This file is indexed.

/usr/lib/python3/dist-packages/sklearn/feature_selection/univariate_selection.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
"""Univariate features selection."""

# Authors: V. Michel, B. Thirion, G. Varoquaux, A. Gramfort, E. Duchesnay.
#          L. Buitinck, A. Joly
# License: BSD 3 clause


import numpy as np
import warnings

from scipy import special, stats
from scipy.sparse import issparse

from ..base import BaseEstimator
from ..preprocessing import LabelBinarizer
from ..utils import (as_float_array, check_array, check_X_y, safe_sqr,
                     safe_mask)
from ..utils.extmath import norm, safe_sparse_dot
from ..utils.validation import check_is_fitted
from .base import SelectorMixin


def _clean_nans(scores):
    """
    Fixes Issue #1240: NaNs can't be properly compared, so change them to the
    smallest value of scores's dtype. -inf seems to be unreliable.
    """
    # XXX where should this function be called? fit? scoring functions
    # themselves?
    scores = as_float_array(scores, copy=True)
    scores[np.isnan(scores)] = np.finfo(scores.dtype).min
    return scores


######################################################################
# Scoring functions


# The following function is a rewriting of scipy.stats.f_oneway
# Contrary to the scipy.stats.f_oneway implementation it does not
# copy the data while keeping the inputs unchanged.
def f_oneway(*args):
    """Performs a 1-way ANOVA.

    The one-way ANOVA tests the null hypothesis that 2 or more groups have
    the same population mean. The test is applied to samples from two or
    more groups, possibly with differing sizes.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    sample1, sample2, ... : array_like, sparse matrices
        The sample measurements should be given as arguments.

    Returns
    -------
    F-value : float
        The computed F-value of the test.
    p-value : float
        The associated p-value from the F-distribution.

    Notes
    -----
    The ANOVA test has important assumptions that must be satisfied in order
    for the associated p-value to be valid.

    1. The samples are independent
    2. Each sample is from a normally distributed population
    3. The population standard deviations of the groups are all equal. This
       property is known as homoscedasticity.

    If these assumptions are not true for a given set of data, it may still be
    possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`_) although
    with some loss of power.

    The algorithm is from Heiman[2], pp.394-7.

    See ``scipy.stats.f_oneway`` that should give the same results while
    being less efficient.

    References
    ----------

    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 14.
           http://faculty.vassar.edu/lowry/ch14pt1.html

    .. [2] Heiman, G.W.  Research Methods in Statistics. 2002.

    """
    n_classes = len(args)
    args = [as_float_array(a) for a in args]
    n_samples_per_class = np.array([a.shape[0] for a in args])
    n_samples = np.sum(n_samples_per_class)
    ss_alldata = sum(safe_sqr(a).sum(axis=0) for a in args)
    sums_args = [np.asarray(a.sum(axis=0)) for a in args]
    square_of_sums_alldata = sum(sums_args) ** 2
    square_of_sums_args = [s ** 2 for s in sums_args]
    sstot = ss_alldata - square_of_sums_alldata / float(n_samples)
    ssbn = 0.
    for k, _ in enumerate(args):
        ssbn += square_of_sums_args[k] / n_samples_per_class[k]
    ssbn -= square_of_sums_alldata / float(n_samples)
    sswn = sstot - ssbn
    dfbn = n_classes - 1
    dfwn = n_samples - n_classes
    msb = ssbn / float(dfbn)
    msw = sswn / float(dfwn)
    constant_features_idx = np.where(msw == 0.)[0]
    if (np.nonzero(msb)[0].size != msb.size and constant_features_idx.size):
        warnings.warn("Features %s are constant." % constant_features_idx,
                      UserWarning)
    f = msb / msw
    # flatten matrix to vector in sparse case
    f = np.asarray(f).ravel()
    prob = special.fdtrc(dfbn, dfwn, f)
    return f, prob


def f_classif(X, y):
    """Compute the ANOVA F-value for the provided sample.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} shape = [n_samples, n_features]
        The set of regressors that will tested sequentially.

    y : array of shape(n_samples)
        The data matrix.

    Returns
    -------
    F : array, shape = [n_features,]
        The set of F values.

    pval : array, shape = [n_features,]
        The set of p-values.

    See also
    --------
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    """
    X, y = check_X_y(X, y, ['csr', 'csc', 'coo'])
    args = [X[safe_mask(X, y == k)] for k in np.unique(y)]
    return f_oneway(*args)


def _chisquare(f_obs, f_exp):
    """Fast replacement for scipy.stats.chisquare.

    Version from https://github.com/scipy/scipy/pull/2525 with additional
    optimizations.
    """
    f_obs = np.asarray(f_obs, dtype=np.float64)

    k = len(f_obs)
    # Reuse f_obs for chi-squared statistics
    chisq = f_obs
    chisq -= f_exp
    chisq **= 2
    chisq /= f_exp
    chisq = chisq.sum(axis=0)
    return chisq, special.chdtrc(k - 1, chisq)


def chi2(X, y):
    """Compute chi-squared stats between each non-negative feature and class.

    This score can be used to select the n_features features with the
    highest values for the test chi-squared statistic from X, which must
    contain only non-negative features such as booleans or frequencies
    (e.g., term counts in document classification), relative to the classes.

    Recall that the chi-square test measures dependence between stochastic
    variables, so using this function "weeds out" the features that are the
    most likely to be independent of class and therefore irrelevant for
    classification.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape = (n_samples, n_features_in)
        Sample vectors.

    y : array-like, shape = (n_samples,)
        Target vector (class labels).

    Returns
    -------
    chi2 : array, shape = (n_features,)
        chi2 statistics of each feature.
    pval : array, shape = (n_features,)
        p-values of each feature.

    Notes
    -----
    Complexity of this algorithm is O(n_classes * n_features).

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    """

    # XXX: we might want to do some of the following in logspace instead for
    # numerical stability.
    X = check_array(X, accept_sparse='csr')
    if np.any((X.data if issparse(X) else X) < 0):
        raise ValueError("Input X must be non-negative.")

    Y = LabelBinarizer().fit_transform(y)
    if Y.shape[1] == 1:
        Y = np.append(1 - Y, Y, axis=1)

    observed = safe_sparse_dot(Y.T, X)          # n_classes * n_features

    feature_count = X.sum(axis=0).reshape(1, -1)
    class_prob = Y.mean(axis=0).reshape(1, -1)
    expected = np.dot(class_prob.T, feature_count)

    return _chisquare(observed, expected)


def f_regression(X, y, center=True):
    """Univariate linear regression tests.

    Quick linear model for testing the effect of a single regressor,
    sequentially for many regressors.

    This is done in 3 steps:

    1. The regressor of interest and the data are orthogonalized
       wrt constant regressors.
    2. The cross correlation between data and regressors is computed.
    3. It is converted to an F score then to a p-value.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}  shape = (n_samples, n_features)
        The set of regressors that will tested sequentially.

    y : array of shape(n_samples).
        The data matrix

    center : True, bool,
        If true, X and y will be centered.

    Returns
    -------
    F : array, shape=(n_features,)
        F values of features.

    pval : array, shape=(n_features,)
        p-values of F-scores.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    """
    if issparse(X) and center:
        raise ValueError("center=True only allowed for dense data")
    X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float)
    if center:
        y = y - np.mean(y)
        X = X.copy('F')  # faster in fortran
        X -= X.mean(axis=0)

    # compute the correlation
    corr = safe_sparse_dot(y, X)
    # XXX could use corr /= row_norms(X.T) here, but the test doesn't pass
    corr /= np.asarray(np.sqrt(safe_sqr(X).sum(axis=0))).ravel()
    corr /= norm(y)

    # convert to p-value
    degrees_of_freedom = y.size - (2 if center else 1)
    F = corr ** 2 / (1 - corr ** 2) * degrees_of_freedom
    pv = stats.f.sf(F, 1, degrees_of_freedom)
    return F, pv


######################################################################
# Base classes

class _BaseFilter(BaseEstimator, SelectorMixin):
    """Initialize the univariate feature selection.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).
    """

    def __init__(self, score_func):
        self.score_func = score_func

    def fit(self, X, y):
        """Run score function on (X, y) and get the appropriate features.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            The training input samples.

        y : array-like, shape = [n_samples]
            The target values (class labels in classification, real numbers in
            regression).

        Returns
        -------
        self : object
            Returns self.
        """
        X, y = check_X_y(X, y, ['csr', 'csc'])

        if not callable(self.score_func):
            raise TypeError("The score function should be a callable, %s (%s) "
                            "was passed."
                            % (self.score_func, type(self.score_func)))

        self._check_params(X, y)

        self.scores_, self.pvalues_ = self.score_func(X, y)
        self.scores_ = np.asarray(self.scores_)
        self.pvalues_ = np.asarray(self.pvalues_)
        return self

    def _check_params(self, X, y):
        pass


######################################################################
# Specific filters
######################################################################
class SelectPercentile(_BaseFilter):
    """Select features according to a percentile of the highest scores.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    percentile : int, optional, default=10
        Percent of features to keep.

    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    Notes
    -----
    Ties between features with equal scores will be broken in an unspecified
    way.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectKBest: Select features based on the k highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFdr: Select features based on an estimated false discovery rate.
    SelectFwe: Select features based on family-wise error rate.
    GenericUnivariateSelect: Univariate feature selector with configurable mode.
    """

    def __init__(self, score_func=f_classif, percentile=10):
        super(SelectPercentile, self).__init__(score_func)
        self.percentile = percentile

    def _check_params(self, X, y):
        if not 0 <= self.percentile <= 100:
            raise ValueError("percentile should be >=0, <=100; got %r"
                             % self.percentile)

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        # Cater for NaNs
        if self.percentile == 100:
            return np.ones(len(self.scores_), dtype=np.bool)
        elif self.percentile == 0:
            return np.zeros(len(self.scores_), dtype=np.bool)

        scores = _clean_nans(self.scores_)
        treshold = stats.scoreatpercentile(scores,
                                           100 - self.percentile)
        mask = scores > treshold
        ties = np.where(scores == treshold)[0]
        if len(ties):
            max_feats = len(scores) * self.percentile // 100
            kept_ties = ties[:max_feats - mask.sum()]
            mask[kept_ties] = True
        return mask


class SelectKBest(_BaseFilter):
    """Select features according to the k highest scores.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    k : int or "all", optional, default=10
        Number of top features to select.
        The "all" option bypasses selection, for use in a parameter search.

    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    Notes
    -----
    Ties between features with equal scores will be broken in an unspecified
    way.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectPercentile: Select features based on percentile of the highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFdr: Select features based on an estimated false discovery rate.
    SelectFwe: Select features based on family-wise error rate.
    GenericUnivariateSelect: Univariate feature selector with configurable mode.
    """

    def __init__(self, score_func=f_classif, k=10):
        super(SelectKBest, self).__init__(score_func)
        self.k = k

    def _check_params(self, X, y):
        if not (self.k == "all" or 0 <= self.k <= X.shape[1]):
            raise ValueError("k should be >=0, <= n_features; got %r."
                             "Use k='all' to return all features."
                             % self.k)

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        if self.k == 'all':
            return np.ones(self.scores_.shape, dtype=bool)
        elif self.k == 0:
            return np.zeros(self.scores_.shape, dtype=bool)
        else:
            scores = _clean_nans(self.scores_)
            mask = np.zeros(scores.shape, dtype=bool)

            # Request a stable sort. Mergesort takes more memory (~40MB per
            # megafeature on x86-64).
            mask[np.argsort(scores, kind="mergesort")[-self.k:]] = 1
            return mask


class SelectFpr(_BaseFilter):
    """Filter: Select the pvalues below alpha based on a FPR test.

    FPR test stands for False Positive Rate test. It controls the total
    amount of false detections.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    alpha : float, optional
        The highest p-value for features to be kept.

    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectPercentile: Select features based on percentile of the highest scores.
    SelectKBest: Select features based on the k highest scores.
    SelectFdr: Select features based on an estimated false discovery rate.
    SelectFwe: Select features based on family-wise error rate.
    GenericUnivariateSelect: Univariate feature selector with configurable mode.
    """

    def __init__(self, score_func=f_classif, alpha=5e-2):
        super(SelectFpr, self).__init__(score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        return self.pvalues_ < self.alpha


class SelectFdr(_BaseFilter):
    """Filter: Select the p-values for an estimated false discovery rate

    This uses the Benjamini-Hochberg procedure. ``alpha`` is an upper bound
    on the expected false discovery rate.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    alpha : float, optional
        The highest uncorrected p-value for features to keep.


    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    References
    ----------
    http://en.wikipedia.org/wiki/False_discovery_rate

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectPercentile: Select features based on percentile of the highest scores.
    SelectKBest: Select features based on the k highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFwe: Select features based on family-wise error rate.
    GenericUnivariateSelect: Univariate feature selector with configurable mode.
    """

    def __init__(self, score_func=f_classif, alpha=5e-2):
        super(SelectFdr, self).__init__(score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        n_features = len(self.pvalues_)
        sv = np.sort(self.pvalues_)
        selected = sv[sv <= float(self.alpha) / n_features
                      * np.arange(n_features)]
        if selected.size == 0:
            return np.zeros_like(self.pvalues_, dtype=bool)
        return self.pvalues_ <= selected.max()


class SelectFwe(_BaseFilter):
    """Filter: Select the p-values corresponding to Family-wise error rate

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    alpha : float, optional
        The highest uncorrected p-value for features to keep.

    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectPercentile: Select features based on percentile of the highest scores.
    SelectKBest: Select features based on the k highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFdr: Select features based on an estimated false discovery rate.
    GenericUnivariateSelect: Univariate feature selector with configurable mode.
    """

    def __init__(self, score_func=f_classif, alpha=5e-2):
        super(SelectFwe, self).__init__(score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        return (self.pvalues_ < self.alpha / len(self.pvalues_))


######################################################################
# Generic filter
######################################################################

# TODO this class should fit on either p-values or scores,
# depending on the mode.
class GenericUnivariateSelect(_BaseFilter):
    """Univariate feature selector with configurable strategy.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).

    mode : {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}
        Feature selection mode.

    param : float or int depending on the feature selection mode
        Parameter of the corresponding mode.

    Attributes
    ----------
    scores_ : array-like, shape=(n_features,)
        Scores of features.

    pvalues_ : array-like, shape=(n_features,)
        p-values of feature scores.

    See also
    --------
    f_classif: ANOVA F-value between labe/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    SelectPercentile: Select features based on percentile of the highest scores.
    SelectKBest: Select features based on the k highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFdr: Select features based on an estimated false discovery rate.
    SelectFwe: Select features based on family-wise error rate.
    """

    _selection_modes = {'percentile': SelectPercentile,
                        'k_best': SelectKBest,
                        'fpr': SelectFpr,
                        'fdr': SelectFdr,
                        'fwe': SelectFwe}

    def __init__(self, score_func=f_classif, mode='percentile', param=1e-5):
        super(GenericUnivariateSelect, self).__init__(score_func)
        self.mode = mode
        self.param = param

    def _make_selector(self):
        selector = self._selection_modes[self.mode](score_func=self.score_func)

        # Now perform some acrobatics to set the right named parameter in
        # the selector
        possible_params = selector._get_param_names()
        possible_params.remove('score_func')
        selector.set_params(**{possible_params[0]: self.param})

        return selector

    def _check_params(self, X, y):
        if self.mode not in self._selection_modes:
            raise ValueError("The mode passed should be one of %s, %r,"
                             " (type %s) was passed."
                             % (self._selection_modes.keys(), self.mode,
                                type(self.mode)))

        self._make_selector()._check_params(X, y)

    def _get_support_mask(self):
        check_is_fitted(self, 'scores_')

        selector = self._make_selector()
        selector.pvalues_ = self.pvalues_
        selector.scores_ = self.scores_
        return selector._get_support_mask()