This file is indexed.

/usr/lib/python3/dist-packages/sklearn/manifold/locally_linear.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
"""Locally Linear Embedding"""

# Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
#         Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD 3 clause (C) INRIA 2011

import numpy as np
from scipy.linalg import eigh, svd, qr, solve
from scipy.sparse import eye, csr_matrix
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_random_state, check_array
from ..utils.arpack import eigsh
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..neighbors import NearestNeighbors


def barycenter_weights(X, Z, reg=1e-3):
    """Compute barycenter weights of X from Y along the first axis

    We estimate the weights to assign to each point in Y[i] to recover
    the point X[i]. The barycenter weights sum to 1.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_dim)

    Z : array-like, shape (n_samples, n_neighbors, n_dim)

    reg: float, optional
        amount of regularization to add for the problem to be
        well-posed in the case of n_neighbors > n_dim

    Returns
    -------
    B : array-like, shape (n_samples, n_neighbors)

    Notes
    -----
    See developers note for more information.
    """
    X = check_array(X, dtype=FLOAT_DTYPES)
    Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True)

    n_samples, n_neighbors = X.shape[0], Z.shape[1]
    B = np.empty((n_samples, n_neighbors), dtype=X.dtype)
    v = np.ones(n_neighbors, dtype=X.dtype)

    # this might raise a LinalgError if G is singular and has trace
    # zero
    for i, A in enumerate(Z.transpose(0, 2, 1)):
        C = A.T - X[i]  # broadcasting
        G = np.dot(C, C.T)
        trace = np.trace(G)
        if trace > 0:
            R = reg * trace
        else:
            R = reg
        G.flat[::Z.shape[1] + 1] += R
        w = solve(G, v, sym_pos=True)
        B[i, :] = w / np.sum(w)
    return B


def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3):
    """Computes the barycenter weighted graph of k-Neighbors for points in X

    Parameters
    ----------
    X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
        Sample data, shape = (n_samples, n_features), in the form of a
        numpy array, sparse array, precomputed tree, or NearestNeighbors
        object.

    n_neighbors : int
        Number of neighbors for each sample.

    reg : float, optional
        Amount of regularization when solving the least-squares
        problem. Only relevant if mode='barycenter'. If None, use the
        default.

    Returns
    -------
    A : sparse matrix in CSR format, shape = [n_samples, n_samples]
        A[i, j] is assigned the weight of edge that connects i to j.

    See also
    --------
    sklearn.neighbors.kneighbors_graph
    sklearn.neighbors.radius_neighbors_graph
    """
    knn = NearestNeighbors(n_neighbors + 1).fit(X)
    X = knn._fit_X
    n_samples = X.shape[0]
    ind = knn.kneighbors(X, return_distance=False)[:, 1:]
    data = barycenter_weights(X, X[ind], reg=reg)
    indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors)
    return csr_matrix((data.ravel(), ind.ravel(), indptr),
                      shape=(n_samples, n_samples))


def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100,
               random_state=None):
    """
    Find the null space of a matrix M.

    Parameters
    ----------
    M : {array, matrix, sparse matrix, LinearOperator}
        Input covariance matrix: should be symmetric positive semi-definite

    k : integer
        Number of eigenvalues/vectors to return

    k_skip : integer, optional
        Number of low eigenvalues to skip.

    eigen_solver : string, {'auto', 'arpack', 'dense'}
        auto : algorithm will attempt to choose the best method for input data
        arpack : use arnoldi iteration in shift-invert mode.
                    For this method, M may be a dense matrix, sparse matrix,
                    or general linear operator.
                    Warning: ARPACK can be unstable for some problems.  It is
                    best to try several random seeds in order to check results.
        dense  : use standard dense matrix operations for the eigenvalue
                    decomposition.  For this method, M must be an array
                    or matrix type.  This method should be avoided for
                    large problems.

    tol : float, optional
        Tolerance for 'arpack' method.
        Not used if eigen_solver=='dense'.

    max_iter : maximum number of iterations for 'arpack' method
        not used if eigen_solver=='dense'

    random_state: numpy.RandomState or int, optional
        The generator or seed used to determine the starting vector for arpack
        iterations.  Defaults to numpy.random.

    """
    if eigen_solver == 'auto':
        if M.shape[0] > 200 and k + k_skip < 10:
            eigen_solver = 'arpack'
        else:
            eigen_solver = 'dense'

    if eigen_solver == 'arpack':
        random_state = check_random_state(random_state)
        v0 = random_state.rand(M.shape[0])
        try:
            eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0,
                                                tol=tol, maxiter=max_iter,
                                                v0=v0)
        except RuntimeError as msg:
            raise ValueError("Error in determining null-space with ARPACK. "
                             "Error message: '%s'. "
                             "Note that method='arpack' can fail when the "
                             "weight matrix is singular or otherwise "
                             "ill-behaved.  method='dense' is recommended. "
                             "See online documentation for more information."
                             % msg)

        return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:])
    elif eigen_solver == 'dense':
        if hasattr(M, 'toarray'):
            M = M.toarray()
        eigen_values, eigen_vectors = eigh(
            M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True)
        index = np.argsort(np.abs(eigen_values))
        return eigen_vectors[:, index], np.sum(eigen_values)
    else:
        raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver)


def locally_linear_embedding(
        X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6,
        max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12,
        random_state=None):
    """Perform a Locally Linear Embedding analysis on the data.

    Read more in the :ref:`User Guide <locally_linear_embedding>`.

    Parameters
    ----------
    X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
        Sample data, shape = (n_samples, n_features), in the form of a
        numpy array, sparse array, precomputed tree, or NearestNeighbors
        object.

    n_neighbors : integer
        number of neighbors to consider for each point.

    n_components : integer
        number of coordinates for the manifold.

    reg : float
        regularization constant, multiplies the trace of the local covariance
        matrix of the distances.

    eigen_solver : string, {'auto', 'arpack', 'dense'}
        auto : algorithm will attempt to choose the best method for input data

        arpack : use arnoldi iteration in shift-invert mode.
                    For this method, M may be a dense matrix, sparse matrix,
                    or general linear operator.
                    Warning: ARPACK can be unstable for some problems.  It is
                    best to try several random seeds in order to check results.

        dense  : use standard dense matrix operations for the eigenvalue
                    decomposition.  For this method, M must be an array
                    or matrix type.  This method should be avoided for
                    large problems.

    tol : float, optional
        Tolerance for 'arpack' method
        Not used if eigen_solver=='dense'.

    max_iter : integer
        maximum number of iterations for the arpack solver.

    method : {'standard', 'hessian', 'modified', 'ltsa'}
        standard : use the standard locally linear embedding algorithm.
                   see reference [1]_
        hessian  : use the Hessian eigenmap method.  This method requires
                   n_neighbors > n_components * (1 + (n_components + 1) / 2.
                   see reference [2]_
        modified : use the modified locally linear embedding algorithm.
                   see reference [3]_
        ltsa     : use local tangent space alignment algorithm
                   see reference [4]_

    hessian_tol : float, optional
        Tolerance for Hessian eigenmapping method.
        Only used if method == 'hessian'

    modified_tol : float, optional
        Tolerance for modified LLE method.
        Only used if method == 'modified'

    random_state: numpy.RandomState or int, optional
        The generator or seed used to determine the starting vector for arpack
        iterations.  Defaults to numpy.random.

    Returns
    -------
    Y : array-like, shape [n_samples, n_components]
        Embedding vectors.

    squared_error : float
        Reconstruction error for the embedding vectors. Equivalent to
        ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights.

    References
    ----------

    .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction
        by locally linear embedding.  Science 290:2323 (2000).`
    .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
        linear embedding techniques for high-dimensional data.
        Proc Natl Acad Sci U S A.  100:5591 (2003).`
    .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
        Embedding Using Multiple Weights.`
        http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
    .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear
        dimensionality reduction via tangent space alignment.
        Journal of Shanghai Univ.  8:406 (2004)`
    """
    if eigen_solver not in ('auto', 'arpack', 'dense'):
        raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver)

    if method not in ('standard', 'hessian', 'modified', 'ltsa'):
        raise ValueError("unrecognized method '%s'" % method)

    nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1)
    nbrs.fit(X)
    X = nbrs._fit_X

    N, d_in = X.shape

    if n_components > d_in:
        raise ValueError("output dimension must be less than or equal "
                         "to input dimension")
    if n_neighbors >= N:
        raise ValueError("n_neighbors must be less than number of points")

    if n_neighbors <= 0:
        raise ValueError("n_neighbors must be positive")

    M_sparse = (eigen_solver != 'dense')

    if method == 'standard':
        W = barycenter_kneighbors_graph(
            nbrs, n_neighbors=n_neighbors, reg=reg)

        # we'll compute M = (I-W)'(I-W)
        # depending on the solver, we'll do this differently
        if M_sparse:
            M = eye(*W.shape, format=W.format) - W
            M = (M.T * M).tocsr()
        else:
            M = (W.T * W - W.T - W).toarray()
            M.flat[::M.shape[0] + 1] += 1  # W = W - I = W - I

    elif method == 'hessian':
        dp = n_components * (n_components + 1) // 2

        if n_neighbors <= n_components + dp:
            raise ValueError("for method='hessian', n_neighbors must be "
                             "greater than "
                             "[n_components * (n_components + 3) / 2]")

        neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1,
                                    return_distance=False)
        neighbors = neighbors[:, 1:]

        Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float)
        Yi[:, 0] = 1

        M = np.zeros((N, N), dtype=np.float)

        use_svd = (n_neighbors > d_in)

        for i in range(N):
            Gi = X[neighbors[i]]
            Gi -= Gi.mean(0)

            #build Hessian estimator
            if use_svd:
                U = svd(Gi, full_matrices=0)[0]
            else:
                Ci = np.dot(Gi, Gi.T)
                U = eigh(Ci)[1][:, ::-1]

            Yi[:, 1:1 + n_components] = U[:, :n_components]

            j = 1 + n_components
            for k in range(n_components):
                Yi[:, j:j + n_components - k] = (U[:, k:k + 1]
                                                 * U[:, k:n_components])
                j += n_components - k

            Q, R = qr(Yi)

            w = Q[:, n_components + 1:]
            S = w.sum(0)

            S[np.where(abs(S) < hessian_tol)] = 1
            w /= S

            nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
            M[nbrs_x, nbrs_y] += np.dot(w, w.T)

        if M_sparse:
            M = csr_matrix(M)

    elif method == 'modified':
        if n_neighbors < n_components:
            raise ValueError("modified LLE requires "
                             "n_neighbors >= n_components")

        neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1,
                                    return_distance=False)
        neighbors = neighbors[:, 1:]

        #find the eigenvectors and eigenvalues of each local covariance
        # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix,
        # where the columns are eigenvectors
        V = np.zeros((N, n_neighbors, n_neighbors))
        nev = min(d_in, n_neighbors)
        evals = np.zeros([N, nev])

        #choose the most efficient way to find the eigenvectors
        use_svd = (n_neighbors > d_in)

        if use_svd:
            for i in range(N):
                X_nbrs = X[neighbors[i]] - X[i]
                V[i], evals[i], _ = svd(X_nbrs,
                                        full_matrices=True)
            evals **= 2
        else:
            for i in range(N):
                X_nbrs = X[neighbors[i]] - X[i]
                C_nbrs = np.dot(X_nbrs, X_nbrs.T)
                evi, vi = eigh(C_nbrs)
                evals[i] = evi[::-1]
                V[i] = vi[:, ::-1]

        #find regularized weights: this is like normal LLE.
        # because we've already computed the SVD of each covariance matrix,
        # it's faster to use this rather than np.linalg.solve
        reg = 1E-3 * evals.sum(1)

        tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors))
        tmp[:, :nev] /= evals + reg[:, None]
        tmp[:, nev:] /= reg[:, None]

        w_reg = np.zeros((N, n_neighbors))
        for i in range(N):
            w_reg[i] = np.dot(V[i], tmp[i])
        w_reg /= w_reg.sum(1)[:, None]

        #calculate eta: the median of the ratio of small to large eigenvalues
        # across the points.  This is used to determine s_i, below
        rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1)
        eta = np.median(rho)

        #find s_i, the size of the "almost null space" for each point:
        # this is the size of the largest set of eigenvalues
        # such that Sum[v; v in set]/Sum[v; v not in set] < eta
        s_range = np.zeros(N, dtype=int)
        evals_cumsum = np.cumsum(evals, 1)
        eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1
        for i in range(N):
            s_range[i] = np.searchsorted(eta_range[i, ::-1], eta)
        s_range += n_neighbors - nev  # number of zero eigenvalues

        #Now calculate M.
        # This is the [N x N] matrix whose null space is the desired embedding
        M = np.zeros((N, N), dtype=np.float)
        for i in range(N):
            s_i = s_range[i]

            #select bottom s_i eigenvectors and calculate alpha
            Vi = V[i, :, n_neighbors - s_i:]
            alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i)

            #compute Householder matrix which satisfies
            #  Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s)
            # using prescription from paper
            h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors))

            norm_h = np.linalg.norm(h)
            if norm_h < modified_tol:
                h *= 0
            else:
                h /= norm_h

            #Householder matrix is
            #  >> Hi = np.identity(s_i) - 2*np.outer(h,h)
            #Then the weight matrix is
            #  >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None]
            #We do this much more efficiently:
            Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h)
                  + (1 - alpha_i) * w_reg[i, :, None])

            #Update M as follows:
            # >> W_hat = np.zeros( (N,s_i) )
            # >> W_hat[neighbors[i],:] = Wi
            # >> W_hat[i] -= 1
            # >> M += np.dot(W_hat,W_hat.T)
            #We can do this much more efficiently:
            nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
            M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T)
            Wi_sum1 = Wi.sum(1)
            M[i, neighbors[i]] -= Wi_sum1
            M[neighbors[i], i] -= Wi_sum1
            M[i, i] += s_i

        if M_sparse:
            M = csr_matrix(M)

    elif method == 'ltsa':
        neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1,
                                    return_distance=False)
        neighbors = neighbors[:, 1:]

        M = np.zeros((N, N))

        use_svd = (n_neighbors > d_in)

        for i in range(N):
            Xi = X[neighbors[i]]
            Xi -= Xi.mean(0)

            # compute n_components largest eigenvalues of Xi * Xi^T
            if use_svd:
                v = svd(Xi, full_matrices=True)[0]
            else:
                Ci = np.dot(Xi, Xi.T)
                v = eigh(Ci)[1][:, ::-1]

            Gi = np.zeros((n_neighbors, n_components + 1))
            Gi[:, 1:] = v[:, :n_components]
            Gi[:, 0] = 1. / np.sqrt(n_neighbors)

            GiGiT = np.dot(Gi, Gi.T)

            nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
            M[nbrs_x, nbrs_y] -= GiGiT
            M[neighbors[i], neighbors[i]] += 1

    return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver,
                      tol=tol, max_iter=max_iter, random_state=random_state)


class LocallyLinearEmbedding(BaseEstimator, TransformerMixin):
    """Locally Linear Embedding

    Read more in the :ref:`User Guide <locally_linear_embedding>`.

    Parameters
    ----------
    n_neighbors : integer
        number of neighbors to consider for each point.

    n_components : integer
        number of coordinates for the manifold

    reg : float
        regularization constant, multiplies the trace of the local covariance
        matrix of the distances.

    eigen_solver : string, {'auto', 'arpack', 'dense'}
        auto : algorithm will attempt to choose the best method for input data

        arpack : use arnoldi iteration in shift-invert mode.
                    For this method, M may be a dense matrix, sparse matrix,
                    or general linear operator.
                    Warning: ARPACK can be unstable for some problems.  It is
                    best to try several random seeds in order to check results.

        dense  : use standard dense matrix operations for the eigenvalue
                    decomposition.  For this method, M must be an array
                    or matrix type.  This method should be avoided for
                    large problems.

    tol : float, optional
        Tolerance for 'arpack' method
        Not used if eigen_solver=='dense'.

    max_iter : integer
        maximum number of iterations for the arpack solver.
        Not used if eigen_solver=='dense'.

    method : string ('standard', 'hessian', 'modified' or 'ltsa')
        standard : use the standard locally linear embedding algorithm.  see
                   reference [1]
        hessian  : use the Hessian eigenmap method. This method requires
                   ``n_neighbors > n_components * (1 + (n_components + 1) / 2``
                   see reference [2]
        modified : use the modified locally linear embedding algorithm.
                   see reference [3]
        ltsa     : use local tangent space alignment algorithm
                   see reference [4]

    hessian_tol : float, optional
        Tolerance for Hessian eigenmapping method.
        Only used if ``method == 'hessian'``

    modified_tol : float, optional
        Tolerance for modified LLE method.
        Only used if ``method == 'modified'``

    neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
        algorithm to use for nearest neighbors search,
        passed to neighbors.NearestNeighbors instance

    random_state: numpy.RandomState or int, optional
        The generator or seed used to determine the starting vector for arpack
        iterations.  Defaults to numpy.random.

    Attributes
    ----------
    embedding_vectors_ : array-like, shape [n_components, n_samples]
        Stores the embedding vectors

    reconstruction_error_ : float
        Reconstruction error associated with `embedding_vectors_`

    nbrs_ : NearestNeighbors object
        Stores nearest neighbors instance, including BallTree or KDtree
        if applicable.

    References
    ----------

    .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction
        by locally linear embedding.  Science 290:2323 (2000).`
    .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
        linear embedding techniques for high-dimensional data.
        Proc Natl Acad Sci U S A.  100:5591 (2003).`
    .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
        Embedding Using Multiple Weights.`
        http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
    .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear
        dimensionality reduction via tangent space alignment.
        Journal of Shanghai Univ.  8:406 (2004)`
    """

    def __init__(self, n_neighbors=5, n_components=2, reg=1E-3,
                 eigen_solver='auto', tol=1E-6, max_iter=100,
                 method='standard', hessian_tol=1E-4, modified_tol=1E-12,
                 neighbors_algorithm='auto', random_state=None):

        self.n_neighbors = n_neighbors
        self.n_components = n_components
        self.reg = reg
        self.eigen_solver = eigen_solver
        self.tol = tol
        self.max_iter = max_iter
        self.method = method
        self.hessian_tol = hessian_tol
        self.modified_tol = modified_tol
        self.random_state = random_state
        self.neighbors_algorithm = neighbors_algorithm

    def _fit_transform(self, X):
        self.nbrs_ = NearestNeighbors(self.n_neighbors,
                                      algorithm=self.neighbors_algorithm)

        random_state = check_random_state(self.random_state)
        X = check_array(X)
        self.nbrs_.fit(X)
        self.embedding_, self.reconstruction_error_ = \
            locally_linear_embedding(
                self.nbrs_, self.n_neighbors, self.n_components,
                eigen_solver=self.eigen_solver, tol=self.tol,
                max_iter=self.max_iter, method=self.method,
                hessian_tol=self.hessian_tol, modified_tol=self.modified_tol,
                random_state=random_state, reg=self.reg)

    def fit(self, X, y=None):
        """Compute the embedding vectors for data X

        Parameters
        ----------
        X : array-like of shape [n_samples, n_features]
            training set.

        Returns
        -------
        self : returns an instance of self.
        """
        self._fit_transform(X)
        return self

    def fit_transform(self, X, y=None):
        """Compute the embedding vectors for data X and transform X.

        Parameters
        ----------
        X : array-like of shape [n_samples, n_features]
            training set.

        Returns
        -------
        X_new: array-like, shape (n_samples, n_components)
        """
        self._fit_transform(X)
        return self.embedding_

    def transform(self, X):
        """
        Transform new points into embedding space.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        X_new : array, shape = [n_samples, n_components]

        Notes
        -----
        Because of scaling performed by this method, it is discouraged to use
        it together with methods that are not scale-invariant (like SVMs)
        """
        check_is_fitted(self, "nbrs_")

        X = check_array(X)
        ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors,
                                    return_distance=False)
        weights = barycenter_weights(X, self.nbrs_._fit_X[ind],
                                     reg=self.reg)
        X_new = np.empty((X.shape[0], self.n_components))
        for i in range(X.shape[0]):
            X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i])
        return X_new