This file is indexed.

/usr/lib/python3/dist-packages/sklearn/decomposition/nmf.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
""" Non-negative matrix factorization
"""
# Author: Vlad Niculae
#         Lars Buitinck <L.J.Buitinck@uva.nl>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Tom Dupre la Tour
# Author: Chih-Jen Lin, National Taiwan University (original projected gradient
#                                                   NMF implementation)
# Author: Anthony Di Franco (Projected gradient, Python and NumPy port)
# License: BSD 3 clause


from __future__ import division

from math import sqrt
import warnings
import numbers

import numpy as np
import scipy.sparse as sp

from ..externals import six
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_random_state, check_array
from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm
from ..utils.extmath import fast_dot
from ..utils.validation import check_is_fitted, check_non_negative
from ..utils import deprecated
from ..utils import ConvergenceWarning
from .cdnmf_fast import _update_cdnmf_fast


def safe_vstack(Xs):
    if any(sp.issparse(X) for X in Xs):
        return sp.vstack(Xs)
    else:
        return np.vstack(Xs)


def norm(x):
    """Dot product-based Euclidean norm implementation

    See: http://fseoane.net/blog/2011/computing-the-vector-norm/
    """
    return sqrt(squared_norm(x))


def trace_dot(X, Y):
    """Trace of np.dot(X, Y.T)."""
    return np.dot(X.ravel(), Y.ravel())


def _sparseness(x):
    """Hoyer's measure of sparsity for a vector"""
    sqrt_n = np.sqrt(len(x))
    return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1)


def _check_init(A, shape, whom):
    A = check_array(A)
    if np.shape(A) != shape:
        raise ValueError('Array with wrong shape passed to %s. Expected %s, '
                         'but got %s ' % (whom, shape, np.shape(A)))
    check_non_negative(A, whom)
    if np.max(A) == 0:
        raise ValueError('Array passed to %s is full of zeros.' % whom)


def _safe_compute_error(X, W, H):
    """Frobenius norm between X and WH, safe for sparse array"""
    if not sp.issparse(X):
        error = norm(X - np.dot(W, H))
    else:
        norm_X = np.dot(X.data, X.data)
        norm_WH = trace_dot(np.dot(np.dot(W.T, W), H), H)
        cross_prod = trace_dot((X * H.T), W)
        error = sqrt(norm_X + norm_WH - 2. * cross_prod)
    return error


def _check_string_param(sparseness, solver):
    allowed_sparseness = (None, 'data', 'components')
    if sparseness not in allowed_sparseness:
        raise ValueError(
            'Invalid sparseness parameter: got %r instead of one of %r' %
            (sparseness, allowed_sparseness))

    allowed_solver = ('pg', 'cd')
    if solver not in allowed_solver:
        raise ValueError(
            'Invalid solver parameter: got %r instead of one of %r' %
            (solver, allowed_solver))


def _initialize_nmf(X, n_components, init=None, eps=1e-6,
                    random_state=None):
    """Algorithms for NMF initialization.

    Computes an initial guess for the non-negative
    rank k matrix approximation for X: X = WH

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The data matrix to be decomposed.

    n_components : integer
        The number of components desired in the approximation.

    init :  None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
        Method used to initialize the procedure.
        Default: 'nndsvdar' if n_components < n_features, otherwise 'random'.
        Valid options:

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    eps : float
        Truncate all values less then this in output to zero.

    random_state : int seed, RandomState instance, or None (default)
        Random number generator seed control, used in 'nndsvdar' and
        'random' modes.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Initial guesses for solving X ~= WH

    H : array-like, shape (n_components, n_features)
        Initial guesses for solving X ~= WH

    References
    ----------
    C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
    nonnegative matrix factorization - Pattern Recognition, 2008
    http://tinyurl.com/nndsvd
    """
    check_non_negative(X, "NMF initialization")
    n_samples, n_features = X.shape

    if init is None:
        if n_components < n_features:
            init = 'nndsvd'
        else:
            init = 'random'

    # Random initialization
    if init == 'random':
        avg = np.sqrt(X.mean() / n_components)
        rng = check_random_state(random_state)
        H = avg * rng.randn(n_components, n_features)
        W = avg * rng.randn(n_samples, n_components)
        # we do not write np.abs(H, out=H) to stay compatible with
        # numpy 1.5 and earlier where the 'out' keyword is not
        # supported as a kwarg on ufuncs
        np.abs(H, H)
        np.abs(W, W)
        return W, H

    # NNDSVD initialization
    U, S, V = randomized_svd(X, n_components, random_state=random_state)
    W, H = np.zeros(U.shape), np.zeros(V.shape)

    # The leading singular triplet is non-negative
    # so it can be used as is for initialization.
    W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0])
    H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :])

    for j in range(1, n_components):
        x, y = U[:, j], V[j, :]

        # extract positive and negative parts of column vectors
        x_p, y_p = np.maximum(x, 0), np.maximum(y, 0)
        x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0))

        # and their norms
        x_p_nrm, y_p_nrm = norm(x_p), norm(y_p)
        x_n_nrm, y_n_nrm = norm(x_n), norm(y_n)

        m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm

        # choose update
        if m_p > m_n:
            u = x_p / x_p_nrm
            v = y_p / y_p_nrm
            sigma = m_p
        else:
            u = x_n / x_n_nrm
            v = y_n / y_n_nrm
            sigma = m_n

        lbd = np.sqrt(S[j] * sigma)
        W[:, j] = lbd * u
        H[j, :] = lbd * v

    W[W < eps] = 0
    H[H < eps] = 0

    if init == "nndsvd":
        pass
    elif init == "nndsvda":
        avg = X.mean()
        W[W == 0] = avg
        H[H == 0] = avg
    elif init == "nndsvdar":
        rng = check_random_state(random_state)
        avg = X.mean()
        W[W == 0] = abs(avg * rng.randn(len(W[W == 0])) / 100)
        H[H == 0] = abs(avg * rng.randn(len(H[H == 0])) / 100)
    else:
        raise ValueError(
            'Invalid init parameter: got %r instead of one of %r' %
            (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar')))

    return W, H


def _nls_subproblem(V, W, H, tol, max_iter, alpha=0., l1_ratio=0.,
                    sigma=0.01, beta=0.1):
    """Non-negative least square solver

    Solves a non-negative least squares subproblem using the projected
    gradient descent algorithm.

    Parameters
    ----------
    V : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        Constant matrix.

    H : array-like, shape (n_components, n_features)
        Initial guess for the solution.

    tol : float
        Tolerance of the stopping condition.

    max_iter : int
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms. Set it to zero to
        have no regularization.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an L2 penalty.
        For l1_ratio = 1 it is an L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    sigma : float
        Constant used in the sufficient decrease condition checked by the line
        search.  Smaller values lead to a looser sufficient decrease condition,
        thus reducing the time taken by the line search, but potentially
        increasing the number of iterations of the projected gradient
        procedure. 0.01 is a commonly used value in the optimization
        literature.

    beta : float
        Factor by which the step size is decreased (resp. increased) until
        (resp. as long as) the sufficient decrease condition is satisfied.
        Larger values allow to find a better step size but lead to longer line
        search. 0.1 is a commonly used value in the optimization literature.

    Returns
    -------
    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    grad : array-like, shape (n_components, n_features)
        The gradient.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/
    """
    WtV = safe_sparse_dot(W.T, V)
    WtW = fast_dot(W.T, W)

    # values justified in the paper (alpha is renamed gamma)
    gamma = 1
    for n_iter in range(1, max_iter + 1):
        grad = np.dot(WtW, H) - WtV
        if alpha > 0 and l1_ratio == 1.:
            grad += alpha
        elif alpha > 0:
            grad += alpha * (l1_ratio + (1 - l1_ratio) * H)

        # The following multiplication with a boolean array is more than twice
        # as fast as indexing into grad.
        if norm(grad * np.logical_or(grad < 0, H > 0)) < tol:
            break

        Hp = H

        for inner_iter in range(20):
            # Gradient step.
            Hn = H - gamma * grad
            # Projection step.
            Hn *= Hn > 0
            d = Hn - H
            gradd = np.dot(grad.ravel(), d.ravel())
            dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel())
            suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0
            if inner_iter == 0:
                decr_gamma = not suff_decr

            if decr_gamma:
                if suff_decr:
                    H = Hn
                    break
                else:
                    gamma *= beta
            elif not suff_decr or (Hp == Hn).all():
                H = Hp
                break
            else:
                gamma /= beta
                Hp = Hn

    if n_iter == max_iter:
        warnings.warn("Iteration limit reached in nls subproblem.")

    return H, grad, n_iter


def _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio,
                                 sparseness, beta, eta):
    """Helper function for _fit_projected_gradient"""
    n_samples, n_features = X.shape
    n_components_ = H.shape[0]

    if sparseness is None:
        Wt, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter,
                                           alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'data':
        Wt, gradW, iterW = _nls_subproblem(
            safe_vstack([X.T, np.zeros((1, n_samples))]),
            safe_vstack([H.T, np.sqrt(beta) * np.ones((1,
                         n_components_))]),
            W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'components':
        Wt, gradW, iterW = _nls_subproblem(
            safe_vstack([X.T,
                         np.zeros((n_components_, n_samples))]),
            safe_vstack([H.T,
                         np.sqrt(eta) * np.eye(n_components_)]),
            W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)

    return Wt.T, gradW.T, iterW


def _update_projected_gradient_h(X, W, H, tolH, nls_max_iter, alpha, l1_ratio,
                                 sparseness, beta, eta):
    """Helper function for _fit_projected_gradient"""
    n_samples, n_features = X.shape
    n_components_ = W.shape[1]

    if sparseness is None:
        H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter,
                                          alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'data':
        H, gradH, iterH = _nls_subproblem(
            safe_vstack([X, np.zeros((n_components_, n_features))]),
            safe_vstack([W,
                         np.sqrt(eta) * np.eye(n_components_)]),
            H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)
    elif sparseness == 'components':
        H, gradH, iterH = _nls_subproblem(
            safe_vstack([X, np.zeros((1, n_features))]),
            safe_vstack([W,
                         np.sqrt(beta)
                         * np.ones((1, n_components_))]),
            H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio)

    return H, gradH, iterH


def _fit_projected_gradient(X, W, H, tol, max_iter,
                            nls_max_iter, alpha, l1_ratio,
                            sparseness, beta, eta):
    """Compute Non-negative Matrix Factorization (NMF) with Projected Gradient

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/

    P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints.
    Journal of Machine Learning Research 2004.
    """
    gradW = (np.dot(W, np.dot(H, H.T))
             - safe_sparse_dot(X, H.T, dense_output=True))
    gradH = (np.dot(np.dot(W.T, W), H)
             - safe_sparse_dot(W.T, X, dense_output=True))

    init_grad = squared_norm(gradW) + squared_norm(gradH.T)
    # max(0.001, tol) to force alternating minimizations of W and H
    tolW = max(0.001, tol) * np.sqrt(init_grad)
    tolH = tolW

    for n_iter in range(1, max_iter + 1):
        # stopping condition
        # as discussed in paper
        proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0))
        proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0))

        if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2:
            break

        # update W
        W, gradW, iterW = _update_projected_gradient_w(X, W, H, tolW,
                                                       nls_max_iter,
                                                       alpha, l1_ratio,
                                                       sparseness, beta, eta)
        if iterW == 1:
            tolW = 0.1 * tolW

        # update H
        H, gradH, iterH = _update_projected_gradient_h(X, W, H, tolH,
                                                       nls_max_iter,
                                                       alpha, l1_ratio,
                                                       sparseness, beta, eta)
        if iterH == 1:
            tolH = 0.1 * tolH

    H[H == 0] = 0   # fix up negative zeros

    if n_iter == max_iter:
        W, _, _ = _update_projected_gradient_w(X, W, H, tol, nls_max_iter,
                                               alpha, l1_ratio, sparseness,
                                               beta, eta)

    return W, H, n_iter


def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle,
                               random_state):
    """Helper function for _fit_coordinate_descent

    Update W to minimize the objective function, iterating once over all
    coordinates. By symmetry, to update H, one can call
    _update_coordinate_descent(X.T, Ht, W, ...)

    """
    n_components = Ht.shape[1]

    HHt = fast_dot(Ht.T, Ht)
    XHt = safe_sparse_dot(X, Ht)

    # L2 regularization corresponds to increase the diagonal of HHt
    if l2_reg != 0.:
        # adds l2_reg only on the diagonal
        HHt.flat[::n_components + 1] += l2_reg
    # L1 regularization correponds to decrease each element of XHt
    if l1_reg != 0.:
        XHt -= l1_reg

    if shuffle:
        permutation = random_state.permutation(n_components)
    else:
        permutation = np.arange(n_components)
    # The following seems to be required on 64-bit Windows w/ Python 3.5.
    permutation = np.asarray(permutation, dtype=np.intp)
    return _update_cdnmf_fast(W, HHt, XHt, permutation)


def _fit_coordinate_descent(X, W, H, tol=1e-4, max_iter=200, alpha=0.001,
                            l1_ratio=0., regularization=None, update_H=True,
                            verbose=0, shuffle=False, random_state=None):
    """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent

    The objective function is minimized with an alternating minimization of W
    and H. Each minimization is done with a cyclic (up to a permutation of the
    features) Coordinate Descent.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        Initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        Initial guess for the solution.

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an L2 penalty.
        For l1_ratio = 1 it is an L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    regularization : 'both' | 'components' | 'transformation' | None
        Select whether the regularization affects the components (H), the
        transformation (W), both or none of them.

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    verbose : integer, default: 0
        The verbosity level.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

    random_state : integer seed, RandomState instance, or None (default)
        Random number generator seed control.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """
    # so W and Ht are both in C order in memory
    Ht = check_array(H.T, order='C')
    X = check_array(X, accept_sparse='csr')

    # L1 and L2 regularization
    l1_H, l2_H, l1_W, l2_W = 0, 0, 0, 0
    if regularization in ('both', 'components'):
        alpha = float(alpha)
        l1_H = l1_ratio * alpha
        l2_H = (1. - l1_ratio) * alpha
    if regularization in ('both', 'transformation'):
        alpha = float(alpha)
        l1_W = l1_ratio * alpha
        l2_W = (1. - l1_ratio) * alpha

    rng = check_random_state(random_state)

    for n_iter in range(max_iter):
        violation = 0.

        # Update W
        violation += _update_coordinate_descent(X, W, Ht, l1_W, l2_W,
                                                shuffle, rng)
        # Update H
        if update_H:
            violation += _update_coordinate_descent(X.T, Ht, W, l1_H, l2_H,
                                                    shuffle, rng)

        if n_iter == 0:
            violation_init = violation

        if violation_init == 0:
            break

        if verbose:
            print("violation:", violation / violation_init)

        if violation / violation_init <= tol:
            if verbose:
                print("Converged at iteration", n_iter + 1)
            break

    return W, Ht.T, n_iter


def non_negative_factorization(X, W=None, H=None, n_components=None,
                               init='random', update_H=True, solver='cd',
                               tol=1e-4, max_iter=200, alpha=0., l1_ratio=0.,
                               regularization=None, random_state=None,
                               verbose=0, shuffle=False, nls_max_iter=2000,
                               sparseness=None, beta=1, eta=0.1):
    """Compute Non-negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    The objective function is minimized with an alternating minimization of W
    and H. If H is given and update_H=False, it solves for W only.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        If init='custom', it is used as initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        If init='custom', it is used as initial guess for the solution.
        If update_H=False, it is used as a constant, to solve for W only.

    n_components : integer
        Number of components, if n_components is not set all features
        are kept.

    init :  None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: 'nndsvd' if n_components < n_features, otherwise random.
        Valid options:

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    solver : 'pg' | 'cd'
        Numerical solver to use:
        'pg' is a (deprecated) Projected Gradient solver.
        'cd' is a Coordinate Descent solver.

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    regularization : 'both' | 'components' | 'transformation' | None
        Select whether the regularization affects the components (H), the
        transformation (W), both or none of them.

    random_state : integer seed, RandomState instance, or None (default)
        Random number generator seed control.

    verbose : integer, default: 0
        The verbosity level.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

    nls_max_iter : integer, default: 2000
        Number of iterations in NLS subproblem.
        Used only in the deprecated 'pg' solver.

    sparseness : 'data' | 'components' | None, default: None
        Where to enforce sparsity in the model.
        Used only in the deprecated 'pg' solver.

    beta : double, default: 1
        Degree of sparseness, if sparseness is not None. Larger values mean
        more sparseness. Used only in the deprecated 'pg' solver.

    eta : double, default: 0.1
        Degree of correctness to maintain, if sparsity is not None. Smaller
        values mean larger error. Used only in the deprecated 'pg' solver.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        Actual number of iterations.

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/

    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """

    X = check_array(X, accept_sparse=('csr', 'csc'))
    check_non_negative(X, "NMF (input X)")
    _check_string_param(sparseness, solver)

    n_samples, n_features = X.shape
    if n_components is None:
        n_components = n_features

    if not isinstance(n_components, six.integer_types) or n_components <= 0:
        raise ValueError("Number of components must be positive;"
                         " got (n_components=%r)" % n_components)
    if not isinstance(max_iter, numbers.Number) or max_iter < 0:
        raise ValueError("Maximum number of iteration must be positive;"
                         " got (max_iter=%r)" % max_iter)
    if not isinstance(tol, numbers.Number) or tol < 0:
        raise ValueError("Tolerance for stopping criteria must be "
                         "positive; got (tol=%r)" % tol)

    # check W and H, or initialize them
    if init == 'custom':
        _check_init(H, (n_components, n_features), "NMF (input H)")
        _check_init(W, (n_samples, n_components), "NMF (input W)")
    elif not update_H:
        _check_init(H, (n_components, n_features), "NMF (input H)")
        W = np.zeros((n_samples, n_components))
    else:
        W, H = _initialize_nmf(X, n_components, init=init,
                               random_state=random_state)

    if solver == 'pg':
        warnings.warn("'pg' solver will be removed in release 0.19."
                      " Use 'cd' solver instead.", DeprecationWarning)
        if update_H:  # fit_transform
            W, H, n_iter = _fit_projected_gradient(X, W, H, tol,
                                                   max_iter,
                                                   nls_max_iter,
                                                   alpha, l1_ratio,
                                                   sparseness,
                                                   beta, eta)
        else:  # transform
            W, H, n_iter = _update_projected_gradient_w(X, W, H,
                                                        tol, nls_max_iter,
                                                        alpha, l1_ratio,
                                                        sparseness, beta,
                                                        eta)
    elif solver == 'cd':
        W, H, n_iter = _fit_coordinate_descent(X, W, H, tol,
                                               max_iter,
                                               alpha, l1_ratio,
                                               regularization,
                                               update_H=update_H,
                                               verbose=verbose,
                                               shuffle=shuffle,
                                               random_state=random_state)
    else:
        raise ValueError("Invalid solver parameter '%s'." % solver)

    if n_iter == max_iter:
        warnings.warn("Maximum number of iteration %d reached. Increase it to"
                      " improve convergence." % max_iter, ConvergenceWarning)

    return W, H, n_iter


class NMF(BaseEstimator, TransformerMixin):
    """Non-Negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    The objective function is minimized with an alternating minimization of W
    and H.

    Read more in the :ref:`User Guide <NMF>`.

    Parameters
    ----------
    n_components : int or None
        Number of components, if n_components is not set all features
        are kept.

    init :  'random' | 'nndsvd' |  'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: 'nndsvdar' if n_components < n_features, otherwise random.
        Valid options:

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    solver : 'pg' | 'cd'
        Numerical solver to use:
        'pg' is a Projected Gradient solver (deprecated).
        'cd' is a Coordinate Descent solver (recommended).

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver.

    tol : double, default: 1e-4
        Tolerance value used in stopping conditions.

    max_iter : integer, default: 200
        Number of iterations to compute.

    random_state : integer seed, RandomState instance, or None (default)
        Random number generator seed control.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms. Set it to zero to
        have no regularization.

        .. versionadded:: 0.17
           *alpha* used in the Coordinate Descent solver.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

        .. versionadded:: 0.17
           Regularization parameter *l1_ratio* used in the Coordinate Descent solver.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

        .. versionadded:: 0.17
           *shuffle* parameter used in the Coordinate Descent solver.

    nls_max_iter : integer, default: 2000
        Number of iterations in NLS subproblem.
        Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    sparseness : 'data' | 'components' | None, default: None
        Where to enforce sparsity in the model.
        Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    beta : double, default: 1
        Degree of sparseness, if sparseness is not None. Larger values mean
        more sparseness. Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    eta : double, default: 0.1
        Degree of correctness to maintain, if sparsity is not None. Smaller
        values mean larger error. Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Non-negative components of the data.

    reconstruction_err_ : number
        Frobenius norm of the matrix difference between
        the training data and the reconstructed data from
        the fit produced by the model. ``|| X - WH ||_2``

    n_iter_ : int
        Actual number of iterations.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import NMF
    >>> model = NMF(n_components=2, init='random', random_state=0)
    >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200,
      n_components=2, nls_max_iter=2000, random_state=0, shuffle=False,
      solver='cd', sparseness=None, tol=0.0001, verbose=0)

    >>> model.components_
    array([[ 2.09783018,  0.30560234],
           [ 2.13443044,  2.13171694]])
    >>> model.reconstruction_err_ #doctest: +ELLIPSIS
    0.00115993...

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/

    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """

    def __init__(self, n_components=None, init=None, solver='cd',
                 tol=1e-4, max_iter=200, random_state=None,
                 alpha=0., l1_ratio=0., verbose=0, shuffle=False,
                 nls_max_iter=2000, sparseness=None, beta=1, eta=0.1):
        self.n_components = n_components
        self.init = init
        self.solver = solver
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.verbose = verbose
        self.shuffle = shuffle

        if sparseness is not None:
            warnings.warn("Controlling regularization through the sparseness,"
                          " beta and eta arguments is only available"
                          " for 'pg' solver, which will be removed"
                          " in release 0.19. Use another solver with L1 or L2"
                          " regularization instead.", DeprecationWarning)
        self.nls_max_iter = nls_max_iter
        self.sparseness = sparseness
        self.beta = beta
        self.eta = eta

    def fit_transform(self, X, y=None, W=None, H=None):
        """Learn a NMF model for the data X and returns the transformed data.

        This is more efficient than calling fit followed by transform.

        Parameters
        ----------
        X: {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        W : array-like, shape (n_samples, n_components)
            If init='custom', it is used as initial guess for the solution.

        H : array-like, shape (n_components, n_features)
            If init='custom', it is used as initial guess for the solution.

        Attributes
        ----------
        components_ : array-like, shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter_ : int
            Actual number of iterations for the transform.

        Returns
        -------
        W: array, shape (n_samples, n_components)
            Transformed data.
        """
        X = check_array(X, accept_sparse=('csr', 'csc'))

        W, H, n_iter_ = non_negative_factorization(
            X=X, W=W, H=H, n_components=self.n_components,
            init=self.init, update_H=True, solver=self.solver,
            tol=self.tol, max_iter=self.max_iter, alpha=self.alpha,
            l1_ratio=self.l1_ratio, regularization='both',
            random_state=self.random_state, verbose=self.verbose,
            shuffle=self.shuffle,
            nls_max_iter=self.nls_max_iter, sparseness=self.sparseness,
            beta=self.beta, eta=self.eta)

        if self.solver == 'pg':
            self.comp_sparseness_ = _sparseness(H.ravel())
            self.data_sparseness_ = _sparseness(W.ravel())

        self.reconstruction_err_ = _safe_compute_error(X, W, H)

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_iter_ = n_iter_

        return W

    def fit(self, X, y=None, **params):
        """Learn a NMF model for the data X.

        Parameters
        ----------
        X: {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        Attributes
        ----------
        components_ : array-like, shape (n_components, n_features)
            Factorization matrix, sometimes called 'dictionary'.

        n_iter_ : int
            Actual number of iterations for the transform.

        Returns
        -------
        self
        """
        self.fit_transform(X, **params)
        return self

    def transform(self, X):
        """Transform the data X according to the fitted NMF model

        Parameters
        ----------
        X: {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be transformed by the model

        Attributes
        ----------
        n_iter_ : int
            Actual number of iterations for the transform.

        Returns
        -------
        W: array, shape (n_samples, n_components)
            Transformed data
        """
        check_is_fitted(self, 'n_components_')

        W, _, n_iter_ = non_negative_factorization(
            X=X, W=None, H=self.components_, n_components=self.n_components_,
            init=self.init, update_H=False, solver=self.solver,
            tol=self.tol, max_iter=self.max_iter, alpha=self.alpha,
            l1_ratio=self.l1_ratio, regularization='both',
            random_state=self.random_state, verbose=self.verbose,
            shuffle=self.shuffle,
            nls_max_iter=self.nls_max_iter, sparseness=self.sparseness,
            beta=self.beta, eta=self.eta)

        self.n_iter_ = n_iter_
        return W


@deprecated("It will be removed in release 0.19. Use NMF instead."
            "'pg' solver is still available until release 0.19.")
class ProjectedGradientNMF(NMF):
    """Non-Negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    The objective function is minimized with an alternating minimization of W
    and H.

    Read more in the :ref:`User Guide <NMF>`.

    Parameters
    ----------
    n_components : int or None
        Number of components, if n_components is not set all features
        are kept.

    init :  'random' | 'nndsvd' |  'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: 'nndsvdar' if n_components < n_features, otherwise random.
        Valid options:

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    solver : 'pg' | 'cd'
        Numerical solver to use:
        'pg' is a Projected Gradient solver (deprecated).
        'cd' is a Coordinate Descent solver (recommended).

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver.

    tol : double, default: 1e-4
        Tolerance value used in stopping conditions.

    max_iter : integer, default: 200
        Number of iterations to compute.

    random_state : integer seed, RandomState instance, or None (default)
        Random number generator seed control.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms. Set it to zero to
        have no regularization.

        .. versionadded:: 0.17
           *alpha* used in the Coordinate Descent solver.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

        .. versionadded:: 0.17
           Regularization parameter *l1_ratio* used in the Coordinate Descent solver.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

        .. versionadded:: 0.17
           *shuffle* parameter used in the Coordinate Descent solver.

    nls_max_iter : integer, default: 2000
        Number of iterations in NLS subproblem.
        Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    sparseness : 'data' | 'components' | None, default: None
        Where to enforce sparsity in the model.
        Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    beta : double, default: 1
        Degree of sparseness, if sparseness is not None. Larger values mean
        more sparseness. Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    eta : double, default: 0.1
        Degree of correctness to maintain, if sparsity is not None. Smaller
        values mean larger error. Used only in the deprecated 'pg' solver.

        .. versionchanged:: 0.17
           Deprecated Projected Gradient solver. Use Coordinate Descent solver
           instead.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Non-negative components of the data.

    reconstruction_err_ : number
        Frobenius norm of the matrix difference between
        the training data and the reconstructed data from
        the fit produced by the model. ``|| X - WH ||_2``

    n_iter_ : int
        Actual number of iterations.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import NMF
    >>> model = NMF(n_components=2, init='random', random_state=0)
    >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
    NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200,
      n_components=2, nls_max_iter=2000, random_state=0, shuffle=False,
      solver='cd', sparseness=None, tol=0.0001, verbose=0)

    >>> model.components_
    array([[ 2.09783018,  0.30560234],
           [ 2.13443044,  2.13171694]])
    >>> model.reconstruction_err_ #doctest: +ELLIPSIS
    0.00115993...

    References
    ----------
    C.-J. Lin. Projected gradient methods for non-negative matrix
    factorization. Neural Computation, 19(2007), 2756-2779.
    http://www.csie.ntu.edu.tw/~cjlin/nmf/

    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """

    def __init__(self, n_components=None, solver='pg', init=None,
                 tol=1e-4, max_iter=200, random_state=None,
                 alpha=0., l1_ratio=0., verbose=0,
                 nls_max_iter=2000, sparseness=None, beta=1, eta=0.1):
        super(ProjectedGradientNMF, self).__init__(
            n_components=n_components, init=init, solver='pg', tol=tol,
            max_iter=max_iter, random_state=random_state, alpha=alpha,
            l1_ratio=l1_ratio, verbose=verbose, nls_max_iter=nls_max_iter,
            sparseness=sparseness, beta=beta, eta=eta)