This file is indexed.

/usr/lib/python3/dist-packages/sklearn/metrics/pairwise.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
# -*- coding: utf-8 -*-

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Robert Layton <robertlayton@gmail.com>
#          Andreas Mueller <amueller@ais.uni-bonn.de>
#          Philippe Gervais <philippe.gervais@inria.fr>
#          Lars Buitinck <larsmans@gmail.com>
#          Joel Nothman <joel.nothman@gmail.com>
# License: BSD 3 clause

import itertools

import numpy as np
from scipy.spatial import distance
from scipy.sparse import csr_matrix
from scipy.sparse import issparse

from ..utils import check_array
from ..utils import gen_even_slices
from ..utils import gen_batches
from ..utils.fixes import partial
from ..utils.extmath import row_norms, safe_sparse_dot
from ..preprocessing import normalize
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..externals.joblib import parallel

from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan


# Utility Functions
def _return_float_dtype(X, Y):
    """
    1. If dtype of X and Y is float32, then dtype float32 is returned.
    2. Else dtype float is returned.
    """
    if not issparse(X) and not isinstance(X, np.ndarray):
        X = np.asarray(X)

    if Y is None:
        Y_dtype = X.dtype
    elif not issparse(Y) and not isinstance(Y, np.ndarray):
        Y = np.asarray(Y)
        Y_dtype = Y.dtype
    else:
        Y_dtype = Y.dtype

    if X.dtype == Y_dtype == np.float32:
        dtype = np.float32
    else:
        dtype = np.float

    return X, Y, dtype


def check_pairwise_arrays(X, Y, precomputed=False):
    """ Set X and Y appropriately and checks inputs

    If Y is None, it is set as a pointer to X (i.e. not a copy).
    If Y is given, this does not happen.
    All distance metrics should use this function first to assert that the
    given parameters are correct and safe to use.

    Specifically, this function first ensures that both X and Y are arrays,
    then checks that they are at least two dimensional while ensuring that
    their elements are floats. Finally, the function checks that the size
    of the second dimension of the two arrays is equal, or the equivalent
    check for a precomputed distance matrix.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape (n_samples_a, n_features)

    Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)

    precomputed : bool
        True if X is to be treated as precomputed distances to the samples in
        Y.

    Returns
    -------
    safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
        An array equal to X, guaranteed to be a numpy array.

    safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
        An array equal to Y if Y was not None, guaranteed to be a numpy array.
        If Y was None, safe_Y will be a pointer to X.

    """
    X, Y, dtype = _return_float_dtype(X, Y)

    if Y is X or Y is None:
        X = Y = check_array(X, accept_sparse='csr', dtype=dtype)
    else:
        X = check_array(X, accept_sparse='csr', dtype=dtype)
        Y = check_array(Y, accept_sparse='csr', dtype=dtype)

    if precomputed:
        if X.shape[1] != Y.shape[0]:
            raise ValueError("Precomputed metric requires shape "
                             "(n_queries, n_indexed). Got (%d, %d) "
                             "for %d indexed." %
                             (X.shape[0], X.shape[1], Y.shape[0]))
    elif X.shape[1] != Y.shape[1]:
        raise ValueError("Incompatible dimension for X and Y matrices: "
                         "X.shape[1] == %d while Y.shape[1] == %d" % (
                             X.shape[1], Y.shape[1]))

    return X, Y


def check_paired_arrays(X, Y):
    """ Set X and Y appropriately and checks inputs for paired distances

    All paired distance metrics should use this function first to assert that
    the given parameters are correct and safe to use.

    Specifically, this function first ensures that both X and Y are arrays,
    then checks that they are at least two dimensional while ensuring that
    their elements are floats. Finally, the function checks that the size
    of the dimensions of the two arrays are equal.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape (n_samples_a, n_features)

    Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)

    Returns
    -------
    safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features)
        An array equal to X, guaranteed to be a numpy array.

    safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features)
        An array equal to Y if Y was not None, guaranteed to be a numpy array.
        If Y was None, safe_Y will be a pointer to X.

    """
    X, Y = check_pairwise_arrays(X, Y)
    if X.shape != Y.shape:
        raise ValueError("X and Y should be of same shape. They were "
                         "respectively %r and %r long." % (X.shape, Y.shape))
    return X, Y


# Pairwise distances
def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False,
                        X_norm_squared=None):
    """
    Considering the rows of X (and Y=X) as vectors, compute the
    distance matrix between each pair of vectors.

    For efficiency reasons, the euclidean distance between a pair of row
    vector x and y is computed as::

        dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

    This formulation has two advantages over other ways of computing distances.
    First, it is computationally efficient when dealing with sparse data.
    Second, if one argument varies but the other remains unchanged, then
    `dot(x, x)` and/or `dot(y, y)` can be pre-computed.

    However, this is not the most precise way of doing this computation, and
    the distance matrix returned by this function may not be exactly
    symmetric as required by, e.g., ``scipy.spatial.distance`` functions.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}, shape (n_samples_1, n_features)

    Y : {array-like, sparse matrix}, shape (n_samples_2, n_features)

    Y_norm_squared : array-like, shape (n_samples_2, ), optional
        Pre-computed dot-products of vectors in Y (e.g.,
        ``(Y**2).sum(axis=1)``)

    squared : boolean, optional
        Return squared Euclidean distances.

    X_norm_squared : array-like, shape = [n_samples_1], optional
        Pre-computed dot-products of vectors in X (e.g.,
        ``(X**2).sum(axis=1)``)

    Returns
    -------
    distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2)

    Examples
    --------
    >>> from sklearn.metrics.pairwise import euclidean_distances
    >>> X = [[0, 1], [1, 1]]
    >>> # distance between rows of X
    >>> euclidean_distances(X, X)
    array([[ 0.,  1.],
           [ 1.,  0.]])
    >>> # get distance to origin
    >>> euclidean_distances(X, [[0, 0]])
    array([[ 1.        ],
           [ 1.41421356]])

    See also
    --------
    paired_distances : distances betweens pairs of elements of X and Y.
    """
    X, Y = check_pairwise_arrays(X, Y)

    if X_norm_squared is not None:
        XX = check_array(X_norm_squared)
        if XX.shape == (1, X.shape[0]):
            XX = XX.T
        elif XX.shape != (X.shape[0], 1):
            raise ValueError(
                "Incompatible dimensions for X and X_norm_squared")
    else:
        XX = row_norms(X, squared=True)[:, np.newaxis]

    if X is Y:  # shortcut in the common case euclidean_distances(X, X)
        YY = XX.T
    elif Y_norm_squared is not None:
        YY = np.atleast_2d(Y_norm_squared)

        if YY.shape != (1, Y.shape[0]):
            raise ValueError(
                "Incompatible dimensions for Y and Y_norm_squared")
    else:
        YY = row_norms(Y, squared=True)[np.newaxis, :]

    distances = safe_sparse_dot(X, Y.T, dense_output=True)
    distances *= -2
    distances += XX
    distances += YY
    np.maximum(distances, 0, out=distances)

    if X is Y:
        # Ensure that distances between vectors and themselves are set to 0.0.
        # This may not be the case due to floating point rounding errors.
        distances.flat[::distances.shape[0] + 1] = 0.0

    return distances if squared else np.sqrt(distances, out=distances)


def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean",
                                  batch_size=500, metric_kwargs=None):
    """Compute minimum distances between one point and a set of points.

    This function computes for each row in X, the index of the row of Y which
    is closest (according to the specified distance). The minimal distances are
    also returned.

    This is mostly equivalent to calling:

        (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis),
         pairwise_distances(X, Y=Y, metric=metric).min(axis=axis))

    but uses much less memory, and is faster for large arrays.

    Parameters
    ----------
    X, Y : {array-like, sparse matrix}
        Arrays containing points. Respective shapes (n_samples1, n_features)
        and (n_samples2, n_features)

    batch_size : integer
        To reduce memory consumption over the naive solution, data are
        processed in batches, comprising batch_size rows of X and
        batch_size rows of Y. The default value is quite conservative, but
        can be changed for fine-tuning. The larger the number, the larger the
        memory usage.

    metric : string or callable, default 'euclidean'
        metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
          'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
          'sqeuclidean', 'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    metric_kwargs : dict, optional
        Keyword arguments to pass to specified metric function.

    axis : int, optional, default 1
        Axis along which the argmin and distances are to be computed.

    Returns
    -------
    argmin : numpy.ndarray
        Y[argmin[i], :] is the row in Y that is closest to X[i, :].

    distances : numpy.ndarray
        distances[i] is the distance between the i-th row in X and the
        argmin[i]-th row in Y.

    See also
    --------
    sklearn.metrics.pairwise_distances
    sklearn.metrics.pairwise_distances_argmin
    """
    dist_func = None
    if metric in PAIRWISE_DISTANCE_FUNCTIONS:
        dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
    elif not callable(metric) and not isinstance(metric, str):
        raise ValueError("'metric' must be a string or a callable")

    X, Y = check_pairwise_arrays(X, Y)

    if metric_kwargs is None:
        metric_kwargs = {}

    if axis == 0:
        X, Y = Y, X

    # Allocate output arrays
    indices = np.empty(X.shape[0], dtype=np.intp)
    values = np.empty(X.shape[0])
    values.fill(np.infty)

    for chunk_x in gen_batches(X.shape[0], batch_size):
        X_chunk = X[chunk_x, :]

        for chunk_y in gen_batches(Y.shape[0], batch_size):
            Y_chunk = Y[chunk_y, :]

            if dist_func is not None:
                if metric == 'euclidean':  # special case, for speed
                    d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T,
                                              dense_output=True)
                    d_chunk *= -2
                    d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis]
                    d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :]
                    np.maximum(d_chunk, 0, d_chunk)
                else:
                    d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs)
            else:
                d_chunk = pairwise_distances(X_chunk, Y_chunk,
                                             metric=metric, **metric_kwargs)

            # Update indices and minimum values using chunk
            min_indices = d_chunk.argmin(axis=1)
            min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start),
                                 min_indices]

            flags = values[chunk_x] > min_values
            indices[chunk_x][flags] = min_indices[flags] + chunk_y.start
            values[chunk_x][flags] = min_values[flags]

    if metric == "euclidean" and not metric_kwargs.get("squared", False):
        np.sqrt(values, values)
    return indices, values


def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean",
                              batch_size=500, metric_kwargs=None):
    """Compute minimum distances between one point and a set of points.

    This function computes for each row in X, the index of the row of Y which
    is closest (according to the specified distance).

    This is mostly equivalent to calling:

        pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)

    but uses much less memory, and is faster for large arrays.

    This function works with dense 2D arrays only.

    Parameters
    ----------
    X : array-like
        Arrays containing points. Respective shapes (n_samples1, n_features)
        and (n_samples2, n_features)

    Y : array-like
        Arrays containing points. Respective shapes (n_samples1, n_features)
        and (n_samples2, n_features)

    batch_size : integer
        To reduce memory consumption over the naive solution, data are
        processed in batches, comprising batch_size rows of X and
        batch_size rows of Y. The default value is quite conservative, but
        can be changed for fine-tuning. The larger the number, the larger the
        memory usage.

    metric : string or callable
        metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
          'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
          'sqeuclidean', 'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    metric_kwargs : dict
        keyword arguments to pass to specified metric function.

    axis : int, optional, default 1
        Axis along which the argmin and distances are to be computed.

    Returns
    -------
    argmin : numpy.ndarray
        Y[argmin[i], :] is the row in Y that is closest to X[i, :].

    See also
    --------
    sklearn.metrics.pairwise_distances
    sklearn.metrics.pairwise_distances_argmin_min
    """
    if metric_kwargs is None:
        metric_kwargs = {}

    return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size,
                                         metric_kwargs)[0]


def manhattan_distances(X, Y=None, sum_over_features=True,
                        size_threshold=5e8):
    """ Compute the L1 distances between the vectors in X and Y.

    With sum_over_features equal to False it returns the componentwise
    distances.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array_like
        An array with shape (n_samples_X, n_features).

    Y : array_like, optional
        An array with shape (n_samples_Y, n_features).

    sum_over_features : bool, default=True
        If True the function returns the pairwise distance matrix
        else it returns the componentwise L1 pairwise-distances.
        Not supported for sparse matrix inputs.

    size_threshold : int, default=5e8
        Unused parameter.

    Returns
    -------
    D : array
        If sum_over_features is False shape is
        (n_samples_X * n_samples_Y, n_features) and D contains the
        componentwise L1 pairwise-distances (ie. absolute difference),
        else shape is (n_samples_X, n_samples_Y) and D contains
        the pairwise L1 distances.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import manhattan_distances
    >>> manhattan_distances([[3]], [[3]])#doctest:+ELLIPSIS
    array([[ 0.]])
    >>> manhattan_distances([[3]], [[2]])#doctest:+ELLIPSIS
    array([[ 1.]])
    >>> manhattan_distances([[2]], [[3]])#doctest:+ELLIPSIS
    array([[ 1.]])
    >>> manhattan_distances([[1, 2], [3, 4]],\
         [[1, 2], [0, 3]])#doctest:+ELLIPSIS
    array([[ 0.,  2.],
           [ 4.,  4.]])
    >>> import numpy as np
    >>> X = np.ones((1, 2))
    >>> y = 2 * np.ones((2, 2))
    >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS
    array([[ 1.,  1.],
           [ 1.,  1.]]...)
    """
    X, Y = check_pairwise_arrays(X, Y)

    if issparse(X) or issparse(Y):
        if not sum_over_features:
            raise TypeError("sum_over_features=%r not supported"
                            " for sparse matrices" % sum_over_features)

        X = csr_matrix(X, copy=False)
        Y = csr_matrix(Y, copy=False)
        D = np.zeros((X.shape[0], Y.shape[0]))
        _sparse_manhattan(X.data, X.indices, X.indptr,
                          Y.data, Y.indices, Y.indptr,
                          X.shape[1], D)
        return D

    if sum_over_features:
        return distance.cdist(X, Y, 'cityblock')

    D = X[:, np.newaxis, :] - Y[np.newaxis, :, :]
    D = np.abs(D, D)
    return D.reshape((-1, X.shape[1]))


def cosine_distances(X, Y=None):
    """Compute cosine distance between samples in X and Y.

    Cosine distance is defined as 1.0 minus the cosine similarity.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array_like, sparse matrix
        with shape (n_samples_X, n_features).

    Y : array_like, sparse matrix (optional)
        with shape (n_samples_Y, n_features).

    Returns
    -------
    distance matrix : array
        An array with shape (n_samples_X, n_samples_Y).

    See also
    --------
    sklearn.metrics.pairwise.cosine_similarity
    scipy.spatial.distance.cosine (dense matrices only)
    """
    # 1.0 - cosine_similarity(X, Y) without copy
    S = cosine_similarity(X, Y)
    S *= -1
    S += 1
    return S


# Paired distances
def paired_euclidean_distances(X, Y):
    """
    Computes the paired euclidean distances between X and Y

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    Y : array-like, shape (n_samples, n_features)

    Returns
    -------
    distances : ndarray (n_samples, )
    """
    X, Y = check_paired_arrays(X, Y)
    return row_norms(X - Y)


def paired_manhattan_distances(X, Y):
    """Compute the L1 distances between the vectors in X and Y.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    Y : array-like, shape (n_samples, n_features)

    Returns
    -------
    distances : ndarray (n_samples, )
    """
    X, Y = check_paired_arrays(X, Y)
    diff = X - Y
    if issparse(diff):
        diff.data = np.abs(diff.data)
        return np.squeeze(np.array(diff.sum(axis=1)))
    else:
        return np.abs(diff).sum(axis=-1)


def paired_cosine_distances(X, Y):
    """
    Computes the paired cosine distances between X and Y

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    Y : array-like, shape (n_samples, n_features)

    Returns
    -------
    distances : ndarray, shape (n_samples, )

    Notes
    ------
    The cosine distance is equivalent to the half the squared
    euclidean distance if each sample is normalized to unit norm
    """
    X, Y = check_paired_arrays(X, Y)
    return .5 * row_norms(normalize(X) - normalize(Y), squared=True)


PAIRED_DISTANCES = {
    'cosine': paired_cosine_distances,
    'euclidean': paired_euclidean_distances,
    'l2': paired_euclidean_distances,
    'l1': paired_manhattan_distances,
    'manhattan': paired_manhattan_distances,
    'cityblock': paired_manhattan_distances}


def paired_distances(X, Y, metric="euclidean", **kwds):
    """
    Computes the paired distances between X and Y.

    Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc...

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : ndarray (n_samples, n_features)
        Array 1 for distance computation.

    Y : ndarray (n_samples, n_features)
        Array 2 for distance computation.

    metric : string or callable
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        specified in PAIRED_DISTANCES, including "euclidean",
        "manhattan", or "cosine".
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from X as input and return a value indicating
        the distance between them.

    Returns
    -------
    distances : ndarray (n_samples, )

    Examples
    --------
    >>> from sklearn.metrics.pairwise import paired_distances
    >>> X = [[0, 1], [1, 1]]
    >>> Y = [[0, 1], [2, 1]]
    >>> paired_distances(X, Y)
    array([ 0.,  1.])

    See also
    --------
    pairwise_distances : pairwise distances.
    """

    if metric in PAIRED_DISTANCES:
        func = PAIRED_DISTANCES[metric]
        return func(X, Y)
    elif callable(metric):
        # Check the matrix first (it is usually done by the metric)
        X, Y = check_paired_arrays(X, Y)
        distances = np.zeros(len(X))
        for i in range(len(X)):
            distances[i] = metric(X[i], Y[i])
        return distances
    else:
        raise ValueError('Unknown distance %s' % metric)


# Kernels
def linear_kernel(X, Y=None):
    """
    Compute the linear kernel between X and Y.

    Read more in the :ref:`User Guide <linear_kernel>`.

    Parameters
    ----------
    X : array of shape (n_samples_1, n_features)

    Y : array of shape (n_samples_2, n_features)

    Returns
    -------
    Gram matrix : array of shape (n_samples_1, n_samples_2)
    """
    X, Y = check_pairwise_arrays(X, Y)
    return safe_sparse_dot(X, Y.T, dense_output=True)


def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
    """
    Compute the polynomial kernel between X and Y::

        K(X, Y) = (gamma <X, Y> + coef0)^degree

    Read more in the :ref:`User Guide <polynomial_kernel>`.

    Parameters
    ----------
    X : ndarray of shape (n_samples_1, n_features)

    Y : ndarray of shape (n_samples_2, n_features)

    coef0 : int, default 1

    degree : int, default 3

    Returns
    -------
    Gram matrix : array of shape (n_samples_1, n_samples_2)
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = safe_sparse_dot(X, Y.T, dense_output=True)
    K *= gamma
    K += coef0
    K **= degree
    return K


def sigmoid_kernel(X, Y=None, gamma=None, coef0=1):
    """
    Compute the sigmoid kernel between X and Y::

        K(X, Y) = tanh(gamma <X, Y> + coef0)

    Read more in the :ref:`User Guide <sigmoid_kernel>`.

    Parameters
    ----------
    X : ndarray of shape (n_samples_1, n_features)

    Y : ndarray of shape (n_samples_2, n_features)

    coef0 : int, default 1

    Returns
    -------
    Gram matrix: array of shape (n_samples_1, n_samples_2)
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = safe_sparse_dot(X, Y.T, dense_output=True)
    K *= gamma
    K += coef0
    np.tanh(K, K)   # compute tanh in-place
    return K


def rbf_kernel(X, Y=None, gamma=None):
    """
    Compute the rbf (gaussian) kernel between X and Y::

        K(x, y) = exp(-gamma ||x-y||^2)

    for each pair of rows x in X and y in Y.

    Read more in the :ref:`User Guide <rbf_kernel>`.

    Parameters
    ----------
    X : array of shape (n_samples_X, n_features)

    Y : array of shape (n_samples_Y, n_features)

    gamma : float

    Returns
    -------
    kernel_matrix : array of shape (n_samples_X, n_samples_Y)
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = euclidean_distances(X, Y, squared=True)
    K *= -gamma
    np.exp(K, K)    # exponentiate K in-place
    return K


def laplacian_kernel(X, Y=None, gamma=None):
    """Compute the laplacian kernel between X and Y.

    The laplacian kernel is defined as::

        K(x, y) = exp(-gamma ||x-y||_1)

    for each pair of rows x in X and y in Y.
    Read more in the :ref:`User Guide <laplacian_kernel>`.

    .. versionadded:: 0.17

    Parameters
    ----------
    X : array of shape (n_samples_X, n_features)
    Y : array of shape (n_samples_Y, n_features)
    gamma : float

    Returns
    -------
    kernel_matrix : array of shape (n_samples_X, n_samples_Y)
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = -gamma * manhattan_distances(X, Y)
    np.exp(K, K)    # exponentiate K in-place
    return K


def cosine_similarity(X, Y=None, dense_output=True):
    """Compute cosine similarity between samples in X and Y.

    Cosine similarity, or the cosine kernel, computes similarity as the
    normalized dot product of X and Y:

        K(X, Y) = <X, Y> / (||X||*||Y||)

    On L2-normalized data, this function is equivalent to linear_kernel.

    Read more in the :ref:`User Guide <cosine_similarity>`.

    Parameters
    ----------
    X : ndarray or sparse array, shape: (n_samples_X, n_features)
        Input data.

    Y : ndarray or sparse array, shape: (n_samples_Y, n_features)
        Input data. If ``None``, the output will be the pairwise
        similarities between all samples in ``X``.

    dense_output : boolean (optional), default True
        Whether to return dense output even when the input is sparse. If
        ``False``, the output is sparse if both input arrays are sparse.

        .. versionadded:: 0.17
           parameter *dense_output* for sparse output.

    Returns
    -------
    kernel matrix : array
        An array with shape (n_samples_X, n_samples_Y).
    """
    # to avoid recursive import

    X, Y = check_pairwise_arrays(X, Y)

    X_normalized = normalize(X, copy=True)
    if X is Y:
        Y_normalized = X_normalized
    else:
        Y_normalized = normalize(Y, copy=True)

    K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)

    return K


def additive_chi2_kernel(X, Y=None):
    """Computes the additive chi-squared kernel between observations in X and Y

    The chi-squared kernel is computed between each pair of rows in X and Y.  X
    and Y have to be non-negative. This kernel is most commonly applied to
    histograms.

    The chi-squared kernel is given by::

        k(x, y) = -Sum [(x - y)^2 / (x + y)]

    It can be interpreted as a weighted difference per entry.

    Read more in the :ref:`User Guide <chi2_kernel>`.

    Notes
    -----
    As the negative of a distance, this kernel is only conditionally positive
    definite.


    Parameters
    ----------
    X : array-like of shape (n_samples_X, n_features)

    Y : array of shape (n_samples_Y, n_features)

    Returns
    -------
    kernel_matrix : array of shape (n_samples_X, n_samples_Y)

    References
    ----------
    * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
      Local features and kernels for classification of texture and object
      categories: A comprehensive study
      International Journal of Computer Vision 2007
      http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf


    See also
    --------
    chi2_kernel : The exponentiated version of the kernel, which is usually
        preferable.

    sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
        to this kernel.
    """
    if issparse(X) or issparse(Y):
        raise ValueError("additive_chi2 does not support sparse matrices.")
    X, Y = check_pairwise_arrays(X, Y)
    if (X < 0).any():
        raise ValueError("X contains negative values.")
    if Y is not X and (Y < 0).any():
        raise ValueError("Y contains negative values.")

    result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype)
    _chi2_kernel_fast(X, Y, result)
    return result


def chi2_kernel(X, Y=None, gamma=1.):
    """Computes the exponential chi-squared kernel X and Y.

    The chi-squared kernel is computed between each pair of rows in X and Y.  X
    and Y have to be non-negative. This kernel is most commonly applied to
    histograms.

    The chi-squared kernel is given by::

        k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])

    It can be interpreted as a weighted difference per entry.

    Read more in the :ref:`User Guide <chi2_kernel>`.

    Parameters
    ----------
    X : array-like of shape (n_samples_X, n_features)

    Y : array of shape (n_samples_Y, n_features)

    gamma : float, default=1.
        Scaling parameter of the chi2 kernel.

    Returns
    -------
    kernel_matrix : array of shape (n_samples_X, n_samples_Y)

    References
    ----------
    * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
      Local features and kernels for classification of texture and object
      categories: A comprehensive study
      International Journal of Computer Vision 2007
      http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

    See also
    --------
    additive_chi2_kernel : The additive version of this kernel

    sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
        to the additive version of this kernel.
    """
    K = additive_chi2_kernel(X, Y)
    K *= gamma
    return np.exp(K, K)


# Helper functions - distance
PAIRWISE_DISTANCE_FUNCTIONS = {
    # If updating this dictionary, update the doc in both distance_metrics()
    # and also in pairwise_distances()!
    'cityblock': manhattan_distances,
    'cosine': cosine_distances,
    'euclidean': euclidean_distances,
    'l2': euclidean_distances,
    'l1': manhattan_distances,
    'manhattan': manhattan_distances,
    'precomputed': None,  # HACK: precomputed is always allowed, never called
}


def distance_metrics():
    """Valid metrics for pairwise_distances.

    This function simply returns the valid pairwise distance metrics.
    It exists to allow for a description of the mapping for
    each of the valid strings.

    The valid distance metrics, and the function they map to, are:

    ============     ====================================
    metric           Function
    ============     ====================================
    'cityblock'      metrics.pairwise.manhattan_distances
    'cosine'         metrics.pairwise.cosine_distances
    'euclidean'      metrics.pairwise.euclidean_distances
    'l1'             metrics.pairwise.manhattan_distances
    'l2'             metrics.pairwise.euclidean_distances
    'manhattan'      metrics.pairwise.manhattan_distances
    ============     ====================================

    Read more in the :ref:`User Guide <metrics>`.

    """
    return PAIRWISE_DISTANCE_FUNCTIONS


def _parallel_pairwise(X, Y, func, n_jobs, **kwds):
    """Break the pairwise matrix in n_jobs even slices
    and compute them in parallel"""
    if n_jobs < 0:
        n_jobs = max(parallel.cpu_count() + 1 + n_jobs, 1)

    if Y is None:
        Y = X

    if n_jobs == 1:
        # Special case to avoid picklability checks in delayed
        return func(X, Y, **kwds)

    # TODO: in some cases, backend='threading' may be appropriate
    fd = delayed(func)
    ret = Parallel(n_jobs=n_jobs, verbose=0)(
        fd(X, Y[s], **kwds)
        for s in gen_even_slices(Y.shape[0], n_jobs))

    return np.hstack(ret)


def _pairwise_callable(X, Y, metric, **kwds):
    """Handle the callable case for pairwise_{distances,kernels}
    """
    X, Y = check_pairwise_arrays(X, Y)

    if X is Y:
        # Only calculate metric for upper triangle
        out = np.zeros((X.shape[0], Y.shape[0]), dtype='float')
        iterator = itertools.combinations(range(X.shape[0]), 2)
        for i, j in iterator:
            out[i, j] = metric(X[i], Y[j], **kwds)

        # Make symmetric
        # NB: out += out.T will produce incorrect results
        out = out + out.T

        # Calculate diagonal
        # NB: nonzero diagonals are allowed for both metrics and kernels
        for i in range(X.shape[0]):
            x = X[i]
            out[i, i] = metric(x, x, **kwds)

    else:
        # Calculate all cells
        out = np.empty((X.shape[0], Y.shape[0]), dtype='float')
        iterator = itertools.product(range(X.shape[0]), range(Y.shape[0]))
        for i, j in iterator:
            out[i, j] = metric(X[i], Y[j], **kwds)

    return out


_VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock',
                  'braycurtis', 'canberra', 'chebyshev', 'correlation',
                  'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski',
                  'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
                  'russellrao', 'seuclidean', 'sokalmichener',
                  'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"]


def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
    """ Compute the distance matrix from a vector array X and optional Y.

    This method takes either a vector array or a distance matrix, and returns
    a distance matrix. If the input is a vector array, the distances are
    computed. If the input is a distances matrix, it is returned instead.

    This method provides a safe way to take a distance matrix as input, while
    preserving compatibility with many other algorithms that take a vector
    array.

    If Y is given (default is None), then the returned matrix is the pairwise
    distance between the arrays from both X and Y.

    Valid values for metric are:

    - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
      'manhattan']. These metrics support sparse matrix inputs.

    - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
      'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
      'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
      'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
      See the documentation for scipy.spatial.distance for details on these
      metrics. These metrics do not support sparse matrix inputs.

    Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are
    valid scipy.spatial.distance metrics), the scikit-learn implementation
    will be used, which is faster and has support for sparse matrices (except
    for 'cityblock'). For a verbose description of the metrics from
    scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics
    function.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
             [n_samples_a, n_features] otherwise
        Array of pairwise distances between samples, or a feature array.

    Y : array [n_samples_b, n_features], optional
        An optional second feature array. Only allowed if metric != "precomputed".

    metric : string, or callable
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        allowed by scipy.spatial.distance.pdist for its metric parameter, or
        a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
        If metric is "precomputed", X is assumed to be a distance matrix.
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from X as input and return a value indicating
        the distance between them.

    n_jobs : int
        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them in
        parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    `**kwds` : optional keyword parameters
        Any further parameters are passed directly to the distance function.
        If using a scipy.spatial.distance metric, the parameters are still
        metric dependent. See the scipy docs for usage examples.

    Returns
    -------
    D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
        A distance matrix D such that D_{i, j} is the distance between the
        ith and jth vectors of the given matrix X, if Y is None.
        If Y is not None, then D_{i, j} is the distance between the ith array
        from X and the jth array from Y.

    """
    if (metric not in _VALID_METRICS and
            not callable(metric) and metric != "precomputed"):
        raise ValueError("Unknown metric %s. "
                         "Valid metrics are %s, or 'precomputed', or a "
                         "callable" % (metric, _VALID_METRICS))

    if metric == "precomputed":
        X, _ = check_pairwise_arrays(X, Y, precomputed=True)
        return X
    elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
        func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
    elif callable(metric):
        func = partial(_pairwise_callable, metric=metric, **kwds)
    else:
        if issparse(X) or issparse(Y):
            raise TypeError("scipy distance metrics do not"
                            " support sparse matrices.")
        X, Y = check_pairwise_arrays(X, Y)
        if n_jobs == 1 and X is Y:
            return distance.squareform(distance.pdist(X, metric=metric,
                                                      **kwds))
        func = partial(distance.cdist, metric=metric, **kwds)

    return _parallel_pairwise(X, Y, func, n_jobs, **kwds)


# Helper functions - distance
PAIRWISE_KERNEL_FUNCTIONS = {
    # If updating this dictionary, update the doc in both distance_metrics()
    # and also in pairwise_distances()!
    'additive_chi2': additive_chi2_kernel,
    'chi2': chi2_kernel,
    'linear': linear_kernel,
    'polynomial': polynomial_kernel,
    'poly': polynomial_kernel,
    'rbf': rbf_kernel,
    'laplacian': laplacian_kernel,
    'sigmoid': sigmoid_kernel,
    'cosine': cosine_similarity, }


def kernel_metrics():
    """ Valid metrics for pairwise_kernels

    This function simply returns the valid pairwise distance metrics.
    It exists, however, to allow for a verbose description of the mapping for
    each of the valid strings.

    The valid distance metrics, and the function they map to, are:
      ===============   ========================================
      metric            Function
      ===============   ========================================
      'additive_chi2'   sklearn.pairwise.additive_chi2_kernel
      'chi2'            sklearn.pairwise.chi2_kernel
      'linear'          sklearn.pairwise.linear_kernel
      'poly'            sklearn.pairwise.polynomial_kernel
      'polynomial'      sklearn.pairwise.polynomial_kernel
      'rbf'             sklearn.pairwise.rbf_kernel
      'laplacian'       sklearn.pairwise.laplacian_kernel
      'sigmoid'         sklearn.pairwise.sigmoid_kernel
      'cosine'          sklearn.pairwise.cosine_similarity
      ===============   ========================================

    Read more in the :ref:`User Guide <metrics>`.
    """
    return PAIRWISE_KERNEL_FUNCTIONS


KERNEL_PARAMS = {
    "additive_chi2": (),
    "chi2": (),
    "cosine": (),
    "exp_chi2": frozenset(["gamma"]),
    "linear": (),
    "poly": frozenset(["gamma", "degree", "coef0"]),
    "polynomial": frozenset(["gamma", "degree", "coef0"]),
    "rbf": frozenset(["gamma"]),
    "laplacian": frozenset(["gamma"]),
    "sigmoid": frozenset(["gamma", "coef0"]),
}


def pairwise_kernels(X, Y=None, metric="linear", filter_params=False,
                     n_jobs=1, **kwds):
    """Compute the kernel between arrays X and optional array Y.

    This method takes either a vector array or a kernel matrix, and returns
    a kernel matrix. If the input is a vector array, the kernels are
    computed. If the input is a kernel matrix, it is returned instead.

    This method provides a safe way to take a kernel matrix as input, while
    preserving compatibility with many other algorithms that take a vector
    array.

    If Y is given (default is None), then the returned matrix is the pairwise
    kernel between the arrays from both X and Y.

    Valid values for metric are::
        ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine']

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
             [n_samples_a, n_features] otherwise
        Array of pairwise kernels between samples, or a feature array.

    Y : array [n_samples_b, n_features]
        A second feature array only if X has shape [n_samples_a, n_features].

    metric : string, or callable
        The metric to use when calculating kernel between instances in a
        feature array. If metric is a string, it must be one of the metrics
        in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
        If metric is "precomputed", X is assumed to be a kernel matrix.
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from X as input and return a value indicating
        the distance between them.

    n_jobs : int
        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them in
        parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    filter_params: boolean
        Whether to filter invalid parameters or not.

    `**kwds` : optional keyword parameters
        Any further parameters are passed directly to the kernel function.

    Returns
    -------
    K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
        A kernel matrix K such that K_{i, j} is the kernel between the
        ith and jth vectors of the given matrix X, if Y is None.
        If Y is not None, then K_{i, j} is the kernel between the ith array
        from X and the jth array from Y.

    Notes
    -----
    If metric is 'precomputed', Y is ignored and X is returned.

    """
    if metric == "precomputed":
        X, _ = check_pairwise_arrays(X, Y, precomputed=True)
        return X
    elif metric in PAIRWISE_KERNEL_FUNCTIONS:
        if filter_params:
            kwds = dict((k, kwds[k]) for k in kwds
                        if k in KERNEL_PARAMS[metric])
        func = PAIRWISE_KERNEL_FUNCTIONS[metric]
    elif callable(metric):
        func = partial(_pairwise_callable, metric=metric, **kwds)
    else:
        raise ValueError("Unknown kernel %r" % metric)

    return _parallel_pairwise(X, Y, func, n_jobs, **kwds)