This file is indexed.

/usr/lib/python3/dist-packages/sklearn/ensemble/bagging.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
"""Bagging meta-estimator."""

# Author: Gilles Louppe <g.louppe@gmail.com>
# License: BSD 3 clause

from __future__ import division

import itertools
import numbers
import numpy as np
from warnings import warn
from abc import ABCMeta, abstractmethod

from ..base import ClassifierMixin, RegressorMixin
from ..externals.joblib import Parallel, delayed
from ..externals.six import with_metaclass
from ..externals.six.moves import zip
from ..metrics import r2_score, accuracy_score
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
from ..linear_model import LogisticRegression
from ..utils import check_random_state, check_X_y, check_array, column_or_1d
from ..utils.random import sample_without_replacement
from ..utils.validation import has_fit_parameter, check_is_fitted
from ..utils.fixes import bincount
from ..utils.metaestimators import if_delegate_has_method
from ..utils.multiclass import check_classification_targets

from .base import BaseEnsemble, _partition_estimators


__all__ = ["BaggingClassifier",
           "BaggingRegressor"]

MAX_INT = np.iinfo(np.int32).max


def _parallel_build_estimators(n_estimators, ensemble, X, y, sample_weight,
                               seeds, verbose):
    """Private function used to build a batch of estimators within a job."""
    # Retrieve settings
    n_samples, n_features = X.shape
    max_samples = ensemble.max_samples
    max_features = ensemble.max_features

    if (not isinstance(max_samples, (numbers.Integral, np.integer)) and
            (0.0 < max_samples <= 1.0)):
        max_samples = int(max_samples * n_samples)

    if (not isinstance(max_features, (numbers.Integral, np.integer)) and
            (0.0 < max_features <= 1.0)):
        max_features = int(max_features * n_features)

    bootstrap = ensemble.bootstrap
    bootstrap_features = ensemble.bootstrap_features
    support_sample_weight = has_fit_parameter(ensemble.base_estimator_,
                                              "sample_weight")
    # Logistic regression does not support sample weights with liblinear
    # TODO: Remove this check when liblinear is patched to support
    #       sample weights
    if (isinstance(ensemble.base_estimator_, LogisticRegression) and
            (ensemble.base_estimator_.solver == 'liblinear')):
        support_sample_weight = False

    if not support_sample_weight and sample_weight is not None:
        raise ValueError("The base estimator doesn't support sample weight")

    # Build estimators
    estimators = []
    estimators_samples = []
    estimators_features = []

    for i in range(n_estimators):
        if verbose > 1:
            print("building estimator %d of %d" % (i + 1, n_estimators))

        random_state = check_random_state(seeds[i])
        seed = random_state.randint(MAX_INT)
        estimator = ensemble._make_estimator(append=False)

        try:  # Not all estimator accept a random_state
            estimator.set_params(random_state=seed)
        except ValueError:
            pass

        # Draw features
        if bootstrap_features:
            features = random_state.randint(0, n_features, max_features)
        else:
            features = sample_without_replacement(n_features,
                                                  max_features,
                                                  random_state=random_state)

        # Draw samples, using sample weights, and then fit
        if support_sample_weight:
            if sample_weight is None:
                curr_sample_weight = np.ones((n_samples,))
            else:
                curr_sample_weight = sample_weight.copy()

            if bootstrap:
                indices = random_state.randint(0, n_samples, max_samples)
                sample_counts = bincount(indices, minlength=n_samples)
                curr_sample_weight *= sample_counts

            else:
                not_indices = sample_without_replacement(
                    n_samples,
                    n_samples - max_samples,
                    random_state=random_state)

                curr_sample_weight[not_indices] = 0

            estimator.fit(X[:, features], y, sample_weight=curr_sample_weight)
            samples = curr_sample_weight > 0.

        # Draw samples, using a mask, and then fit
        else:
            if bootstrap:
                indices = random_state.randint(0, n_samples, max_samples)
            else:
                indices = sample_without_replacement(n_samples,
                                                     max_samples,
                                                     random_state=random_state)

            sample_counts = bincount(indices, minlength=n_samples)

            estimator.fit((X[indices])[:, features], y[indices])
            samples = sample_counts > 0.

        estimators.append(estimator)
        estimators_samples.append(samples)
        estimators_features.append(features)

    return estimators, estimators_samples, estimators_features


def _parallel_predict_proba(estimators, estimators_features, X, n_classes):
    """Private function used to compute (proba-)predictions within a job."""
    n_samples = X.shape[0]
    proba = np.zeros((n_samples, n_classes))

    for estimator, features in zip(estimators, estimators_features):
        if hasattr(estimator, "predict_proba"):
            proba_estimator = estimator.predict_proba(X[:, features])

            if n_classes == len(estimator.classes_):
                proba += proba_estimator

            else:
                proba[:, estimator.classes_] += \
                    proba_estimator[:, range(len(estimator.classes_))]

        else:
            # Resort to voting
            predictions = estimator.predict(X[:, features])

            for i in range(n_samples):
                proba[i, predictions[i]] += 1

    return proba


def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes):
    """Private function used to compute log probabilities within a job."""
    n_samples = X.shape[0]
    log_proba = np.empty((n_samples, n_classes))
    log_proba.fill(-np.inf)
    all_classes = np.arange(n_classes, dtype=np.int)

    for estimator, features in zip(estimators, estimators_features):
        log_proba_estimator = estimator.predict_log_proba(X[:, features])

        if n_classes == len(estimator.classes_):
            log_proba = np.logaddexp(log_proba, log_proba_estimator)

        else:
            log_proba[:, estimator.classes_] = np.logaddexp(
                log_proba[:, estimator.classes_],
                log_proba_estimator[:, range(len(estimator.classes_))])

            missing = np.setdiff1d(all_classes, estimator.classes_)
            log_proba[:, missing] = np.logaddexp(log_proba[:, missing],
                                                 -np.inf)

    return log_proba


def _parallel_decision_function(estimators, estimators_features, X):
    """Private function used to compute decisions within a job."""
    return sum(estimator.decision_function(X[:, features])
               for estimator, features in zip(estimators,
                                              estimators_features))


def _parallel_predict_regression(estimators, estimators_features, X):
    """Private function used to compute predictions within a job."""
    return sum(estimator.predict(X[:, features])
               for estimator, features in zip(estimators,
                                              estimators_features))


class BaseBagging(with_metaclass(ABCMeta, BaseEnsemble)):
    """Base class for Bagging meta-estimator.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator=None,
                 n_estimators=10,
                 max_samples=1.0,
                 max_features=1.0,
                 bootstrap=True,
                 bootstrap_features=False,
                 oob_score=False,
                 warm_start=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0):
        super(BaseBagging, self).__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators)

        self.max_samples = max_samples
        self.max_features = max_features
        self.bootstrap = bootstrap
        self.bootstrap_features = bootstrap_features
        self.oob_score = oob_score
        self.warm_start = warm_start
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.verbose = verbose

    def fit(self, X, y, sample_weight=None):
        """Build a Bagging ensemble of estimators from the training
           set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        y : array-like, shape = [n_samples]
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if the base estimator supports
            sample weighting.

        Returns
        -------
        self : object
            Returns self.
        """
        random_state = check_random_state(self.random_state)

        # Convert data
        X, y = check_X_y(X, y, ['csr', 'csc'])

        # Remap output
        n_samples, self.n_features_ = X.shape
        y = self._validate_y(y)

        # Check parameters
        self._validate_estimator()

        if isinstance(self.max_samples, (numbers.Integral, np.integer)):
            max_samples = self.max_samples
        else:  # float
            max_samples = int(self.max_samples * X.shape[0])

        if not (0 < max_samples <= X.shape[0]):
            raise ValueError("max_samples must be in (0, n_samples]")

        if isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            max_features = int(self.max_features * self.n_features_)

        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")

        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available"
                             " if bootstrap=True")

        if self.warm_start and self.oob_score:
            raise ValueError("Out of bag estimate only available"
                             " if warm_start=False")

        if hasattr(self, "oob_score_") and self.warm_start:
            del self.oob_score_

        if not self.warm_start or len(self.estimators_) == 0:
            # Free allocated memory, if any
            self.estimators_ = []
            self.estimators_samples_ = []
            self.estimators_features_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError('n_estimators=%d must be larger or equal to '
                             'len(estimators_)=%d when warm_start==True'
                             % (self.n_estimators, len(self.estimators_)))

        elif n_more_estimators == 0:
            warn("Warm-start fitting without increasing n_estimators does not "
                 "fit new trees.")
            return self

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(n_more_estimators,
                                                             self.n_jobs)

        # Advance random state to state after training
        # the first n_estimators
        if self.warm_start and len(self.estimators_) > 0:
            random_state.randint(MAX_INT, size=len(self.estimators_))

        seeds = random_state.randint(MAX_INT, size=n_more_estimators)

        all_results = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_build_estimators)(
                n_estimators[i],
                self,
                X,
                y,
                sample_weight,
                seeds[starts[i]:starts[i + 1]],
                verbose=self.verbose)
            for i in range(n_jobs))

        # Reduce
        self.estimators_ += list(itertools.chain.from_iterable(
            t[0] for t in all_results))
        self.estimators_samples_ += list(itertools.chain.from_iterable(
            t[1] for t in all_results))
        self.estimators_features_ += list(itertools.chain.from_iterable(
            t[2] for t in all_results))

        if self.oob_score:
            self._set_oob_score(X, y)

        return self

    @abstractmethod
    def _set_oob_score(self, X, y):
        """Calculate out of bag predictions and score."""

    def _validate_y(self, y):
        # Default implementation
        return column_or_1d(y, warn=True)


class BaggingClassifier(BaseBagging, ClassifierMixin):
    """A Bagging classifier.

    A Bagging classifier is an ensemble meta-estimator that fits base
    classifiers each on random subsets of the original dataset and then
    aggregate their individual predictions (either by voting or by averaging)
    to form a final prediction. Such a meta-estimator can typically be used as
    a way to reduce the variance of a black-box estimator (e.g., a decision
    tree), by introducing randomization into its construction procedure and
    then making an ensemble out of it.

    This algorithm encompasses several works from the literature. When random
    subsets of the dataset are drawn as random subsets of the samples, then
    this algorithm is known as Pasting [1]_. If samples are drawn with
    replacement, then the method is known as Bagging [2]_. When random subsets
    of the dataset are drawn as random subsets of the features, then the method
    is known as Random Subspaces [3]_. Finally, when base estimators are built
    on subsets of both samples and features, then the method is known as
    Random Patches [4]_.

    Read more in the :ref:`User Guide <bagging>`.

    Parameters
    ----------
    base_estimator : object or None, optional (default=None)
        The base estimator to fit on random subsets of the dataset.
        If None, then the base estimator is a decision tree.

    n_estimators : int, optional (default=10)
        The number of base estimators in the ensemble.

    max_samples : int or float, optional (default=1.0)
        The number of samples to draw from X to train each base estimator.
            - If int, then draw `max_samples` samples.
            - If float, then draw `max_samples * X.shape[0]` samples.

    max_features : int or float, optional (default=1.0)
        The number of features to draw from X to train each base estimator.
            - If int, then draw `max_features` features.
            - If float, then draw `max_features * X.shape[1]` features.

    bootstrap : boolean, optional (default=True)
        Whether samples are drawn with replacement.

    bootstrap_features : boolean, optional (default=False)
        Whether features are drawn with replacement.

    oob_score : bool
        Whether to use out-of-bag samples to estimate
        the generalization error.

    warm_start : bool, optional (default=False)
        When set to True, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit
        a whole new ensemble.

        .. versionadded:: 0.17
           *warm_start* constructor parameter.

    n_jobs : int, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the building process.

    Attributes
    ----------
    base_estimator_ : list of estimators
        The base estimator from which the ensemble is grown.

    estimators_ : list of estimators
        The collection of fitted base estimators.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator.

    estimators_features_ : list of arrays
        The subset of drawn features for each base estimator.

    classes_ : array of shape = [n_classes]
        The classes labels.

    n_classes_ : int or list
        The number of classes.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_decision_function_ : array of shape = [n_samples, n_classes]
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN.

    References
    ----------

    .. [1] L. Breiman, "Pasting small votes for classification in large
           databases and on-line", Machine Learning, 36(1), 85-103, 1999.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
           1996.

    .. [3] T. Ho, "The random subspace method for constructing decision
           forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
           1998.

    .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
           Learning and Knowledge Discovery in Databases, 346-361, 2012.
    """
    def __init__(self,
                 base_estimator=None,
                 n_estimators=10,
                 max_samples=1.0,
                 max_features=1.0,
                 bootstrap=True,
                 bootstrap_features=False,
                 oob_score=False,
                 warm_start=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0):

        super(BaggingClassifier, self).__init__(
            base_estimator,
            n_estimators=n_estimators,
            max_samples=max_samples,
            max_features=max_features,
            bootstrap=bootstrap,
            bootstrap_features=bootstrap_features,
            oob_score=oob_score,
            warm_start=warm_start,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose)

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super(BaggingClassifier, self)._validate_estimator(
            default=DecisionTreeClassifier())

    def _set_oob_score(self, X, y):
        n_classes_ = self.n_classes_
        classes_ = self.classes_
        n_samples = y.shape[0]

        predictions = np.zeros((n_samples, n_classes_))

        for estimator, samples, features in zip(self.estimators_,
                                                self.estimators_samples_,
                                                self.estimators_features_):
            mask = np.ones(n_samples, dtype=np.bool)
            mask[samples] = False

            if hasattr(estimator, "predict_proba"):
                predictions[mask, :] += estimator.predict_proba(
                    (X[mask, :])[:, features])

            else:
                p = estimator.predict((X[mask, :])[:, features])
                j = 0

                for i in range(n_samples):
                    if mask[i]:
                        predictions[i, p[j]] += 1
                        j += 1

        if (predictions.sum(axis=1) == 0).any():
            warn("Some inputs do not have OOB scores. "
                 "This probably means too few estimators were used "
                 "to compute any reliable oob estimates.")

        oob_decision_function = (predictions /
                                 predictions.sum(axis=1)[:, np.newaxis])
        oob_score = accuracy_score(y, classes_.take(np.argmax(predictions,
                                                              axis=1)))

        self.oob_decision_function_ = oob_decision_function
        self.oob_score_ = oob_score

    def _validate_y(self, y):
        y = column_or_1d(y, warn=True)
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        self.n_classes_ = len(self.classes_)

        return y

    def predict(self, X):
        """Predict class for X.

        The predicted class of an input sample is computed as the class with
        the highest mean predicted probability. If base estimators do not
        implement a ``predict_proba`` method, then it resorts to voting.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        y : array of shape = [n_samples]
            The predicted classes.
        """
        predicted_probabilitiy = self.predict_proba(X)
        return self.classes_.take((np.argmax(predicted_probabilitiy, axis=1)),
                                  axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the mean predicted class probabilities of the base estimators in the
        ensemble. If base estimators do not implement a ``predict_proba``
        method, then it resorts to voting and the predicted class probabilities
        of a an input sample represents the proportion of estimators predicting
        each class.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        p : array of shape = [n_samples, n_classes]
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        check_is_fitted(self, "classes_")
        # Check data
        X = check_array(X, accept_sparse=['csr', 'csc'])

        if self.n_features_ != X.shape[1]:
            raise ValueError("Number of features of the model must "
                             "match the input. Model n_features is {0} and "
                             "input n_features is {1}."
                             "".format(self.n_features_, X.shape[1]))

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
                                                             self.n_jobs)

        all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_predict_proba)(
                self.estimators_[starts[i]:starts[i + 1]],
                self.estimators_features_[starts[i]:starts[i + 1]],
                X,
                self.n_classes_)
            for i in range(n_jobs))

        # Reduce
        proba = sum(all_proba) / self.n_estimators

        return proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the log of the mean predicted class probabilities of the base
        estimators in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        p : array of shape = [n_samples, n_classes]
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        check_is_fitted(self, "classes_")
        if hasattr(self.base_estimator_, "predict_log_proba"):
            # Check data
            X = check_array(X, accept_sparse=['csr', 'csc'])

            if self.n_features_ != X.shape[1]:
                raise ValueError("Number of features of the model must "
                                 "match the input. Model n_features is {0} "
                                 "and input n_features is {1} "
                                 "".format(self.n_features_, X.shape[1]))

            # Parallel loop
            n_jobs, n_estimators, starts = _partition_estimators(
                self.n_estimators, self.n_jobs)

            all_log_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
                delayed(_parallel_predict_log_proba)(
                    self.estimators_[starts[i]:starts[i + 1]],
                    self.estimators_features_[starts[i]:starts[i + 1]],
                    X,
                    self.n_classes_)
                for i in range(n_jobs))

            # Reduce
            log_proba = all_log_proba[0]

            for j in range(1, len(all_log_proba)):
                log_proba = np.logaddexp(log_proba, all_log_proba[j])

            log_proba -= np.log(self.n_estimators)

            return log_proba

        else:
            return np.log(self.predict_proba(X))

    @if_delegate_has_method(delegate='base_estimator')
    def decision_function(self, X):
        """Average of the decision functions of the base classifiers.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        score : array, shape = [n_samples, k]
            The decision function of the input samples. The columns correspond
            to the classes in sorted order, as they appear in the attribute
            ``classes_``. Regression and binary classification are special
            cases with ``k == 1``, otherwise ``k==n_classes``.

        """
        check_is_fitted(self, "classes_")

        # Check data
        X = check_array(X, accept_sparse=['csr', 'csc'])

        if self.n_features_ != X.shape[1]:
            raise ValueError("Number of features of the model must "
                             "match the input. Model n_features is {1} and "
                             "input n_features is {2} "
                             "".format(self.n_features_, X.shape[1]))

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
                                                             self.n_jobs)

        all_decisions = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_decision_function)(
                self.estimators_[starts[i]:starts[i + 1]],
                self.estimators_features_[starts[i]:starts[i + 1]],
                X)
            for i in range(n_jobs))

        # Reduce
        decisions = sum(all_decisions) / self.n_estimators

        return decisions


class BaggingRegressor(BaseBagging, RegressorMixin):
    """A Bagging regressor.

    A Bagging regressor is an ensemble meta-estimator that fits base
    regressors each on random subsets of the original dataset and then
    aggregate their individual predictions (either by voting or by averaging)
    to form a final prediction. Such a meta-estimator can typically be used as
    a way to reduce the variance of a black-box estimator (e.g., a decision
    tree), by introducing randomization into its construction procedure and
    then making an ensemble out of it.

    This algorithm encompasses several works from the literature. When random
    subsets of the dataset are drawn as random subsets of the samples, then
    this algorithm is known as Pasting [1]_. If samples are drawn with
    replacement, then the method is known as Bagging [2]_. When random subsets
    of the dataset are drawn as random subsets of the features, then the method
    is known as Random Subspaces [3]_. Finally, when base estimators are built
    on subsets of both samples and features, then the method is known as
    Random Patches [4]_.

    Read more in the :ref:`User Guide <bagging>`.

    Parameters
    ----------
    base_estimator : object or None, optional (default=None)
        The base estimator to fit on random subsets of the dataset.
        If None, then the base estimator is a decision tree.

    n_estimators : int, optional (default=10)
        The number of base estimators in the ensemble.

    max_samples : int or float, optional (default=1.0)
        The number of samples to draw from X to train each base estimator.
            - If int, then draw `max_samples` samples.
            - If float, then draw `max_samples * X.shape[0]` samples.

    max_features : int or float, optional (default=1.0)
        The number of features to draw from X to train each base estimator.
            - If int, then draw `max_features` features.
            - If float, then draw `max_features * X.shape[1]` features.

    bootstrap : boolean, optional (default=True)
        Whether samples are drawn with replacement.

    bootstrap_features : boolean, optional (default=False)
        Whether features are drawn with replacement.

    oob_score : bool
        Whether to use out-of-bag samples to estimate
        the generalization error.

    warm_start : bool, optional (default=False)
        When set to True, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit
        a whole new ensemble.

    n_jobs : int, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the building process.

    Attributes
    ----------
    estimators_ : list of estimators
        The collection of fitted sub-estimators.

    estimators_samples_ : list of arrays
        The subset of drawn samples (i.e., the in-bag samples) for each base
        estimator.

    estimators_features_ : list of arrays
        The subset of drawn features for each base estimator.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_prediction_ : array of shape = [n_samples]
        Prediction computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_prediction_` might contain NaN.

    References
    ----------

    .. [1] L. Breiman, "Pasting small votes for classification in large
           databases and on-line", Machine Learning, 36(1), 85-103, 1999.

    .. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
           1996.

    .. [3] T. Ho, "The random subspace method for constructing decision
           forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
           1998.

    .. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
           Learning and Knowledge Discovery in Databases, 346-361, 2012.
    """

    def __init__(self,
                 base_estimator=None,
                 n_estimators=10,
                 max_samples=1.0,
                 max_features=1.0,
                 bootstrap=True,
                 bootstrap_features=False,
                 oob_score=False,
                 warm_start=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0):
        super(BaggingRegressor, self).__init__(
            base_estimator,
            n_estimators=n_estimators,
            max_samples=max_samples,
            max_features=max_features,
            bootstrap=bootstrap,
            bootstrap_features=bootstrap_features,
            oob_score=oob_score,
            warm_start=warm_start,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose)

    def predict(self, X):
        """Predict regression target for X.

        The predicted regression target of an input sample is computed as the
        mean predicted regression targets of the estimators in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape = [n_samples, n_features]
            The training input samples. Sparse matrices are accepted only if
            they are supported by the base estimator.

        Returns
        -------
        y : array of shape = [n_samples]
            The predicted values.
        """
        check_is_fitted(self, "estimators_features_")
        # Check data
        X = check_array(X, accept_sparse=['csr', 'csc'])

        # Parallel loop
        n_jobs, n_estimators, starts = _partition_estimators(self.n_estimators,
                                                             self.n_jobs)

        all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose)(
            delayed(_parallel_predict_regression)(
                self.estimators_[starts[i]:starts[i + 1]],
                self.estimators_features_[starts[i]:starts[i + 1]],
                X)
            for i in range(n_jobs))

        # Reduce
        y_hat = sum(all_y_hat) / self.n_estimators

        return y_hat

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super(BaggingRegressor, self)._validate_estimator(
            default=DecisionTreeRegressor())

    def _set_oob_score(self, X, y):
        n_samples = y.shape[0]

        predictions = np.zeros((n_samples,))
        n_predictions = np.zeros((n_samples,))

        for estimator, samples, features in zip(self.estimators_,
                                                self.estimators_samples_,
                                                self.estimators_features_):
            mask = np.ones(n_samples, dtype=np.bool)
            mask[samples] = False

            predictions[mask] += estimator.predict((X[mask, :])[:, features])
            n_predictions[mask] += 1

        if (n_predictions == 0).any():
            warn("Some inputs do not have OOB scores. "
                 "This probably means too few estimators were used "
                 "to compute any reliable oob estimates.")
            n_predictions[n_predictions == 0] = 1

        predictions /= n_predictions

        self.oob_prediction_ = predictions
        self.oob_score_ = r2_score(y, predictions)