This file is indexed.

/usr/lib/python3/dist-packages/sklearn/ensemble/gradient_boosting.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
"""Gradient Boosted Regression Trees

This module contains methods for fitting gradient boosted regression trees for
both classification and regression.

The module structure is the following:

- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ in the concrete ``LossFunction`` used.

- ``GradientBoostingClassifier`` implements gradient boosting for
  classification problems.

- ``GradientBoostingRegressor`` implements gradient boosting for
  regression problems.
"""

# Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti,
#          Arnaud Joly, Jacob Schreiber
# License: BSD 3 clause

from __future__ import print_function
from __future__ import division

from abc import ABCMeta
from abc import abstractmethod

from .base import BaseEnsemble
from ..base import BaseEstimator
from ..base import ClassifierMixin
from ..base import RegressorMixin
from ..externals import six
from ..feature_selection.from_model import _LearntSelectorMixin

from ._gradient_boosting import predict_stages
from ._gradient_boosting import predict_stage
from ._gradient_boosting import _random_sample_mask

import numbers
import numpy as np

from scipy import stats
from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import issparse

from time import time
from ..tree.tree import DecisionTreeRegressor
from ..tree._tree import DTYPE
from ..tree._tree import TREE_LEAF

from ..utils import check_random_state 
from ..utils import check_array
from ..utils import check_X_y
from ..utils import column_or_1d
from ..utils import check_consistent_length
from ..utils import deprecated
from ..utils.extmath import logsumexp
from ..utils.fixes import expit
from ..utils.fixes import bincount
from ..utils.stats import _weighted_percentile
from ..utils.validation import check_is_fitted
from ..utils.validation import  NotFittedError
from ..utils.multiclass import check_classification_targets


class QuantileEstimator(BaseEstimator):
    """An estimator predicting the alpha-quantile of the training targets."""
    def __init__(self, alpha=0.9):
        if not 0 < alpha < 1.0:
            raise ValueError("`alpha` must be in (0, 1.0) but was %r" % alpha)
        self.alpha = alpha

    def fit(self, X, y, sample_weight=None):
        if sample_weight is None:
            self.quantile = stats.scoreatpercentile(y, self.alpha * 100.0)
        else:
            self.quantile = _weighted_percentile(y, sample_weight, self.alpha * 100.0)

    def predict(self, X):
        check_is_fitted(self, 'quantile')

        y = np.empty((X.shape[0], 1), dtype=np.float64)
        y.fill(self.quantile)
        return y


class MeanEstimator(BaseEstimator):
    """An estimator predicting the mean of the training targets."""
    def fit(self, X, y, sample_weight=None):
        if sample_weight is None:
            self.mean = np.mean(y)
        else:
            self.mean = np.average(y, weights=sample_weight)

    def predict(self, X):
        check_is_fitted(self, 'mean')

        y = np.empty((X.shape[0], 1), dtype=np.float64)
        y.fill(self.mean)
        return y


class LogOddsEstimator(BaseEstimator):
    """An estimator predicting the log odds ratio."""
    scale = 1.0

    def fit(self, X, y, sample_weight=None):
        # pre-cond: pos, neg are encoded as 1, 0
        if sample_weight is None:
            pos = np.sum(y)
            neg = y.shape[0] - pos
        else:
            pos = np.sum(sample_weight * y)
            neg = np.sum(sample_weight * (1 - y))

        if neg == 0 or pos == 0:
            raise ValueError('y contains non binary labels.')
        self.prior = self.scale * np.log(pos / neg)

    def predict(self, X):
        check_is_fitted(self, 'prior')

        y = np.empty((X.shape[0], 1), dtype=np.float64)
        y.fill(self.prior)
        return y


class ScaledLogOddsEstimator(LogOddsEstimator):
    """Log odds ratio scaled by 0.5 -- for exponential loss. """
    scale = 0.5


class PriorProbabilityEstimator(BaseEstimator):
    """An estimator predicting the probability of each
    class in the training data.
    """
    def fit(self, X, y, sample_weight=None):
        if sample_weight is None:
            sample_weight = np.ones_like(y, dtype=np.float64)
        class_counts = bincount(y, weights=sample_weight)
        self.priors = class_counts / class_counts.sum()

    def predict(self, X):
        check_is_fitted(self, 'priors')

        y = np.empty((X.shape[0], self.priors.shape[0]), dtype=np.float64)
        y[:] = self.priors
        return y


class ZeroEstimator(BaseEstimator):
    """An estimator that simply predicts zero. """

    def fit(self, X, y, sample_weight=None):
        if np.issubdtype(y.dtype, int):
            # classification
            self.n_classes = np.unique(y).shape[0]
            if self.n_classes == 2:
                self.n_classes = 1
        else:
            # regression
            self.n_classes = 1

    def predict(self, X):
        check_is_fitted(self, 'n_classes')

        y = np.empty((X.shape[0], self.n_classes), dtype=np.float64)
        y.fill(0.0)
        return y


class LossFunction(six.with_metaclass(ABCMeta, object)):
    """Abstract base class for various loss functions.

    Attributes
    ----------
    K : int
        The number of regression trees to be induced;
        1 for regression and binary classification;
        ``n_classes`` for multi-class classification.
    """

    is_multi_class = False

    def __init__(self, n_classes):
        self.K = n_classes

    def init_estimator(self):
        """Default ``init`` estimator for loss function. """
        raise NotImplementedError()

    @abstractmethod
    def __call__(self, y, pred, sample_weight=None):
        """Compute the loss of prediction ``pred`` and ``y``. """

    @abstractmethod
    def negative_gradient(self, y, y_pred, **kargs):
        """Compute the negative gradient.

        Parameters
        ---------
        y : np.ndarray, shape=(n,)
            The target labels.
        y_pred : np.ndarray, shape=(n,):
            The predictions.
        """

    def update_terminal_regions(self, tree, X, y, residual, y_pred,
                                sample_weight, sample_mask,
                                learning_rate=1.0, k=0):
        """Update the terminal regions (=leaves) of the given tree and
        updates the current predictions of the model. Traverses tree
        and invokes template method `_update_terminal_region`.

        Parameters
        ----------
        tree : tree.Tree
            The tree object.
        X : ndarray, shape=(n, m)
            The data array.
        y : ndarray, shape=(n,)
            The target labels.
        residual : ndarray, shape=(n,)
            The residuals (usually the negative gradient).
        y_pred : ndarray, shape=(n,)
            The predictions.
        sample_weight : ndarray, shape=(n,)
            The weight of each sample.
        sample_mask : ndarray, shape=(n,)
            The sample mask to be used.
        learning_rate : float, default=0.1
            learning rate shrinks the contribution of each tree by
             ``learning_rate``.
        k : int, default 0
            The index of the estimator being updated.

        """
        # compute leaf for each sample in ``X``.
        terminal_regions = tree.apply(X)

        # mask all which are not in sample mask.
        masked_terminal_regions = terminal_regions.copy()
        masked_terminal_regions[~sample_mask] = -1

        # update each leaf (= perform line search)
        for leaf in np.where(tree.children_left == TREE_LEAF)[0]:
            self._update_terminal_region(tree, masked_terminal_regions,
                                         leaf, X, y, residual,
                                         y_pred[:, k], sample_weight)

        # update predictions (both in-bag and out-of-bag)
        y_pred[:, k] += (learning_rate
                         * tree.value[:, 0, 0].take(terminal_regions, axis=0))

    @abstractmethod
    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        """Template method for updating terminal regions (=leaves). """


class RegressionLossFunction(six.with_metaclass(ABCMeta, LossFunction)):
    """Base class for regression loss functions. """

    def __init__(self, n_classes):
        if n_classes != 1:
            raise ValueError("``n_classes`` must be 1 for regression but "
                             "was %r" % n_classes)
        super(RegressionLossFunction, self).__init__(n_classes)


class LeastSquaresError(RegressionLossFunction):
    """Loss function for least squares (LS) estimation.
    Terminal regions need not to be updated for least squares. """
    def init_estimator(self):
        return MeanEstimator()

    def __call__(self, y, pred, sample_weight=None):
        if sample_weight is None:
            return np.mean((y - pred.ravel()) ** 2.0)
        else:
            return (1.0 / sample_weight.sum() *
                    np.sum(sample_weight * ((y - pred.ravel()) ** 2.0)))

    def negative_gradient(self, y, pred, **kargs):
        return y - pred.ravel()

    def update_terminal_regions(self, tree, X, y, residual, y_pred,
                                sample_weight, sample_mask,
                                learning_rate=1.0, k=0):
        """Least squares does not need to update terminal regions.

        But it has to update the predictions.
        """
        # update predictions
        y_pred[:, k] += learning_rate * tree.predict(X).ravel()

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        pass


class LeastAbsoluteError(RegressionLossFunction):
    """Loss function for least absolute deviation (LAD) regression. """
    def init_estimator(self):
        return QuantileEstimator(alpha=0.5)

    def __call__(self, y, pred, sample_weight=None):
        if sample_weight is None:
            return np.abs(y - pred.ravel()).mean()
        else:
            return (1.0 / sample_weight.sum() *
                    np.sum(sample_weight * np.abs(y - pred.ravel())))

    def negative_gradient(self, y, pred, **kargs):
        """1.0 if y - pred > 0.0 else -1.0"""
        pred = pred.ravel()
        return 2.0 * (y - pred > 0.0) - 1.0

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        """LAD updates terminal regions to median estimates. """
        terminal_region = np.where(terminal_regions == leaf)[0]
        sample_weight = sample_weight.take(terminal_region, axis=0)
        diff = y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)
        tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight, percentile=50)


class HuberLossFunction(RegressionLossFunction):
    """Huber loss function for robust regression.

    M-Regression proposed in Friedman 2001.

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
    """

    def __init__(self, n_classes, alpha=0.9):
        super(HuberLossFunction, self).__init__(n_classes)
        self.alpha = alpha
        self.gamma = None

    def init_estimator(self):
        return QuantileEstimator(alpha=0.5)

    def __call__(self, y, pred, sample_weight=None):
        pred = pred.ravel()
        diff = y - pred
        gamma = self.gamma
        if gamma is None:
            if sample_weight is None:
                gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100)
            else:
                gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100)

        gamma_mask = np.abs(diff) <= gamma
        if sample_weight is None:
            sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0)
            lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0))
            loss = (sq_loss + lin_loss) / y.shape[0]
        else:
            sq_loss = np.sum(0.5 * sample_weight[gamma_mask] * diff[gamma_mask] ** 2.0)
            lin_loss = np.sum(gamma * sample_weight[~gamma_mask] *
                              (np.abs(diff[~gamma_mask]) - gamma / 2.0))
            loss = (sq_loss + lin_loss) / sample_weight.sum()
        return loss

    def negative_gradient(self, y, pred, sample_weight=None, **kargs):
        pred = pred.ravel()
        diff = y - pred
        if sample_weight is None:
            gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100)
        else:
            gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100)
        gamma_mask = np.abs(diff) <= gamma
        residual = np.zeros((y.shape[0],), dtype=np.float64)
        residual[gamma_mask] = diff[gamma_mask]
        residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask])
        self.gamma = gamma
        return residual

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        sample_weight = sample_weight.take(terminal_region, axis=0)
        gamma = self.gamma
        diff = (y.take(terminal_region, axis=0)
                - pred.take(terminal_region, axis=0))
        median = _weighted_percentile(diff, sample_weight, percentile=50)
        diff_minus_median = diff - median
        tree.value[leaf, 0] = median + np.mean(
            np.sign(diff_minus_median) *
            np.minimum(np.abs(diff_minus_median), gamma))


class QuantileLossFunction(RegressionLossFunction):
    """Loss function for quantile regression.

    Quantile regression allows to estimate the percentiles
    of the conditional distribution of the target.
    """

    def __init__(self, n_classes, alpha=0.9):
        super(QuantileLossFunction, self).__init__(n_classes)
        assert 0 < alpha < 1.0
        self.alpha = alpha
        self.percentile = alpha * 100.0

    def init_estimator(self):
        return QuantileEstimator(self.alpha)

    def __call__(self, y, pred, sample_weight=None):
        pred = pred.ravel()
        diff = y - pred
        alpha = self.alpha

        mask = y > pred
        if sample_weight is None:
            loss = (alpha * diff[mask].sum() +
                    (1.0 - alpha) * diff[~mask].sum()) / y.shape[0]
        else:
            loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) +
                    (1.0 - alpha) * np.sum(sample_weight[~mask] * diff[~mask])) /
                    sample_weight.sum())
        return loss

    def negative_gradient(self, y, pred, **kargs):
        alpha = self.alpha
        pred = pred.ravel()
        mask = y > pred
        return (alpha * mask) - ((1.0 - alpha) * ~mask)

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        diff = (y.take(terminal_region, axis=0)
                - pred.take(terminal_region, axis=0))
        sample_weight = sample_weight.take(terminal_region, axis=0)

        val = _weighted_percentile(diff, sample_weight, self.percentile)
        tree.value[leaf, 0] = val


class ClassificationLossFunction(six.with_metaclass(ABCMeta, LossFunction)):
    """Base class for classification loss functions. """

    def _score_to_proba(self, score):
        """Template method to convert scores to probabilities.

         the does not support probabilites raises AttributeError.
        """
        raise TypeError('%s does not support predict_proba' % type(self).__name__)

    @abstractmethod
    def _score_to_decision(self, score):
        """Template method to convert scores to decisions.

        Returns int arrays.
        """


class BinomialDeviance(ClassificationLossFunction):
    """Binomial deviance loss function for binary classification.

    Binary classification is a special case; here, we only need to
    fit one tree instead of ``n_classes`` trees.
    """
    def __init__(self, n_classes):
        if n_classes != 2:
            raise ValueError("{0:s} requires 2 classes.".format(
                self.__class__.__name__))
        # we only need to fit one tree for binary clf.
        super(BinomialDeviance, self).__init__(1)

    def init_estimator(self):
        return LogOddsEstimator()

    def __call__(self, y, pred, sample_weight=None):
        """Compute the deviance (= 2 * negative log-likelihood). """
        # logaddexp(0, v) == log(1.0 + exp(v))
        pred = pred.ravel()
        if sample_weight is None:
            return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred))
        else:
            return (-2.0 / sample_weight.sum() *
                    np.sum(sample_weight * ((y * pred) - np.logaddexp(0.0, pred))))

    def negative_gradient(self, y, pred, **kargs):
        """Compute the residual (= negative gradient). """
        return y - expit(pred.ravel())

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        """Make a single Newton-Raphson step.

        our node estimate is given by:

            sum(w * (y - prob)) / sum(w * prob * (1 - prob))

        we take advantage that: y - prob = residual
        """
        terminal_region = np.where(terminal_regions == leaf)[0]
        residual = residual.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        numerator = np.sum(sample_weight * residual)
        denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual))

        if denominator == 0.0:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _score_to_proba(self, score):
        proba = np.ones((score.shape[0], 2), dtype=np.float64)
        proba[:, 1] = expit(score.ravel())
        proba[:, 0] -= proba[:, 1]
        return proba

    def _score_to_decision(self, score):
        proba = self._score_to_proba(score)
        return np.argmax(proba, axis=1)


class MultinomialDeviance(ClassificationLossFunction):
    """Multinomial deviance loss function for multi-class classification.

    For multi-class classification we need to fit ``n_classes`` trees at
    each stage.
    """

    is_multi_class = True

    def __init__(self, n_classes):
        if n_classes < 3:
            raise ValueError("{0:s} requires more than 2 classes.".format(
                self.__class__.__name__))
        super(MultinomialDeviance, self).__init__(n_classes)

    def init_estimator(self):
        return PriorProbabilityEstimator()

    def __call__(self, y, pred, sample_weight=None):
        # create one-hot label encoding
        Y = np.zeros((y.shape[0], self.K), dtype=np.float64)
        for k in range(self.K):
            Y[:, k] = y == k

        if sample_weight is None:
            return np.sum(-1 * (Y * pred).sum(axis=1) +
                          logsumexp(pred, axis=1))
        else:
            return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) +
                          logsumexp(pred, axis=1))

    def negative_gradient(self, y, pred, k=0, **kwargs):
        """Compute negative gradient for the ``k``-th class. """
        return y - np.nan_to_num(np.exp(pred[:, k] -
                                        logsumexp(pred, axis=1)))

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        """Make a single Newton-Raphson step. """
        terminal_region = np.where(terminal_regions == leaf)[0]
        residual = residual.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        numerator = np.sum(sample_weight * residual)
        numerator *= (self.K - 1) / self.K

        denominator = np.sum(sample_weight * (y - residual) *
                             (1.0 - y + residual))

        if denominator == 0.0:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _score_to_proba(self, score):
        return np.nan_to_num(
            np.exp(score - (logsumexp(score, axis=1)[:, np.newaxis])))

    def _score_to_decision(self, score):
        proba = self._score_to_proba(score)
        return np.argmax(proba, axis=1)


class ExponentialLoss(ClassificationLossFunction):
    """Exponential loss function for binary classification.

    Same loss as AdaBoost.

    References
    ----------
    Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007
    """
    def __init__(self, n_classes):
        if n_classes != 2:
            raise ValueError("{0:s} requires 2 classes.".format(
                self.__class__.__name__))
        # we only need to fit one tree for binary clf.
        super(ExponentialLoss, self).__init__(1)

    def init_estimator(self):
        return ScaledLogOddsEstimator()

    def __call__(self, y, pred, sample_weight=None):
        pred = pred.ravel()
        if sample_weight is None:
            return np.mean(np.exp(-(2. * y - 1.) * pred))
        else:
            return (1.0 / sample_weight.sum() *
                    np.sum(sample_weight * np.exp(-(2 * y - 1) * pred)))

    def negative_gradient(self, y, pred, **kargs):
        y_ = -(2. * y - 1.)
        return y_ * np.exp(y_ * pred.ravel())

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, pred, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        pred = pred.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        y_ = 2. * y - 1.

        numerator = np.sum(y_ * sample_weight * np.exp(-y_ * pred))
        denominator = np.sum(sample_weight * np.exp(-y_ * pred))

        if denominator == 0.0:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _score_to_proba(self, score):
        proba = np.ones((score.shape[0], 2), dtype=np.float64)
        proba[:, 1] = expit(2.0 * score.ravel())
        proba[:, 0] -= proba[:, 1]
        return proba

    def _score_to_decision(self, score):
        return (score.ravel() >= 0.0).astype(np.int)


LOSS_FUNCTIONS = {'ls': LeastSquaresError,
                  'lad': LeastAbsoluteError,
                  'huber': HuberLossFunction,
                  'quantile': QuantileLossFunction,
                  'deviance': None,    # for both, multinomial and binomial
                  'exponential': ExponentialLoss,
                  }


INIT_ESTIMATORS = {'zero': ZeroEstimator}


class VerboseReporter(object):
    """Reports verbose output to stdout.

    If ``verbose==1`` output is printed once in a while (when iteration mod
    verbose_mod is zero).; if larger than 1 then output is printed for
    each update.
    """

    def __init__(self, verbose):
        self.verbose = verbose

    def init(self, est, begin_at_stage=0):
        # header fields and line format str
        header_fields = ['Iter', 'Train Loss']
        verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}']
        # do oob?
        if est.subsample < 1:
            header_fields.append('OOB Improve')
            verbose_fmt.append('{oob_impr:>16.4f}')
        header_fields.append('Remaining Time')
        verbose_fmt.append('{remaining_time:>16s}')

        # print the header line
        print(('%10s ' + '%16s ' *
               (len(header_fields) - 1)) % tuple(header_fields))

        self.verbose_fmt = ' '.join(verbose_fmt)
        # plot verbose info each time i % verbose_mod == 0
        self.verbose_mod = 1
        self.start_time = time()
        self.begin_at_stage = begin_at_stage

    def update(self, j, est):
        """Update reporter with new iteration. """
        do_oob = est.subsample < 1
        # we need to take into account if we fit additional estimators.
        i = j - self.begin_at_stage  # iteration relative to the start iter
        if (i + 1) % self.verbose_mod == 0:
            oob_impr = est.oob_improvement_[j] if do_oob else 0
            remaining_time = ((est.n_estimators - (j + 1)) *
                              (time() - self.start_time) / float(i + 1))
            if remaining_time > 60:
                remaining_time = '{0:.2f}m'.format(remaining_time / 60.0)
            else:
                remaining_time = '{0:.2f}s'.format(remaining_time)
            print(self.verbose_fmt.format(iter=j + 1,
                                          train_score=est.train_score_[j],
                                          oob_impr=oob_impr,
                                          remaining_time=remaining_time))
            if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
                # adjust verbose frequency (powers of 10)
                self.verbose_mod *= 10


class BaseGradientBoosting(six.with_metaclass(ABCMeta, BaseEnsemble,
                                              _LearntSelectorMixin)):
    """Abstract base class for Gradient Boosting. """

    @abstractmethod
    def __init__(self, loss, learning_rate, n_estimators, min_samples_split,
                 min_samples_leaf, min_weight_fraction_leaf,
                 max_depth, init, subsample, max_features,
                 random_state, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='auto'):

        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.subsample = subsample
        self.max_features = max_features
        self.max_depth = max_depth
        self.init = init
        self.random_state = random_state
        self.alpha = alpha
        self.verbose = verbose
        self.max_leaf_nodes = max_leaf_nodes
        self.warm_start = warm_start
        self.presort = presort

        self.estimators_ = np.empty((0, 0), dtype=np.object)

    def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask,
                   random_state, X_idx_sorted, X_csc=None, X_csr=None):
        """Fit another stage of ``n_classes_`` trees to the boosting model. """

        assert sample_mask.dtype == np.bool
        loss = self.loss_
        original_y = y

        for k in range(loss.K):
            if loss.is_multi_class:
                y = np.array(original_y == k, dtype=np.float64)

            residual = loss.negative_gradient(y, y_pred, k=k,
                                              sample_weight=sample_weight)

            # induce regression tree on residuals
            tree = DecisionTreeRegressor(
                criterion='friedman_mse',
                splitter='best',
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                presort=self.presort)

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            if X_csc is not None:
                tree.fit(X_csc, residual, sample_weight=sample_weight,
                         check_input=False, X_idx_sorted=X_idx_sorted)
            else:
                tree.fit(X, residual, sample_weight=sample_weight,
                         check_input=False, X_idx_sorted=X_idx_sorted)

            # update tree leaves
            if X_csr is not None:
                loss.update_terminal_regions(tree.tree_, X_csr, y, residual, y_pred,
                                             sample_weight, sample_mask,
                                             self.learning_rate, k=k)
            else:
                loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred,
                                             sample_weight, sample_mask,
                                             self.learning_rate, k=k)

            # add tree to ensemble
            self.estimators_[i, k] = tree

        return y_pred

    def _check_params(self):
        """Check validity of parameters and raise ValueError if not valid. """
        if self.n_estimators <= 0:
            raise ValueError("n_estimators must be greater than 0 but "
                             "was %r" % self.n_estimators)

        if self.learning_rate <= 0.0:
            raise ValueError("learning_rate must be greater than 0 but "
                             "was %r" % self.learning_rate)

        if (self.loss not in self._SUPPORTED_LOSS
                or self.loss not in LOSS_FUNCTIONS):
            raise ValueError("Loss '{0:s}' not supported. ".format(self.loss))

        if self.loss == 'deviance':
            loss_class = (MultinomialDeviance
                          if len(self.classes_) > 2
                          else BinomialDeviance)
        else:
            loss_class = LOSS_FUNCTIONS[self.loss]

        if self.loss in ('huber', 'quantile'):
            self.loss_ = loss_class(self.n_classes_, self.alpha)
        else:
            self.loss_ = loss_class(self.n_classes_)

        if not (0.0 < self.subsample <= 1.0):
            raise ValueError("subsample must be in (0,1] but "
                             "was %r" % self.subsample)

        if self.init is not None:
            if isinstance(self.init, six.string_types):
                if self.init not in INIT_ESTIMATORS:
                    raise ValueError('init="%s" is not supported' % self.init)
            else:
                if (not hasattr(self.init, 'fit')
                        or not hasattr(self.init, 'predict')):
                    raise ValueError("init=%r must be valid BaseEstimator "
                                     "and support both fit and "
                                     "predict" % self.init)

        if not (0.0 < self.alpha < 1.0):
            raise ValueError("alpha must be in (0.0, 1.0) but "
                             "was %r" % self.alpha)

        if isinstance(self.max_features, six.string_types):
            if self.max_features == "auto":
                # if is_classification
                if self.n_classes_ > 1:
                    max_features = max(1, int(np.sqrt(self.n_features)))
                else:
                    # is regression
                    max_features = self.n_features
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features)))
            else:
                raise ValueError("Invalid value for max_features: %r. "
                                 "Allowed string values are 'auto', 'sqrt' "
                                 "or 'log2'." % self.max_features)
        elif self.max_features is None:
            max_features = self.n_features
        elif isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            if 0. < self.max_features <= 1.:
                max_features = max(int(self.max_features * self.n_features), 1)
            else:
                raise ValueError("max_features must be in (0, n_features]")

        self.max_features_ = max_features

    def _init_state(self):
        """Initialize model state and allocate model state data structures. """

        if self.init is None:
            self.init_ = self.loss_.init_estimator()
        elif isinstance(self.init, six.string_types):
            self.init_ = INIT_ESTIMATORS[self.init]()
        else:
            self.init_ = self.init

        self.estimators_ = np.empty((self.n_estimators, self.loss_.K),
                                    dtype=np.object)
        self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
        # do oob?
        if self.subsample < 1.0:
            self.oob_improvement_ = np.zeros((self.n_estimators),
                                             dtype=np.float64)

    def _clear_state(self):
        """Clear the state of the gradient boosting model. """
        if hasattr(self, 'estimators_'):
            self.estimators_ = np.empty((0, 0), dtype=np.object)
        if hasattr(self, 'train_score_'):
            del self.train_score_
        if hasattr(self, 'oob_improvement_'):
            del self.oob_improvement_
        if hasattr(self, 'init_'):
            del self.init_

    def _resize_state(self):
        """Add additional ``n_estimators`` entries to all attributes. """
        # self.n_estimators is the number of additional est to fit
        total_n_estimators = self.n_estimators
        if total_n_estimators < self.estimators_.shape[0]:
            raise ValueError('resize with smaller n_estimators %d < %d' %
                             (total_n_estimators, self.estimators_[0]))

        self.estimators_.resize((total_n_estimators, self.loss_.K))
        self.train_score_.resize(total_n_estimators)
        if (self.subsample < 1 or hasattr(self, 'oob_improvement_')):
            # if do oob resize arrays or create new if not available
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_.resize(total_n_estimators)
            else:
                self.oob_improvement_ = np.zeros((total_n_estimators,),
                                                 dtype=np.float64)

    def _is_initialized(self):
        return len(getattr(self, 'estimators_', [])) > 0

    def _check_initialized(self):
        """Check that the estimator is initialized, raising an error if not."""
        if self.estimators_ is None or len(self.estimators_) == 0:
            raise NotFittedError("Estimator not fitted, call `fit`"
                                 " before making predictions`.")

    def fit(self, X, y, sample_weight=None, monitor=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values (integers in classification, real numbers in
            regression)
            For classification, labels must correspond to classes.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        monitor : callable, optional
            The monitor is called after each iteration with the current
            iteration, a reference to the estimator and the local variables of
            ``_fit_stages`` as keyword arguments ``callable(i, self,
            locals())``. If the callable returns ``True`` the fitting procedure
            is stopped. The monitor can be used for various things such as
            computing held-out estimates, early stopping, model introspect, and
            snapshoting.

        Returns
        -------
        self : object
            Returns self.
        """
        # if not warmstart - clear the estimator state
        if not self.warm_start:
            self._clear_state()

        # Check input
        X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], dtype=DTYPE)
        n_samples, self.n_features = X.shape
        if sample_weight is None:
            sample_weight = np.ones(n_samples, dtype=np.float32)
        else:
            sample_weight = column_or_1d(sample_weight, warn=True)

        check_consistent_length(X, y, sample_weight)

        y = self._validate_y(y)

        random_state = check_random_state(self.random_state)
        self._check_params()

        if not self._is_initialized():
            # init state
            self._init_state()

            # fit initial model - FIXME make sample_weight optional
            self.init_.fit(X, y, sample_weight)

            # init predictions
            y_pred = self.init_.predict(X)
            begin_at_stage = 0
        else:
            # add more estimators to fitted model
            # invariant: warm_start = True
            if self.n_estimators < self.estimators_.shape[0]:
                raise ValueError('n_estimators=%d must be larger or equal to '
                                 'estimators_.shape[0]=%d when '
                                 'warm_start==True'
                                 % (self.n_estimators,
                                    self.estimators_.shape[0]))
            begin_at_stage = self.estimators_.shape[0]
            y_pred = self._decision_function(X)
            self._resize_state()

        X_idx_sorted = None
        presort = self.presort
        # Allow presort to be 'auto', which means True if the dataset is dense,
        # otherwise it will be False.
        if presort == 'auto' and issparse(X):
            presort = False
        elif presort == 'auto':
            presort = True
        
        if self.presort == True:
            if issparse(X):
                raise ValueError("Presorting is not supported for sparse matrices.")
            else:
                X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0),
                                                 dtype=np.int32)

        # fit the boosting stages
        n_stages = self._fit_stages(X, y, y_pred, sample_weight, random_state,
                                    begin_at_stage, monitor, X_idx_sorted)
        # change shape of arrays after fit (early-stopping or additional ests)
        if n_stages != self.estimators_.shape[0]:
            self.estimators_ = self.estimators_[:n_stages]
            self.train_score_ = self.train_score_[:n_stages]
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = self.oob_improvement_[:n_stages]

        return self

    def _fit_stages(self, X, y, y_pred, sample_weight, random_state,
                    begin_at_stage=0, monitor=None, X_idx_sorted=None):
        """Iteratively fits the stages.

        For each stage it computes the progress (OOB, train score)
        and delegates to ``_fit_stage``.
        Returns the number of stages fit; might differ from ``n_estimators``
        due to early stopping.
        """
        n_samples = X.shape[0]
        do_oob = self.subsample < 1.0
        sample_mask = np.ones((n_samples, ), dtype=np.bool)
        n_inbag = max(1, int(self.subsample * n_samples))
        loss_ = self.loss_

        # Set min_weight_leaf from min_weight_fraction_leaf
        if self.min_weight_fraction_leaf != 0. and sample_weight is not None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))
        else:
            min_weight_leaf = 0.

        if self.verbose:
            verbose_reporter = VerboseReporter(self.verbose)
            verbose_reporter.init(self, begin_at_stage)

        X_csc = csc_matrix(X) if issparse(X) else None
        X_csr = csr_matrix(X) if issparse(X) else None

        # perform boosting iterations
        i = begin_at_stage
        for i in range(begin_at_stage, self.n_estimators):

            # subsampling
            if do_oob:
                sample_mask = _random_sample_mask(n_samples, n_inbag,
                                                  random_state)
                # OOB score before adding this stage
                old_oob_score = loss_(y[~sample_mask],
                                      y_pred[~sample_mask],
                                      sample_weight[~sample_mask])

            # fit next stage of trees
            y_pred = self._fit_stage(i, X, y, y_pred, sample_weight,
                                     sample_mask, random_state, X_idx_sorted,
                                     X_csc, X_csr)

            # track deviance (= loss)
            if do_oob:
                self.train_score_[i] = loss_(y[sample_mask],
                                             y_pred[sample_mask],
                                             sample_weight[sample_mask])
                self.oob_improvement_[i] = (
                    old_oob_score - loss_(y[~sample_mask],
                                          y_pred[~sample_mask],
                                          sample_weight[~sample_mask]))
            else:
                # no need to fancy index w/ no subsampling
                self.train_score_[i] = loss_(y, y_pred, sample_weight)

            if self.verbose > 0:
                verbose_reporter.update(i, self)

            if monitor is not None:
                early_stopping = monitor(i, self, locals())
                if early_stopping:
                    break
        return i + 1

    def _make_estimator(self, append=True):
        # we don't need _make_estimator
        raise NotImplementedError()

    def _init_decision_function(self, X):
        """Check input and compute prediction of ``init``. """
        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
        if X.shape[1] != self.n_features:
            raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format(
                self.n_features, X.shape[1]))
        score = self.init_.predict(X).astype(np.float64)
        return score

    def _decision_function(self, X):
        # for use in inner loop, not raveling the output in single-class case,
        # not doing input validation.
        score = self._init_decision_function(X)
        predict_stages(self.estimators_, X, self.learning_rate, score)
        return score

    @deprecated(" and will be removed in 0.19")
    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        score : array, shape = [n_samples, n_classes] or [n_samples]
            The decision function of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
            Regression and binary classification produce an array of shape
            [n_samples].
        """

        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
        score = self._decision_function(X)
        if score.shape[1] == 1:
            return score.ravel()
        return score

    def _staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        score : generator of array, shape = [n_samples, k]
            The decision function of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        X = check_array(X, dtype=DTYPE, order="C")
        score = self._init_decision_function(X)
        for i in range(self.estimators_.shape[0]):
            predict_stage(self.estimators_, i, X, self.learning_rate, score)
            yield score.copy()

    @deprecated(" and will be removed in 0.19")
    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        score : generator of array, shape = [n_samples, k]
            The decision function of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        for dec in self._staged_decision_function(X):
            # no yield from in Python2.X
            yield dec

    @property
    def feature_importances_(self):
        """Return the feature importances (the higher, the more important the
           feature).

        Returns
        -------
        feature_importances_ : array, shape = [n_features]
        """
        self._check_initialized()

        total_sum = np.zeros((self.n_features, ), dtype=np.float64)
        for stage in self.estimators_:
            stage_sum = sum(tree.feature_importances_
                            for tree in stage) / len(stage)
            total_sum += stage_sum

        importances = total_sum / len(self.estimators_)
        return importances

    def _validate_y(self, y):
        self.n_classes_ = 1
        if y.dtype.kind == 'O':
            y = y.astype(np.float64)
        # Default implementation
        return y

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array_like, shape = [n_samples, n_estimators, n_classes]
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in in each estimator.
            In the case of binary classification n_classes is 1.
        """

        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)

        # n_classes will be equal to 1 in the binary classification or the
        # regression case.
        n_estimators, n_classes = self.estimators_.shape
        leaves = np.zeros((X.shape[0], n_estimators, n_classes))

        for i in range(n_estimators):
            for j in range(n_classes):
                estimator = self.estimators_[i, j]
                leaves[:, i, j] = estimator.apply(X, check_input=False)

        return leaves


class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin):
    """Gradient Boosting for classification.

    GB builds an additive model in a
    forward stage-wise fashion; it allows for the optimization of
    arbitrary differentiable loss functions. In each stage ``n_classes_``
    regression trees are fit on the negative gradient of the
    binomial or multinomial deviance loss function. Binary classification
    is a special case where only a single regression tree is induced.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'deviance', 'exponential'}, optional (default='deviance')
        loss function to be optimized. 'deviance' refers to
        deviance (= logistic regression) for classification
        with probabilistic outputs. For loss 'exponential' gradient
        boosting recovers the AdaBoost algorithm.

    learning_rate : float, optional (default=0.1)
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int (default=100)
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    max_depth : integer, optional (default=3)
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.
        Ignored if ``max_leaf_nodes`` is not None.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples required to be at a leaf node.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.

    subsample : float, optional (default=1.0)
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    max_features : int, float, string or None, optional (default=None)
        The number of features to consider when looking for the best split:
          - If int, then consider `max_features` features at each split.
          - If float, then `max_features` is a percentage and
            `int(max_features * n_features)` features are considered at each
            split.
          - If "auto", then `max_features=sqrt(n_features)`.
          - If "sqrt", then `max_features=sqrt(n_features)`.
          - If "log2", then `max_features=log2(n_features)`.
          - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.
        If not None then ``max_depth`` will be ignored.

    init : BaseEstimator, None, optional (default=None)
        An estimator object that is used to compute the initial
        predictions. ``init`` has to provide ``fit`` and ``predict``.
        If None it uses ``loss.init_estimator``.

    verbose : int, default: 0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    warm_start : bool, default: False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    presort : bool or 'auto', optional (default='auto')
        Whether to presort the data to speed up the finding of best splits in
        fitting. Auto mode by default will use presorting on dense data and
        default to normal sorting on sparse data. Setting presort to true on
        sparse data will raise an error.

        .. versionadded:: 0.17
           *presort* parameter.

    Attributes
    ----------
    feature_importances_ : array, shape = [n_features]
        The feature importances (the higher, the more important the feature).

    oob_improvement_ : array, shape = [n_estimators]
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.

    train_score_ : array, shape = [n_estimators]
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    init : BaseEstimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, ``loss_.K``]
        The collection of fitted sub-estimators. ``loss_.K`` is 1 for binary
        classification, otherwise n_classes.


    See also
    --------
    sklearn.tree.DecisionTreeClassifier, RandomForestClassifier
    AdaBoostClassifier

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('deviance', 'exponential')

    def __init__(self, loss='deviance', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, init=None, random_state=None,
                 max_features=None, verbose=0,
                 max_leaf_nodes=None, warm_start=False,
                 presort='auto'):

        super(GradientBoostingClassifier, self).__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            random_state=random_state, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes, warm_start=warm_start,
            presort=presort)

    def _validate_y(self, y):
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        self.n_classes_ = len(self.classes_)
        return y

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        score : array, shape = [n_samples, n_classes] or [n_samples]
            The decision function of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
            Regression and binary classification produce an array of shape
            [n_samples].
        """
        X = check_array(X, dtype=DTYPE, order="C")
        score = self._decision_function(X)
        if score.shape[1] == 1:
            return score.ravel()
        return score

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        score : generator of array, shape = [n_samples, k]
            The decision function of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        for dec in self._staged_decision_function(X):
            # no yield from in Python2.X
            yield dec

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y: array of shape = ["n_samples]
            The predicted values.
        """
        score = self.decision_function(X)
        decisions = self.loss_._score_to_decision(score)
        return self.classes_.take(decisions, axis=0)

    def staged_predict(self, X):
        """Predict class at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : generator of array of shape = [n_samples]
            The predicted value of the input samples.
        """
        for score in self._staged_decision_function(X):
            decisions = self.loss_._score_to_decision(score)
            yield self.classes_.take(decisions, axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : array of shape = [n_samples]
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        score = self.decision_function(X)
        try:
            return self.loss_._score_to_proba(score)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : array of shape = [n_samples]
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.
        """
        proba = self.predict_proba(X)
        return np.log(proba)

    def staged_predict_proba(self, X):
        """Predict class probabilities at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : generator of array of shape = [n_samples]
            The predicted value of the input samples.
        """
        try:
            for score in self._staged_decision_function(X):
                yield self.loss_._score_to_proba(score)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)


class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin):
    """Gradient Boosting for regression.

    GB builds an additive model in a forward stage-wise fashion;
    it allows for the optimization of arbitrary differentiable loss functions.
    In each stage a regression tree is fit on the negative gradient of the
    given loss function.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls')
        loss function to be optimized. 'ls' refers to least squares
        regression. 'lad' (least absolute deviation) is a highly robust
        loss function solely based on order information of the input
        variables. 'huber' is a combination of the two. 'quantile'
        allows quantile regression (use `alpha` to specify the quantile).

    learning_rate : float, optional (default=0.1)
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int (default=100)
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    max_depth : integer, optional (default=3)
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.
        Ignored if ``max_leaf_nodes`` is not None.

    min_samples_split : integer, optional (default=2)
        The minimum number of samples required to split an internal node.

    min_samples_leaf : integer, optional (default=1)
        The minimum number of samples required to be at a leaf node.

    min_weight_fraction_leaf : float, optional (default=0.)
        The minimum weighted fraction of the input samples required to be at a
        leaf node.

    subsample : float, optional (default=1.0)
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    max_features : int, float, string or None, optional (default=None)
        The number of features to consider when looking for the best split:
          - If int, then consider `max_features` features at each split.
          - If float, then `max_features` is a percentage and
            `int(max_features * n_features)` features are considered at each
            split.
          - If "auto", then `max_features=n_features`.
          - If "sqrt", then `max_features=sqrt(n_features)`.
          - If "log2", then `max_features=log2(n_features)`.
          - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int or None, optional (default=None)
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    alpha : float (default=0.9)
        The alpha-quantile of the huber loss function and the quantile
        loss function. Only if ``loss='huber'`` or ``loss='quantile'``.

    init : BaseEstimator, None, optional (default=None)
        An estimator object that is used to compute the initial
        predictions. ``init`` has to provide ``fit`` and ``predict``.
        If None it uses ``loss.init_estimator``.

    verbose : int, default: 0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    warm_start : bool, default: False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    presort : bool or 'auto', optional (default='auto')
        Whether to presort the data to speed up the finding of best splits in
        fitting. Auto mode by default will use presorting on dense data and
        default to normal sorting on sparse data. Setting presort to true on
        sparse data will raise an error.

        .. versionadded:: 0.17
           optional parameter *presort*.

    Attributes
    ----------
    feature_importances_ : array, shape = [n_features]
        The feature importances (the higher, the more important the feature).

    oob_improvement_ : array, shape = [n_estimators]
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.

    train_score_ : array, shape = [n_estimators]
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    `init` : BaseEstimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]
        The collection of fitted sub-estimators.

    See also
    --------
    DecisionTreeRegressor, RandomForestRegressor

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile')

    def __init__(self, loss='ls', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, init=None, random_state=None,
                 max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='auto'):

        super(GradientBoostingRegressor, self).__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            random_state=random_state, alpha=alpha, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes, warm_start=warm_start,
            presort='auto')

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : array of shape = [n_samples]
            The predicted values.
        """
        X = check_array(X, dtype=DTYPE, order="C")
        return self._decision_function(X).ravel()

    def staged_predict(self, X):
        """Predict regression target at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape = [n_samples, n_features]
            The input samples.

        Returns
        -------
        y : generator of array of shape = [n_samples]
            The predicted value of the input samples.
        """
        for y in self._staged_decision_function(X):
            yield y.ravel()

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array_like, shape = [n_samples, n_estimators]
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in in each estimator.
        """

        leaves = super(GradientBoostingRegressor, self).apply(X)
        leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
        return leaves