This file is indexed.

/usr/lib/python3/dist-packages/sklearn/linear_model/omp.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
"""Orthogonal matching pursuit algorithms
"""

# Author: Vlad Niculae
#
# License: BSD 3 clause

import warnings
from distutils.version import LooseVersion

import numpy as np
from scipy import linalg
from scipy.linalg.lapack import get_lapack_funcs

from .base import LinearModel, _pre_fit
from ..base import RegressorMixin
from ..utils import as_float_array, check_array, check_X_y
from ..cross_validation import check_cv
from ..externals.joblib import Parallel, delayed

import scipy
solve_triangular_args = {}
if LooseVersion(scipy.__version__) >= LooseVersion('0.12'):
    # check_finite=False is an optimization available only in scipy >=0.12
    solve_triangular_args = {'check_finite': False}


premature = """ Orthogonal matching pursuit ended prematurely due to linear
dependence in the dictionary. The requested precision might not have been met.
"""


def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True,
                  return_path=False):
    """Orthogonal Matching Pursuit step using the Cholesky decomposition.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        Input dictionary. Columns are assumed to have unit norm.

    y : array, shape (n_samples,)
        Input targets

    n_nonzero_coefs : int
        Targeted number of non-zero elements

    tol : float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_X : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : array, shape (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx : array, shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    coef : array, shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    """
    if copy_X:
        X = X.copy('F')
    else:  # even if we are allowed to overwrite, still copy it if bad order
        X = np.asfortranarray(X)

    min_float = np.finfo(X.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,))
    potrs, = get_lapack_funcs(('potrs',), (X,))

    alpha = np.dot(X.T, y)
    residual = y
    gamma = np.empty(0)
    n_active = 0
    indices = np.arange(X.shape[1])  # keeping track of swapping

    max_features = X.shape[1] if tol is not None else n_nonzero_coefs
    if solve_triangular_args:
        # new scipy, don't need to initialize because check_finite=False
        L = np.empty((max_features, max_features), dtype=X.dtype)
    else:
        # old scipy, we need the garbage upper triangle to be non-Inf
        L = np.zeros((max_features, max_features), dtype=X.dtype)

    L[0, 0] = 1.
    if return_path:
        coefs = np.empty_like(L)

    while True:
        lam = np.argmax(np.abs(np.dot(X.T, residual)))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # atom already selected or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=2)
            break
        if n_active > 0:
            # Updates the Cholesky decomposition of X' X
            L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam])
            linalg.solve_triangular(L[:n_active, :n_active],
                                    L[n_active, :n_active],
                                    trans=0, lower=1,
                                    overwrite_b=True,
                                    **solve_triangular_args)
            v = nrm2(L[n_active, :n_active]) ** 2
            if 1 - v <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=2)
                break
            L[n_active, n_active] = np.sqrt(1 - v)
        X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam])
        alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active]
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        n_active += 1
        # solves LL'x = y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True,
                         overwrite_b=False)
        if return_path:
            coefs[:n_active, n_active - 1] = gamma
        residual = y - np.dot(X[:, :n_active], gamma)
        if tol is not None and nrm2(residual) ** 2 <= tol:
            break
        elif n_active == max_features:
            break

    if return_path:
        return gamma, indices[:n_active], coefs[:, :n_active], n_active
    else:
        return gamma, indices[:n_active], n_active


def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
              copy_Gram=True, copy_Xy=True, return_path=False):
    """Orthogonal Matching Pursuit step on a precomputed Gram matrix.

    This function uses the the Cholesky decomposition method.

    Parameters
    ----------
    Gram : array, shape (n_features, n_features)
        Gram matrix of the input data matrix

    Xy : array, shape (n_features,)
        Input targets

    n_nonzero_coefs : int
        Targeted number of non-zero elements

    tol_0 : float
        Squared norm of y, required if tol is not None.

    tol : float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_Gram : bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : array, shape (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx : array, shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    coefs : array, shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    """
    Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram)

    if copy_Xy:
        Xy = Xy.copy()

    min_float = np.finfo(Gram.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,))
    potrs, = get_lapack_funcs(('potrs',), (Gram,))

    indices = np.arange(len(Gram))  # keeping track of swapping
    alpha = Xy
    tol_curr = tol_0
    delta = 0
    gamma = np.empty(0)
    n_active = 0

    max_features = len(Gram) if tol is not None else n_nonzero_coefs
    if solve_triangular_args:
        # new scipy, don't need to initialize because check_finite=False
        L = np.empty((max_features, max_features), dtype=Gram.dtype)
    else:
        # old scipy, we need the garbage upper triangle to be non-Inf
        L = np.zeros((max_features, max_features), dtype=Gram.dtype)
    L[0, 0] = 1.
    if return_path:
        coefs = np.empty_like(L)

    while True:
        lam = np.argmax(np.abs(alpha))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # selected same atom twice, or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=3)
            break
        if n_active > 0:
            L[n_active, :n_active] = Gram[lam, :n_active]
            linalg.solve_triangular(L[:n_active, :n_active],
                                    L[n_active, :n_active],
                                    trans=0, lower=1,
                                    overwrite_b=True,
                                    **solve_triangular_args)
            v = nrm2(L[n_active, :n_active]) ** 2
            if 1 - v <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=3)
                break
            L[n_active, n_active] = np.sqrt(1 - v)
        Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam])
        Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam])
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active]
        n_active += 1
        # solves LL'x = y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True,
                         overwrite_b=False)
        if return_path:
            coefs[:n_active, n_active - 1] = gamma
        beta = np.dot(Gram[:, :n_active], gamma)
        alpha = Xy - beta
        if tol is not None:
            tol_curr += delta
            delta = np.inner(gamma, beta[:n_active])
            tol_curr -= delta
            if abs(tol_curr) <= tol:
                break
        elif n_active == max_features:
            break

    if return_path:
        return gamma, indices[:n_active], coefs[:, :n_active], n_active
    else:
        return gamma, indices[:n_active], n_active


def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False,
                  copy_X=True, return_path=False,
                  return_n_iter=False):
    """Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems.
    An instance of the problem has the form:

    When parametrized by the number of non-zero coefficients using
    `n_nonzero_coefs`:
    argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}

    When parametrized by error using the parameter `tol`:
    argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        Input data. Columns are assumed to have unit norm.

    y : array, shape (n_samples,) or (n_samples, n_targets)
        Input targets

    n_nonzero_coefs : int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    precompute : {True, False, 'auto'},
        Whether to perform precomputations. Improves performance when n_targets
        or n_samples is very large.

    copy_X : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, optional default False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : array, shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis yields coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp_gram
    lars_path
    decomposition.sparse_encode

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    X = check_array(X, order='F', copy=copy_X)
    copy_X = False
    if y.ndim == 1:
        y = y.reshape(-1, 1)
    y = check_array(y)
    if y.shape[1] > 1:  # subsequent targets will be affected
        copy_X = True
    if n_nonzero_coefs is None and tol is None:
        # default for n_nonzero_coefs is 0.1 * n_features
        # but at least one.
        n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1)
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cannot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > X.shape[1]:
        raise ValueError("The number of atoms cannot be more than the number "
                         "of features")
    if precompute == 'auto':
        precompute = X.shape[0] > X.shape[1]
    if precompute:
        G = np.dot(X.T, X)
        G = np.asfortranarray(G)
        Xy = np.dot(X.T, y)
        if tol is not None:
            norms_squared = np.sum((y ** 2), axis=0)
        else:
            norms_squared = None
        return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared,
                                  copy_Gram=copy_X, copy_Xy=False,
                                  return_path=return_path)

    if return_path:
        coef = np.zeros((X.shape[1], y.shape[1], X.shape[1]))
    else:
        coef = np.zeros((X.shape[1], y.shape[1]))
    n_iters = []

    for k in range(y.shape[1]):
        out = _cholesky_omp(
            X, y[:, k], n_nonzero_coefs, tol,
            copy_X=copy_X, return_path=return_path)
        if return_path:
            _, idx, coefs, n_iter = out
            coef = coef[:, :, :len(idx)]
            for n_active, x in enumerate(coefs.T):
                coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
        else:
            x, idx, n_iter = out
            coef[idx, k] = x
        n_iters.append(n_iter)

    if y.shape[1] == 1:
        n_iters = n_iters[0]

    if return_n_iter:
        return np.squeeze(coef), n_iters
    else:
        return np.squeeze(coef)


def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None,
                       norms_squared=None, copy_Gram=True,
                       copy_Xy=True, return_path=False,
                       return_n_iter=False):
    """Gram Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems using only
    the Gram matrix X.T * X and the product X.T * y.

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    Gram : array, shape (n_features, n_features)
        Gram matrix of the input data: X.T * X

    Xy : array, shape (n_features,) or (n_features, n_targets)
        Input targets multiplied by X: X.T * y

    n_nonzero_coefs : int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    norms_squared : array-like, shape (n_targets,)
        Squared L2 norms of the lines of y. Required if tol is not None.

    copy_Gram : bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, optional default False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : array, shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis yields coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp
    lars_path
    decomposition.sparse_encode

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    Gram = check_array(Gram, order='F', copy=copy_Gram)
    Xy = np.asarray(Xy)
    if Xy.ndim > 1 and Xy.shape[1] > 1:
        # or subsequent target will be affected
        copy_Gram = True
    if Xy.ndim == 1:
        Xy = Xy[:, np.newaxis]
        if tol is not None:
            norms_squared = [norms_squared]

    if n_nonzero_coefs is None and tol is None:
        n_nonzero_coefs = int(0.1 * len(Gram))
    if tol is not None and norms_squared is None:
        raise ValueError('Gram OMP needs the precomputed norms in order '
                         'to evaluate the error sum of squares.')
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cannot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > len(Gram):
        raise ValueError("The number of atoms cannot be more than the number "
                         "of features")

    if return_path:
        coef = np.zeros((len(Gram), Xy.shape[1], len(Gram)))
    else:
        coef = np.zeros((len(Gram), Xy.shape[1]))

    n_iters = []
    for k in range(Xy.shape[1]):
        out = _gram_omp(
            Gram, Xy[:, k], n_nonzero_coefs,
            norms_squared[k] if tol is not None else None, tol,
            copy_Gram=copy_Gram, copy_Xy=copy_Xy,
            return_path=return_path)
        if return_path:
            _, idx, coefs, n_iter = out
            coef = coef[:, :, :len(idx)]
            for n_active, x in enumerate(coefs.T):
                coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
        else:
            x, idx, n_iter = out
            coef[idx, k] = x
        n_iters.append(n_iter)

    if Xy.shape[1] == 1:
        n_iters = n_iters[0]

    if return_n_iter:
        return np.squeeze(coef), n_iters
    else:
        return np.squeeze(coef)


class OrthogonalMatchingPursuit(LinearModel, RegressorMixin):
    """Orthogonal Matching Pursuit model (OMP)

    Parameters
    ----------
    n_nonzero_coefs : int, optional
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, optional
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional
        If False, the regressors X are assumed to be already normalized.

    precompute : {True, False, 'auto'}, default 'auto'
        Whether to use a precomputed Gram and Xy matrix to speed up
        calculations. Improves performance when `n_targets` or `n_samples` is
        very large. Note that if you already have such matrices, you can pass
        them directly to the fit method.

    Read more in the :ref:`User Guide <omp>`.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_features, n_targets)
        parameter vector (w in the formula)

    intercept_ : float or array, shape (n_targets,)
        independent term in decision function.

    n_iter_ : int or array-like
        Number of active features across every target.

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    See also
    --------
    orthogonal_mp
    orthogonal_mp_gram
    lars_path
    Lars
    LassoLars
    decomposition.sparse_encode

    """
    def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True,
                 normalize=True, precompute='auto'):
        self.n_nonzero_coefs = n_nonzero_coefs
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute = precompute

    def fit(self, X, y):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_targets)
            Target values.


        Returns
        -------
        self : object
            returns an instance of self.
        """
        X, y = check_X_y(X, y, multi_output=True, y_numeric=True)
        n_features = X.shape[1]

        X, y, X_mean, y_mean, X_std, Gram, Xy = \
            _pre_fit(X, y, None, self.precompute, self.normalize,
                     self.fit_intercept, copy=True)

        if y.ndim == 1:
            y = y[:, np.newaxis]

        if self.n_nonzero_coefs is None and self.tol is None:
            # default for n_nonzero_coefs is 0.1 * n_features
            # but at least one.
            self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1)
        else:
            self.n_nonzero_coefs_ = self.n_nonzero_coefs

        if Gram is False:
            coef_, self.n_iter_ = orthogonal_mp(
                X, y, self.n_nonzero_coefs_, self.tol,
                precompute=False, copy_X=True,
                return_n_iter=True)
        else:
            norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None

            coef_, self.n_iter_ = orthogonal_mp_gram(
                Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_,
                tol=self.tol, norms_squared=norms_sq,
                copy_Gram=True, copy_Xy=True,
                return_n_iter=True)
        self.coef_ = coef_.T
        self._set_intercept(X_mean, y_mean, X_std)
        return self


def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True,
                       fit_intercept=True, normalize=True, max_iter=100):
    """Compute the residues on left-out data for a full LARS path

    Parameters
    -----------
    X_train : array, shape (n_samples, n_features)
        The data to fit the LARS on

    y_train : array, shape (n_samples)
        The target variable to fit LARS on

    X_test : array, shape (n_samples, n_features)
        The data to compute the residues on

    y_test : array, shape (n_samples)
        The target variable to compute the residues on

    copy : boolean, optional
        Whether X_train, X_test, y_train and y_test should be copied.  If
        False, they may be overwritten.

    fit_intercept : boolean
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        If True, the regressors X will be normalized before regression.

    max_iter : integer, optional
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 100 by default.

    Returns
    -------
    residues: array, shape (n_samples, max_features)
        Residues of the prediction on the test data
    """

    if copy:
        X_train = X_train.copy()
        y_train = y_train.copy()
        X_test = X_test.copy()
        y_test = y_test.copy()

    if fit_intercept:
        X_mean = X_train.mean(axis=0)
        X_train -= X_mean
        X_test -= X_mean
        y_mean = y_train.mean(axis=0)
        y_train = as_float_array(y_train, copy=False)
        y_train -= y_mean
        y_test = as_float_array(y_test, copy=False)
        y_test -= y_mean

    if normalize:
        norms = np.sqrt(np.sum(X_train ** 2, axis=0))
        nonzeros = np.flatnonzero(norms)
        X_train[:, nonzeros] /= norms[nonzeros]

    coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None,
                          precompute=False, copy_X=False,
                          return_path=True)
    if coefs.ndim == 1:
        coefs = coefs[:, np.newaxis]
    if normalize:
        coefs[nonzeros] /= norms[nonzeros][:, np.newaxis]

    return np.dot(coefs.T, X_test.T) - y_test


class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin):
    """Cross-validated Orthogonal Matching Pursuit model (OMP)

    Parameters
    ----------
    copy : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional
        If False, the regressors X are assumed to be already normalized.

    max_iter : integer, optional
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 10% of ``n_features`` but at least 5 if available.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 3-fold cross-validation,
        - integer, to specify the number of folds.
        - An object to be used as a cross-validation generator.
        - An iterable yielding train/test splits.

        For integer/None inputs, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    n_jobs : integer, optional
        Number of CPUs to use during the cross validation. If ``-1``, use
        all the CPUs

    verbose : boolean or integer, optional
        Sets the verbosity amount

    Read more in the :ref:`User Guide <omp>`.

    Attributes
    ----------
    intercept_ : float or array, shape (n_targets,)
        Independent term in decision function.

    coef_ : array, shape (n_features,) or (n_features, n_targets)
        Parameter vector (w in the problem formulation).

    n_nonzero_coefs_ : int
        Estimated number of non-zero coefficients giving the best mean squared
        error over the cross-validation folds.

    n_iter_ : int or array-like
        Number of active features across every target for the model refit with
        the best hyperparameters got by cross-validating across all folds.

    See also
    --------
    orthogonal_mp
    orthogonal_mp_gram
    lars_path
    Lars
    LassoLars
    OrthogonalMatchingPursuit
    LarsCV
    LassoLarsCV
    decomposition.sparse_encode

    """
    def __init__(self, copy=True, fit_intercept=True, normalize=True,
                 max_iter=None, cv=None, n_jobs=1, verbose=False):
        self.copy = copy
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.max_iter = max_iter
        self.cv = cv
        self.n_jobs = n_jobs
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Training data.

        y : array-like, shape [n_samples]
            Target values.

        Returns
        -------
        self : object
            returns an instance of self.
        """
        X, y = check_X_y(X, y, y_numeric=True, ensure_min_features=2,
                         estimator=self)
        X = as_float_array(X, copy=False, force_all_finite=False)
        cv = check_cv(self.cv, X, y, classifier=False)
        max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1])
                    if not self.max_iter
                    else self.max_iter)
        cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
            delayed(_omp_path_residues)(
                X[train], y[train], X[test], y[test], self.copy,
                self.fit_intercept, self.normalize, max_iter)
            for train, test in cv)

        min_early_stop = min(fold.shape[0] for fold in cv_paths)
        mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1)
                              for fold in cv_paths])
        best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1
        self.n_nonzero_coefs_ = best_n_nonzero_coefs
        omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs,
                                        fit_intercept=self.fit_intercept,
                                        normalize=self.normalize)
        omp.fit(X, y)
        self.coef_ = omp.coef_
        self.intercept_ = omp.intercept_
        self.n_iter_ = omp.n_iter_
        return self