This file is indexed.

/usr/lib/python3/dist-packages/sklearn/decomposition/tests/test_fastica.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
"""
Test the fastica algorithm.
"""
import itertools
import warnings

import numpy as np
from scipy import stats

from nose.tools import assert_raises

from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_warns

from sklearn.decomposition import FastICA, fastica, PCA
from sklearn.decomposition.fastica_ import _gs_decorrelation
from sklearn.externals.six import moves


def center_and_norm(x, axis=-1):
    """ Centers and norms x **in place**

        Parameters
        -----------
        x: ndarray
            Array with an axis of observations (statistical units) measured on
            random variables.
        axis: int, optional
            Axis along which the mean and variance are calculated.
    """
    x = np.rollaxis(x, axis)
    x -= x.mean(axis=0)
    x /= x.std(axis=0)


def test_gs():
    # Test gram schmidt orthonormalization
    # generate a random orthogonal  matrix
    rng = np.random.RandomState(0)
    W, _, _ = np.linalg.svd(rng.randn(10, 10))
    w = rng.randn(10)
    _gs_decorrelation(w, W, 10)
    assert_less((w ** 2).sum(), 1.e-10)
    w = rng.randn(10)
    u = _gs_decorrelation(w, W, 5)
    tmp = np.dot(u, W.T)
    assert_less((tmp[:5] ** 2).sum(), 1.e-10)


def test_fastica_simple(add_noise=False):
    # Test the FastICA algorithm on very simple data.
    rng = np.random.RandomState(0)
    # scipy.stats uses the global RNG:
    np.random.seed(0)
    n_samples = 1000
    # Generate two sources:
    s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
    s2 = stats.t.rvs(1, size=n_samples)
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing angle
    phi = 0.6
    mixing = np.array([[np.cos(phi), np.sin(phi)],
                       [np.sin(phi), -np.cos(phi)]])
    m = np.dot(mixing, s)

    if add_noise:
        m += 0.1 * rng.randn(2, 1000)

    center_and_norm(m)

    # function as fun arg
    def g_test(x):
        return x ** 3, (3 * x ** 2).mean(axis=-1)

    algos = ['parallel', 'deflation']
    nls = ['logcosh', 'exp', 'cube', g_test]
    whitening = [True, False]
    for algo, nl, whiten in itertools.product(algos, nls, whitening):
        if whiten:
            k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo)
            assert_raises(ValueError, fastica, m.T, fun=np.tanh,
                          algorithm=algo)
        else:
            X = PCA(n_components=2, whiten=True).fit_transform(m.T)
            k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False)
            assert_raises(ValueError, fastica, X, fun=np.tanh,
                          algorithm=algo)
        s_ = s_.T
        # Check that the mixing model described in the docstring holds:
        if whiten:
            assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))

        center_and_norm(s_)
        s1_, s2_ = s_
        # Check to see if the sources have been estimated
        # in the wrong order
        if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
            s2_, s1_ = s_
        s1_ *= np.sign(np.dot(s1_, s1))
        s2_ *= np.sign(np.dot(s2_, s2))

        # Check that we have estimated the original sources
        if not add_noise:
            assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
            assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
        else:
            assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
            assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1)

    # Test FastICA class
    _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0)
    ica = FastICA(fun=nl, algorithm=algo, random_state=0)
    sources = ica.fit_transform(m.T)
    assert_equal(ica.components_.shape, (2, 2))
    assert_equal(sources.shape, (1000, 2))

    assert_array_almost_equal(sources_fun, sources)
    assert_array_almost_equal(sources, ica.transform(m.T))

    assert_equal(ica.mixing_.shape, (2, 2))

    for fn in [np.tanh, "exp(-.5(x^2))"]:
        ica = FastICA(fun=fn, algorithm=algo, random_state=0)
        assert_raises(ValueError, ica.fit, m.T)

    assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T)


def test_fastica_nowhiten():
    m = [[0, 1], [1, 0]]

    # test for issue #697
    ica = FastICA(n_components=1, whiten=False, random_state=0)
    assert_warns(UserWarning, ica.fit, m)
    assert_true(hasattr(ica, 'mixing_'))


def test_non_square_fastica(add_noise=False):
    # Test the FastICA algorithm on very simple data.
    rng = np.random.RandomState(0)

    n_samples = 1000
    # Generate two sources:
    t = np.linspace(0, 100, n_samples)
    s1 = np.sin(t)
    s2 = np.ceil(np.sin(np.pi * t))
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing matrix
    mixing = rng.randn(6, 2)
    m = np.dot(mixing, s)

    if add_noise:
        m += 0.1 * rng.randn(6, n_samples)

    center_and_norm(m)

    k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng)
    s_ = s_.T

    # Check that the mixing model described in the docstring holds:
    assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))

    center_and_norm(s_)
    s1_, s2_ = s_
    # Check to see if the sources have been estimated
    # in the wrong order
    if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
        s2_, s1_ = s_
    s1_ *= np.sign(np.dot(s1_, s1))
    s2_ *= np.sign(np.dot(s2_, s2))

    # Check that we have estimated the original sources
    if not add_noise:
        assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3)
        assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3)


def test_fit_transform():
    # Test FastICA.fit_transform
    rng = np.random.RandomState(0)
    X = rng.random_sample((100, 10))
    for whiten, n_components in [[True, 5], [False, None]]:
        n_components_ = (n_components if n_components is not None else
                         X.shape[1])

        ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
        Xt = ica.fit_transform(X)
        assert_equal(ica.components_.shape, (n_components_, 10))
        assert_equal(Xt.shape, (100, n_components_))

        ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
        ica.fit(X)
        assert_equal(ica.components_.shape, (n_components_, 10))
        Xt2 = ica.transform(X)

        assert_array_almost_equal(Xt, Xt2)


def test_inverse_transform():
    # Test FastICA.inverse_transform
    n_features = 10
    n_samples = 100
    n1, n2 = 5, 10
    rng = np.random.RandomState(0)
    X = rng.random_sample((n_samples, n_features))
    expected = {(True, n1): (n_features, n1),
                (True, n2): (n_features, n2),
                (False, n1): (n_features, n2),
                (False, n2): (n_features, n2)}
    for whiten in [True, False]:
        for n_components in [n1, n2]:
            n_components_ = (n_components if n_components is not None else
                             X.shape[1])
            ica = FastICA(n_components=n_components, random_state=rng,
                          whiten=whiten)
            with warnings.catch_warnings(record=True):
                # catch "n_components ignored" warning
                Xt = ica.fit_transform(X)
            expected_shape = expected[(whiten, n_components_)]
            assert_equal(ica.mixing_.shape, expected_shape)
            X2 = ica.inverse_transform(Xt)
            assert_equal(X.shape, X2.shape)

            # reversibility test in non-reduction case
            if n_components == X.shape[1]:
                assert_array_almost_equal(X, X2)