This file is indexed.

/usr/lib/python3/dist-packages/sklearn/ensemble/forest.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
"""Forest of trees-based ensemble methods

Those methods include random forests and extremely randomized trees.

The module structure is the following:

- The ``BaseForest`` base class implements a common ``fit`` method for all
  the estimators in the module. The ``fit`` method of the base ``Forest``
  class calls the ``fit`` method of each sub-estimator on random samples
  (with replacement, a.k.a. bootstrap) of the training set.

  The init of the sub-estimator is further delegated to the
  ``BaseEnsemble`` constructor.

- The ``ForestClassifier`` and ``ForestRegressor`` base classes further
  implement the prediction logic by computing an average of the predicted
  outcomes of the sub-estimators.

- The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived
  classes provide the user with concrete implementations of
  the forest ensemble method using classical, deterministic
  ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as
  sub-estimator implementations.

- The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived
  classes provide the user with concrete implementations of the
  forest ensemble method using the extremely randomized trees
  ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as
  sub-estimator implementations.

Single and multi-output problems are both handled.

"""

# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Brian Holt <bdholt1@gmail.com>
#          Joly Arnaud <arnaud.v.joly@gmail.com>
#          Fares Hedayati <fares.hedayati@gmail.com>
#
# License: BSD 3 clause

from __future__ import division

import warnings
from warnings import warn

from abc import ABCMeta, abstractmethod

import numpy as np
from scipy.sparse import issparse

from ..base import ClassifierMixin, RegressorMixin
from ..externals.joblib import Parallel, delayed
from ..externals import six
from ..feature_selection.from_model import _LearntSelectorMixin
from ..metrics import r2_score
from ..preprocessing import OneHotEncoder
from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor,
                    ExtraTreeClassifier, ExtraTreeRegressor)
from ..tree._tree import DTYPE, DOUBLE
from ..utils import check_random_state, check_array, compute_sample_weight
from ..utils.validation import DataConversionWarning, NotFittedError
from .base import BaseEnsemble, _partition_estimators
from ..utils.fixes import bincount
from ..utils.multiclass import check_classification_targets

__all__ = ["RandomForestClassifier",
           "RandomForestRegressor",
           "ExtraTreesClassifier",
           "ExtraTreesRegressor",
           "RandomTreesEmbedding"]

MAX_INT = np.iinfo(np.int32).max

def _generate_sample_indices(random_state, n_samples):
    """Private function used to _parallel_build_trees function."""
    random_instance = check_random_state(random_state)
    sample_indices = random_instance.randint(0, n_samples, n_samples)

    return sample_indices

def _generate_unsampled_indices(random_state, n_samples):
    """Private function used to forest._set_oob_score fuction."""
    sample_indices = _generate_sample_indices(random_state, n_samples)
    sample_counts = bincount(sample_indices, minlength=n_samples)
    unsampled_mask = sample_counts == 0
    indices_range = np.arange(n_samples)
    unsampled_indices = indices_range[unsampled_mask]

    return unsampled_indices

def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees,
                          verbose=0, class_weight=None):
    """Private function used to fit a single tree in parallel."""
    if verbose > 1:
        print("building tree %d of %d" % (tree_idx + 1, n_trees))

    if forest.bootstrap:
        n_samples = X.shape[0]
        if sample_weight is None:
            curr_sample_weight = np.ones((n_samples,), dtype=np.float64)
        else:
            curr_sample_weight = sample_weight.copy()

        indices = _generate_sample_indices(tree.random_state, n_samples)
        sample_counts = bincount(indices, minlength=n_samples)
        curr_sample_weight *= sample_counts

        if class_weight == 'subsample':
            with warnings.catch_warnings():
                warnings.simplefilter('ignore', DeprecationWarning)
                curr_sample_weight *= compute_sample_weight('auto', y, indices)
        elif class_weight == 'balanced_subsample':
            curr_sample_weight *= compute_sample_weight('balanced', y, indices)

        tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
    else:
        tree.fit(X, y, sample_weight=sample_weight, check_input=False)

    return tree


def _parallel_helper(obj, methodname, *args, **kwargs):
    """Private helper to workaround Python 2 pickle limitations"""
    return getattr(obj, methodname)(*args, **kwargs)


class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble,
                                    _LearntSelectorMixin)):
    """Base class for forests of trees.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=10,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None):
        super(BaseForest, self).__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params)

        self.bootstrap = bootstrap
        self.oob_score = oob_score
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.verbose = verbose
        self.warm_start = warm_start
        self.class_weight = class_weight

    def apply(self, X):
        """Apply trees in the forest to X, return leaf indices.

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array_like, shape = [n_samples, n_estimators]
            For each datapoint x in X and for each tree in the forest,
            return the index of the leaf x ends up in.
        """
        X = self._validate_X_predict(X)
        results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                           backend="threading")(
            delayed(_parallel_helper)(tree, 'apply', X, check_input=False)
            for tree in self.estimators_)

        return np.array(results).T

    def fit(self, X, y, sample_weight=None):
        """Build a forest of trees from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
            Returns self.
        """
        # Validate or convert input data
        X = check_array(X, dtype=DTYPE, accept_sparse="csc")
        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        # Remap output
        n_samples, self.n_features_ = X.shape

        y = np.atleast_1d(y)
        if y.ndim == 2 and y.shape[1] == 1:
            warn("A column-vector y was passed when a 1d array was"
                 " expected. Please change the shape of y to "
                 "(n_samples,), for example using ravel().",
                 DataConversionWarning, stacklevel=2)

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        y, expanded_class_weight = self._validate_y_class_weight(y)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Check parameters
        self._validate_estimator()

        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available"
                             " if bootstrap=True")

        random_state = check_random_state(self.random_state)

        if not self.warm_start:
            # Free allocated memory, if any
            self.estimators_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError('n_estimators=%d must be larger or equal to '
                             'len(estimators_)=%d when warm_start==True'
                             % (self.n_estimators, len(self.estimators_)))

        elif n_more_estimators == 0:
            warn("Warm-start fitting without increasing n_estimators does not "
                 "fit new trees.")
        else:
            if self.warm_start and len(self.estimators_) > 0:
                # We draw from the random state to get the random state we
                # would have got if we hadn't used a warm_start.
                random_state.randint(MAX_INT, size=len(self.estimators_))

            trees = []
            for i in range(n_more_estimators):
                tree = self._make_estimator(append=False)
                tree.set_params(random_state=random_state.randint(MAX_INT))
                trees.append(tree)

            # Parallel loop: we use the threading backend as the Cython code
            # for fitting the trees is internally releasing the Python GIL
            # making threading always more efficient than multiprocessing in
            # that case.
            trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                             backend="threading")(
                delayed(_parallel_build_trees)(
                    t, self, X, y, sample_weight, i, len(trees),
                    verbose=self.verbose, class_weight=self.class_weight)
                for i, t in enumerate(trees))

            # Collect newly grown trees
            self.estimators_.extend(trees)

        if self.oob_score:
            self._set_oob_score(X, y)

        # Decapsulate classes_ attributes
        if hasattr(self, "classes_") and self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self

    @abstractmethod
    def _set_oob_score(self, X, y):
        """Calculate out of bag predictions and score."""

    def _validate_y_class_weight(self, y):
        # Default implementation
        return y, None

    def _validate_X_predict(self, X):
        """Validate X whenever one tries to predict, apply, predict_proba"""
        if self.estimators_ is None or len(self.estimators_) == 0:
            raise NotFittedError("Estimator not fitted, "
                                 "call `fit` before exploiting the model.")

        return self.estimators_[0]._validate_X_predict(X, check_input=True)

    @property
    def feature_importances_(self):
        """Return the feature importances (the higher, the more important the
           feature).

        Returns
        -------
        feature_importances_ : array, shape = [n_features]
        """
        if self.estimators_ is None or len(self.estimators_) == 0:
            raise NotFittedError("Estimator not fitted, "
                                 "call `fit` before `feature_importances_`.")

        all_importances = Parallel(n_jobs=self.n_jobs,
                                   backend="threading")(
            delayed(getattr)(tree, 'feature_importances_')
            for tree in self.estimators_)

        return sum(all_importances) / len(self.estimators_)


class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest,
                                          ClassifierMixin)):
    """Base class for forest of trees-based classifiers.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=10,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None):

        super(ForestClassifier, self).__init__(
            base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight)

    def _set_oob_score(self, X, y):
        """Compute out-of-bag score"""
        X = check_array(X, dtype=DTYPE, accept_sparse='csr')

        n_classes_ = self.n_classes_
        n_samples = y.shape[0]

        oob_decision_function = []
        oob_score = 0.0
        predictions = []

        for k in range(self.n_outputs_):
            predictions.append(np.zeros((n_samples, n_classes_[k])))

        for estimator in self.estimators_:
            unsampled_indices = _generate_unsampled_indices(
                estimator.random_state, n_samples)
            p_estimator = estimator.predict_proba(X[unsampled_indices, :],
                                                  check_input=False)

            if self.n_outputs_ == 1:
                p_estimator = [p_estimator]

            for k in range(self.n_outputs_):
                predictions[k][unsampled_indices, :] += p_estimator[k]

        for k in range(self.n_outputs_):
            if (predictions[k].sum(axis=1) == 0).any():
                warn("Some inputs do not have OOB scores. "
                     "This probably means too few trees were used "
                     "to compute any reliable oob estimates.")

            decision = (predictions[k] /
                        predictions[k].sum(axis=1)[:, np.newaxis])
            oob_decision_function.append(decision)
            oob_score += np.mean(y[:, k] ==
                                 np.argmax(predictions[k], axis=1), axis=0)

        if self.n_outputs_ == 1:
            self.oob_decision_function_ = oob_decision_function[0]
        else:
            self.oob_decision_function_ = oob_decision_function

        self.oob_score_ = oob_score / self.n_outputs_

    def _validate_y_class_weight(self, y):
        check_classification_targets(y)

        y = np.copy(y)
        expanded_class_weight = None

        if self.class_weight is not None:
            y_original = np.copy(y)

        self.classes_ = []
        self.n_classes_ = []

        y_store_unique_indices = np.zeros(y.shape, dtype=np.int)
        for k in range(self.n_outputs_):
            classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True)
            self.classes_.append(classes_k)
            self.n_classes_.append(classes_k.shape[0])
        y = y_store_unique_indices

        if self.class_weight is not None:
            valid_presets = ('auto', 'balanced', 'subsample', 'balanced_subsample')
            if isinstance(self.class_weight, six.string_types):
                if self.class_weight not in valid_presets:
                    raise ValueError('Valid presets for class_weight include '
                                     '"balanced" and "balanced_subsample". Given "%s".'
                                     % self.class_weight)
                if self.class_weight == "subsample":
                    warn("class_weight='subsample' is deprecated in 0.17 and"
                         "will be removed in 0.19. It was replaced by "
                         "class_weight='balanced_subsample' using the balanced"
                         "strategy.", DeprecationWarning)
                if self.warm_start:
                    warn('class_weight presets "balanced" or "balanced_subsample" are '
                         'not recommended for warm_start if the fitted data '
                         'differs from the full dataset. In order to use '
                         '"balanced" weights, use compute_class_weight("balanced", '
                         'classes, y). In place of y you can use a large '
                         'enough sample of the full training set target to '
                         'properly estimate the class frequency '
                         'distributions. Pass the resulting weights as the '
                         'class_weight parameter.')

            if (self.class_weight not in ['subsample', 'balanced_subsample'] or
                    not self.bootstrap):
                if self.class_weight == 'subsample':
                    class_weight = 'auto'
                elif self.class_weight == "balanced_subsample":
                    class_weight = "balanced"
                else:
                    class_weight = self.class_weight
                with warnings.catch_warnings():
                    if class_weight == "auto":
                        warnings.simplefilter('ignore', DeprecationWarning)
                    expanded_class_weight = compute_sample_weight(class_weight,
                                                                  y_original)

        return y, expanded_class_weight

    def predict(self, X):
        """Predict class for X.

        The predicted class of an input sample is a vote by the trees in
        the forest, weighted by their probability estimates. That is,
        the predicted class is the one with highest mean probability
        estimate across the trees.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : array of shape = [n_samples] or [n_samples, n_outputs]
            The predicted classes.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return self.classes_.take(np.argmax(proba, axis=1), axis=0)

        else:
            n_samples = proba[0].shape[0]
            predictions = np.zeros((n_samples, self.n_outputs_))

            for k in range(self.n_outputs_):
                predictions[:, k] = self.classes_[k].take(np.argmax(proba[k],
                                                                    axis=1),
                                                          axis=0)

            return predictions

    def predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the mean predicted class probabilities of the trees in the forest. The
        class probability of a single tree is the fraction of samples of the same
        class in a leaf.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : array of shape = [n_samples, n_classes], or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # Parallel loop
        all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose,
                             backend="threading")(
            delayed(_parallel_helper)(e, 'predict_proba', X,
                                      check_input=False)
            for e in self.estimators_)

        # Reduce
        proba = all_proba[0]

        if self.n_outputs_ == 1:
            for j in range(1, len(all_proba)):
                proba += all_proba[j]

            proba /= len(self.estimators_)

        else:
            for j in range(1, len(all_proba)):
                for k in range(self.n_outputs_):
                    proba[k] += all_proba[j][k]

            for k in range(self.n_outputs_):
                proba[k] /= self.n_estimators

        return proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the log of the mean predicted class probabilities of the trees in the
        forest.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        p : array of shape = [n_samples, n_classes], or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return np.log(proba)

        else:
            for k in range(self.n_outputs_):
                proba[k] = np.log(proba[k])

            return proba


class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)):
    """Base class for forest of trees-based regressors.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=10,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False):
        super(ForestRegressor, self).__init__(
            base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start)

    def predict(self, X):
        """Predict regression target for X.

        The predicted regression target of an input sample is computed as the
        mean predicted regression targets of the trees in the forest.

        Parameters
        ----------
        X : array-like or sparse matrix of shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : array of shape = [n_samples] or [n_samples, n_outputs]
            The predicted values.
        """
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # Parallel loop
        all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose,
                             backend="threading")(
            delayed(_parallel_helper)(e, 'predict', X, check_input=False)
            for e in self.estimators_)

        # Reduce
        y_hat = sum(all_y_hat) / len(self.estimators_)

        return y_hat

    def _set_oob_score(self, X, y):
        """Compute out-of-bag scores"""
        X = check_array(X, dtype=DTYPE, accept_sparse='csr')

        n_samples = y.shape[0]

        predictions = np.zeros((n_samples, self.n_outputs_))
        n_predictions = np.zeros((n_samples, self.n_outputs_))

        for estimator in self.estimators_:
            unsampled_indices = _generate_unsampled_indices(
                estimator.random_state, n_samples)
            p_estimator = estimator.predict(
                X[unsampled_indices, :], check_input=False)

            if self.n_outputs_ == 1:
                p_estimator = p_estimator[:, np.newaxis]

            predictions[unsampled_indices, :] += p_estimator
            n_predictions[unsampled_indices, :] += 1

        if (n_predictions == 0).any():
            warn("Some inputs do not have OOB scores. "
                 "This probably means too few trees were used "
                 "to compute any reliable oob estimates.")
            n_predictions[n_predictions == 0] = 1

        predictions /= n_predictions
        self.oob_prediction_ = predictions

        if self.n_outputs_ == 1:
            self.oob_prediction_ = \
                self.oob_prediction_.reshape((n_samples, ))

        self.oob_score_ = 0.0

        for k in range(self.n_outputs_):
            self.oob_score_ += r2_score(y[:, k],
                                        predictions[:, k])

        self.oob_score_ /= self.n_outputs_


class RandomForestClassifier(ForestClassifier):
    """A random forest classifier.

    A random forest is a meta estimator that fits a number of decision tree
    classifiers on various sub-samples of the dataset and use averaging to
    improve the predictive accuracy and control over-fitting.
    The sub-sample size is always the same as the original
    input sample size but the samples are drawn with replacement if
    `bootstrap=True` (default).

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="gini")
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.
        Note: this parameter is tree-specific.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=sqrt(n_features)`.
        - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.
        Note: this parameter is tree-specific.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        Ignored if ``max_leaf_nodes`` is not None.
        Note: this parameter is tree-specific.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.
        Note: this parameter is tree-specific.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples in newly created leaves.  A split is
        discarded if after the split, one of the leaves would contain less then
        ``min_samples_leaf`` samples.
        Note: this parameter is tree-specific.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.
        Note: this parameter is tree-specific.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.
        Note: this parameter is tree-specific.

    bootstrap : boolean, optional (default=True)
        Whether bootstrap samples are used when building trees.

    oob_score : bool
        Whether to use out-of-bag samples to estimate
        the generalization error.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional

        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that weights are
        computed based on the bootstrap sample for every tree grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    Attributes
    ----------
    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : array of shape = [n_classes] or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_decision_function_ : array of shape = [n_samples, n_classes]
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN.

    References
    ----------

    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    See also
    --------
    DecisionTreeClassifier, ExtraTreesClassifier
    """
    def __init__(self,
                 n_estimators=10,
                 criterion="gini",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 bootstrap=True,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None):
        super(RandomForestClassifier, self).__init__(
            base_estimator=DecisionTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "random_state"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes


class RandomForestRegressor(ForestRegressor):
    """A random forest regressor.

    A random forest is a meta estimator that fits a number of classifying
    decision trees on various sub-samples of the dataset and use averaging
    to improve the predictive accuracy and control over-fitting.
    The sub-sample size is always the same as the original
    input sample size but the samples are drawn with replacement if
    `bootstrap=True` (default).

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="mse")
        The function to measure the quality of a split. The only supported
        criterion is "mse" for the mean squared error.
        Note: this parameter is tree-specific.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.
        Note: this parameter is tree-specific.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        Ignored if ``max_leaf_nodes`` is not None.
        Note: this parameter is tree-specific.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.
        Note: this parameter is tree-specific.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples in newly created leaves.  A split is
        discarded if after the split, one of the leaves would contain less then
        ``min_samples_leaf`` samples.
        Note: this parameter is tree-specific.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.
        Note: this parameter is tree-specific.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.
        Note: this parameter is tree-specific.

    bootstrap : boolean, optional (default=True)
        Whether bootstrap samples are used when building trees.

    oob_score : bool
        whether to use out-of-bag samples to estimate
        the generalization error.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    Attributes
    ----------
    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_prediction_ : array of shape = [n_samples]
        Prediction computed with out-of-bag estimate on the training set.

    References
    ----------

    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    See also
    --------
    DecisionTreeRegressor, ExtraTreesRegressor
    """
    def __init__(self,
                 n_estimators=10,
                 criterion="mse",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 bootstrap=True,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False):
        super(RandomForestRegressor, self).__init__(
            base_estimator=DecisionTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "random_state"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes


class ExtraTreesClassifier(ForestClassifier):
    """An extra-trees classifier.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and use averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="gini")
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.
        Note: this parameter is tree-specific.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=sqrt(n_features)`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.
        Note: this parameter is tree-specific.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        Ignored if ``max_leaf_nodes`` is not None.
        Note: this parameter is tree-specific.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.
        Note: this parameter is tree-specific.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples in newly created leaves.  A split is
        discarded if after the split, one of the leaves would contain less then
        ``min_samples_leaf`` samples.
        Note: this parameter is tree-specific.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.
        Note: this parameter is tree-specific.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.
        Note: this parameter is tree-specific.

    bootstrap : boolean, optional (default=False)
        Whether bootstrap samples are used when building trees.

    oob_score : bool
        Whether to use out-of-bag samples to estimate
        the generalization error.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional

        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that weights are
        computed based on the bootstrap sample for every tree grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    Attributes
    ----------
    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : array of shape = [n_classes] or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_decision_function_ : array of shape = [n_samples, n_classes]
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    See also
    --------
    sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble.
    RandomForestClassifier : Ensemble Classifier based on trees with optimal
        splits.
    """
    def __init__(self,
                 n_estimators=10,
                 criterion="gini",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None):
        super(ExtraTreesClassifier, self).__init__(
            base_estimator=ExtraTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes", "random_state"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes


class ExtraTreesRegressor(ForestRegressor):
    """An extra-trees regressor.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and use averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : integer, optional (default=10)
        The number of trees in the forest.

    criterion : string, optional (default="mse")
        The function to measure the quality of a split. The only supported
        criterion is "mse" for the mean squared error.
        Note: this parameter is tree-specific.

    max_features : int, float, string or None, optional (default="auto")
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a percentage and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.
        Note: this parameter is tree-specific.

    max_depth : integer or None, optional (default=None)
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        Ignored if ``max_leaf_nodes`` is not None.
        Note: this parameter is tree-specific.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.
        Note: this parameter is tree-specific.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples in newly created leaves.  A split is
        discarded if after the split, one of the leaves would contain less then
        ``min_samples_leaf`` samples.
        Note: this parameter is tree-specific.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.
        Note: this parameter is tree-specific.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.
        Note: this parameter is tree-specific.

    bootstrap : boolean, optional (default=False)
        Whether bootstrap samples are used when building trees.
        Note: this parameter is tree-specific.

    oob_score : bool
        Whether to use out-of-bag samples to estimate
        the generalization error.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    Attributes
    ----------
    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : array of shape = [n_features]
        The feature importances (the higher, the more important the feature).

    n_features_ : int
        The number of features.

    n_outputs_ : int
        The number of outputs.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.

    oob_prediction_ : array of shape = [n_samples]
        Prediction computed with out-of-bag estimate on the training set.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    See also
    --------
    sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble.
    RandomForestRegressor: Ensemble regressor using trees with optimal splits.
    """
    def __init__(self,
                 n_estimators=10,
                 criterion="mse",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False):
        super(ExtraTreesRegressor, self).__init__(
            base_estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "random_state"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes


class RandomTreesEmbedding(BaseForest):
    """An ensemble of totally random trees.

    An unsupervised transformation of a dataset to a high-dimensional
    sparse representation. A datapoint is coded according to which leaf of
    each tree it is sorted into. Using a one-hot encoding of the leaves,
    this leads to a binary coding with as many ones as there are trees in
    the forest.

    The dimensionality of the resulting representation is
    ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``,
    the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``.

    Read more in the :ref:`User Guide <random_trees_embedding>`.

    Parameters
    ----------
    n_estimators : int
        Number of trees in the forest.

    max_depth : int
        The maximum depth of each tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.
        Ignored if ``max_leaf_nodes`` is not None.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples in newly created leaves.  A split is
        discarded if after the split, one of the leaves would contain less then
        ``min_samples_leaf`` samples.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.

    sparse_output : bool, optional (default=True)
        Whether or not to return a sparse CSR matrix, as default behavior,
        or to return a dense array compatible with dense pipeline operators.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    verbose : int, optional (default=0)
        Controls the verbosity of the tree building process.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest.

    Attributes
    ----------
    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.
    .. [2] Moosmann, F. and Triggs, B. and Jurie, F.  "Fast discriminative
           visual codebooks using randomized clustering forests"
           NIPS 2007

    """

    def __init__(self,
                 n_estimators=10,
                 max_depth=5,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_leaf_nodes=None,
                 sparse_output=True,
                 n_jobs=1,
                 random_state=None,
                 verbose=0,
                 warm_start=False):
        super(RandomTreesEmbedding, self).__init__(
            base_estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "random_state"),
            bootstrap=False,
            oob_score=False,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start)

        self.criterion = 'mse'
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = 1
        self.max_leaf_nodes = max_leaf_nodes
        self.sparse_output = sparse_output

    def _set_oob_score(self, X, y):
        raise NotImplementedError("OOB score not supported by tree embedding")

    def fit(self, X, y=None, sample_weight=None):
        """Fit estimator.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            The input samples. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csc_matrix`` for maximum efficiency.

        Returns
        -------
        self : object
            Returns self.

        """
        self.fit_transform(X, y, sample_weight=sample_weight)
        return self

    def fit_transform(self, X, y=None, sample_weight=None):
        """Fit estimator and transform dataset.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Input data used to build forests. Use ``dtype=np.float32`` for
            maximum efficiency.

        Returns
        -------
        X_transformed : sparse matrix, shape=(n_samples, n_out)
            Transformed dataset.
        """
        # ensure_2d=False because there are actually unit test checking we fail
        # for 1d.
        X = check_array(X, accept_sparse=['csc'], ensure_2d=False)
        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        rnd = check_random_state(self.random_state)
        y = rnd.uniform(size=X.shape[0])
        super(RandomTreesEmbedding, self).fit(X, y,
                                              sample_weight=sample_weight)

        self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output)
        return self.one_hot_encoder_.fit_transform(self.apply(X))

    def transform(self, X):
        """Transform dataset.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Input data to be transformed. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csr_matrix`` for maximum efficiency.

        Returns
        -------
        X_transformed : sparse matrix, shape=(n_samples, n_out)
            Transformed dataset.
        """
        return self.one_hot_encoder_.transform(self.apply(X))