasso_cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). lasso_lars will be faster if
        the estimated components are sparse.
        omp: uses orthogonal matching pursuit to estimate the sparse solution
        threshold: squashes to zero all coefficients less than alpha from
        the projection ``dictionary * X'``

    transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default
        Number of nonzero coefficients to target in each column of the
        solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
        and is overridden by `alpha` in the `omp` case.

    transform_alpha : float, 1. by default
        If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
        penalty applied to the L1 norm.
        If `algorithm='threshold'`, `alpha` is the absolute value of the
        threshold below which coefficients will be squashed to zero.
        If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
        the reconstruction error targeted. In this case, it overrides
        `n_nonzero_coefs`.

    split_sign : bool, False by default
        Whether to split the sparse feature vector into the concatenation of
        its negative part and its positive part. This can improve the
        performance of downstream classifiers.

    n_jobs : int,
        number of parallel jobs to run

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        The unchanged dictionary atoms

    See also
    --------
    DictionaryLearning
    MiniBatchDictionaryLearning
    SparsePCA
    MiniBatchSparsePCA
    sparse_encode
    """

    def __init__(self, dictionary, transform_algorithm='omp',
                 transform_n_nonzero_coefs=None, transform_alpha=None,
                 split_sign=False, n_jobs=1):
        self._set_sparse_coding_params(dictionary.shape[0],
                                       transform_algorithm,
                                       transform_n_nonzero_coefs,
                                       transform_alpha, split_sign, n_jobs)
        self.components_ = dictionary

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged

        This method is just there to implement the usual API and hence
        work in pipelines.
        """
        return self


class DictionaryLearning(BaseEstimator, SparseCodingMixin):
    """Dictionary learning

    Finds a dictionary (a set of atoms) that can best be used to represent data
    using a sparse code.

    Solves the optimization problem::

        (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
                    (U,V)
                    with || V_k ||_2 = 1 for all  0 <= k < n_components

    Read more in the :ref:`User Guide <DictionaryLearning>`.

    Parameters
    ----------
    n_components : int,
        number of dictionary elements to extract

    alpha : float,
        sparsity controlling parameter

    max_iter : int,
        maximum number of iterations to perform

    tol : float,
        tolerance for numerical error

    fit_algorithm : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

        .. versionadded:: 0.17
           *cd* coordinate descent method to improve speed.

    transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
    'threshold'}
        Algorithm used to transform the data
        lars: uses the least angle regression method (linear_model.lars_path)
        lasso_lars: uses Lars to compute the Lasso solution
        lasso_cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). lasso_lars will be faster if
        the estimated components are sparse.
        omp: uses orthogonal matching pursuit to estimate the sparse solution
        threshold: squashes to zero all coefficients less than alpha from
        the projection ``dictionary * X'``

        .. versionadded:: 0.17
           *lasso_cd* coordinate descent method to improve speed.

    transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default
        Number of nonzero coefficients to target in each column of the
        solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
        and is overridden by `alpha` in the `omp` case.

    transform_alpha : float, 1. by default
        If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
        penalty applied to the L1 norm.
        If `algorithm='threshold'`, `alpha` is the absolute value of the
        threshold below which coefficients will be squashed to zero.
        If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
        the reconstruction error targeted. In this case, it overrides
        `n_nonzero_coefs`.

    split_sign : bool, False by default
        Whether to split the sparse feature vector into the concatenation of
        its negative part and its positive part. This can improve the
        performance of downstream classifiers.

    n_jobs : int,
        number of parallel jobs to run

    code_init : array of shape (n_samples, n_components),
        initial value for the code, for warm restart

    dict_init : array of shape (n_components, n_features),
        initial values for the dictionary, for warm restart

    verbose :
        degree of verbosity of the printed output

    random_state : int or RandomState
        Pseudo number generator state used for random sampling.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        dictionary atoms extracted from the data

    error_ : array
        vector of errors at each iteration

    n_iter_ : int
        Number of iterations run.

    Notes
    -----
    **References:**

    J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
    for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf)

    See also
    --------
    SparseCoder
    MiniBatchDictionaryLearning
    SparsePCA
    MiniBatchSparsePCA
    """
    def __init__(self, n_components=None, alpha=1, max_iter=1000, tol=1e-8,
                 fit_algorithm='lars', transform_algorithm='omp',
                 transform_n_nonzero_coefs=None, transform_alpha=None,
                 n_jobs=1, code_init=None, dict_init=None, verbose=False,
                 split_sign=False, random_state=None):

        self._set_sparse_coding_params(n_components, transform_algorithm,
                                       transform_n_nonzero_coefs,
                                       transform_alpha, split_sign, n_jobs)
        self.alpha = alpha
        self.max_iter = max_iter
        self.tol = tol
        self.fit_algorithm = fit_algorithm
        self.code_init = code_init
        self.dict_init = dict_init
        self.verbose = verbose
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self: object
            Returns the object itself
        """
        random_state = check_random_state(self.random_state)
        X = check_array(X)
        if self.n_components is None:
            n_components = X.shape[1]
        else:
            n_components = self.n_components

        V, U, E, self.n_iter_ = dict_learning(
            X, n_components, self.alpha,
            tol=self.tol, max_iter=self.max_iter,
            method=self.fit_algorithm,
            n_jobs=self.n_jobs,
            code_init=self.code_init,
            dict_init=self.dict_init,
            verbose=self.verbose,
            random_state=random_state,
            return_n_iter=True)
        self.components_ = U
        self.error_ = E
        return self


class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin):
    """Mini-batch dictionary learning

    Finds a dictionary (a set of atoms) that can best be used to represent data
    using a sparse code.

    Solves the optimization problem::

       (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
                    (U,V)
                    with || V_k ||_2 = 1 for all  0 <= k < n_components

    Read more in the :ref:`User Guide <DictionaryLearning>`.

    Parameters
    ----------
    n_components : int,
        number of dictionary elements to extract

    alpha : float,
        sparsity controlling parameter

    n_iter : int,
        total number of iterations to perform

    fit_algorithm : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \
    'threshold'}
        Algorithm used to transform the data.
        lars: uses the least angle regression method (linear_model.lars_path)
        lasso_lars: uses Lars to compute the Lasso solution
        lasso_cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). lasso_lars will be faster if
        the estimated components are sparse.
        omp: uses orthogonal matching pursuit to estimate the sparse solution
        threshold: squashes to zero all coefficients less than alpha from
        the projection dictionary * X'

    transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default
        Number of nonzero coefficients to target in each column of the
        solution. This is only used by `algorithm='lars'` and `algorithm='omp'`
        and is overridden by `alpha` in the `omp` case.

    transform_alpha : float, 1. by default
        If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the
        penalty applied to the L1 norm.
        If `algorithm='threshold'`, `alpha` is the absolute value of the
        threshold below which coefficients will be squashed to zero.
        If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of
        the reconstruction error targeted. In this case, it overrides
        `n_nonzero_coefs`.

    split_sign : bool, False by default
        Whether to split the sparse feature vector into the concatenation of
        its negative part and its positive part. This can improve the
        performance of downstream classifiers.

    n_jobs : int,
        number of parallel jobs to run

    dict_init : array of shape (n_components, n_features),
        initial value of the dictionary for warm restart scenarios

    verbose :
        degree of verbosity of the printed output

    batch_size : int,
        number of samples in each mini-batch

    shuffle : bool,
        whether to shuffle the samples before forming batches

    random_state : int or RandomState
        Pseudo number generator state used for random sampling.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        components extracted from the data

    inner_stats_ : tuple of (A, B) ndarrays
        Internal sufficient statistics that are kept by the algorithm.
        Keeping them is useful in online settings, to avoid loosing the
        history of the evolution, but they shouldn't have any use for the
        end user.
        A (n_components, n_components) is the dictionary covariance matrix.
        B (n_features, n_components) is the data approximation matrix

    n_iter_ : int
        Number of iterations run.

    Notes
    -----
    **References:**

    J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning
    for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf)

    See also
    --------
    SparseCoder
    DictionaryLearning
    SparsePCA
    MiniBatchSparsePCA

    """
    def __init__(self, n_components=None, alpha=1, n_iter=1000,
                 fit_algorithm='lars', n_jobs=1, batch_size=3,
                 shuffle=True, dict_init=None, transform_algorithm='omp',
                 transform_n_nonzero_coefs=None, transform_alpha=None,
                 verbose=False, split_sign=False, random_state=None):

        self._set_sparse_coding_params(n_components, transform_algorithm,
                                       transform_n_nonzero_coefs,
                                       transform_alpha, split_sign, n_jobs)
        self.alpha = alpha
        self.n_iter = n_iter
        self.fit_algorithm = fit_algorithm
        self.dict_init = dict_init
        self.verbose = verbose
        self.shuffle = shuffle
        self.batch_size = batch_size
        self.split_sign = split_sign
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        random_state = check_random_state(self.random_state)
        X = check_array(X)

        U, (A, B), self.n_iter_ = dict_learning_online(
            X, self.n_components, self.alpha,
            n_iter=self.n_iter, return_code=False,
            method=self.fit_algorithm,
            n_jobs=self.n_jobs, dict_init=self.dict_init,
            batch_size=self.batch_size, shuffle=self.shuffle,
            verbose=self.verbose, random_state=random_state,
            return_inner_stats=True,
            return_n_iter=True)
        self.components_ = U
        # Keep track of the state of the algorithm to be able to do
        # some online fitting (partial_fit)
        self.inner_stats_ = (A, B)
        self.iter_offset_ = self.n_iter
        return self

    def partial_fit(self, X, y=None, iter_offset=None):
        """Updates the model using the data in X as a mini-batch.

        Parameters
        ----------
        X: array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        iter_offset: integer, optional
            The number of iteration on data batches that has been
            performed before this call to partial_fit. This is optional:
            if no number is passed, the memory of the object is
            used.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        if not hasattr(self, 'random_state_'):
            self.random_state_ = check_random_state(self.random_state)
        X = check_array(X)
        if hasattr(self, 'components_'):
            dict_init = self.components_
        else:
            dict_init = self.dict_init
        inner_stats = getattr(self, 'inner_stats_', None)
        if iter_offset is None:
            iter_offset = getattr(self, 'iter_offset_', 0)
        U, (A, B) = dict_learning_online(
            X, self.n_components, self.alpha,
            n_iter=self.n_iter, method=self.fit_algorithm,
            n_jobs=self.n_jobs, dict_init=dict_init,
            batch_size=len(X), shuffle=False,
            verbose=self.verbose, return_code=False,
            iter_offset=iter_offset, random_state=self.random_state_,
            return_inner_stats=True, inner_stats=inner_stats)
        self.components_ = U

        # Keep track of the state of the algorithm to be able to do
        # some online fitting (partial_fit)
        self.inner_stats_ = (A, B)
        self.iter_offset_ = iter_offset + self.n_iter
        return self