This file is indexed.

/usr/lib/python3/dist-packages/sklearn/metrics/tests/test_classification.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
from __future__ import division, print_function

import numpy as np
from scipy import linalg
from functools import partial
from itertools import product
import warnings

from sklearn import datasets
from sklearn import svm

from sklearn.datasets import make_multilabel_classification
from sklearn.preprocessing import label_binarize
from sklearn.utils.fixes import np_version
from sklearn.utils.validation import check_random_state

from sklearn.utils.testing import assert_raises, clean_warning_registry
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import ignore_warnings

from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from sklearn.metrics import fbeta_score
from sklearn.metrics import hamming_loss
from sklearn.metrics import hinge_loss
from sklearn.metrics import jaccard_similarity_score
from sklearn.metrics import log_loss
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import zero_one_loss
from sklearn.metrics import brier_score_loss


from sklearn.metrics.classification import _check_targets
from sklearn.metrics.base import UndefinedMetricWarning


###############################################################################
# Utilities for testing

def make_prediction(dataset=None, binary=False):
    """Make some classification predictions on a toy dataset using a SVC

    If binary is True restrict to a binary classification problem instead of a
    multiclass classification problem
    """

    if dataset is None:
        # import some data to play with
        dataset = datasets.load_iris()

    X = dataset.data
    y = dataset.target

    if binary:
        # restrict to a binary classification task
        X, y = X[y < 2], y[y < 2]

    n_samples, n_features = X.shape
    p = np.arange(n_samples)

    rng = check_random_state(37)
    rng.shuffle(p)
    X, y = X[p], y[p]
    half = int(n_samples / 2)

    # add noisy features to make the problem harder and avoid perfect results
    rng = np.random.RandomState(0)
    X = np.c_[X, rng.randn(n_samples, 200 * n_features)]

    # run classifier, get class probabilities and label predictions
    clf = svm.SVC(kernel='linear', probability=True, random_state=0)
    probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:])

    if binary:
        # only interested in probabilities of the positive case
        # XXX: do we really want a special API for the binary case?
        probas_pred = probas_pred[:, 1]

    y_pred = clf.predict(X[half:])
    y_true = y[half:]
    return y_true, y_pred, probas_pred


###############################################################################
# Tests


def test_multilabel_accuracy_score_subset_accuracy():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(accuracy_score(y1, y2), 0.5)
    assert_equal(accuracy_score(y1, y1), 1)
    assert_equal(accuracy_score(y2, y2), 1)
    assert_equal(accuracy_score(y2, np.logical_not(y2)), 0)
    assert_equal(accuracy_score(y1, np.logical_not(y1)), 0)
    assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0)
    assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0)


def test_precision_recall_f1_score_binary():
    # Test Precision Recall and F1 Score for binary classification task
    y_true, y_pred, _ = make_prediction(binary=True)

    # detailed measures for each class
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    assert_array_almost_equal(p, [0.73, 0.85], 2)
    assert_array_almost_equal(r, [0.88, 0.68], 2)
    assert_array_almost_equal(f, [0.80, 0.76], 2)
    assert_array_equal(s, [25, 25])

    # individual scoring function that can be used for grid search: in the
    # binary class case the score is the value of the measure for the positive
    # class (e.g. label == 1). This is deprecated for average != 'binary'.
    assert_dep_warning = partial(assert_warns, DeprecationWarning)
    for kwargs, my_assert in [({}, assert_no_warnings),
                              ({'average': 'binary'}, assert_no_warnings),
                              ({'average': 'micro'}, assert_dep_warning)]:
        ps = my_assert(precision_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(ps, 0.85, 2)

        rs = my_assert(recall_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(rs, 0.68, 2)

        fs = my_assert(f1_score, y_true, y_pred, **kwargs)
        assert_array_almost_equal(fs, 0.76, 2)

        assert_almost_equal(my_assert(fbeta_score, y_true, y_pred, beta=2,
                                      **kwargs),
                            (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2)


def test_precision_recall_f_binary_single_class():
    # Test precision, recall and F1 score behave with a single positive or
    # negative class
    # Such a case may occur with non-stratified cross-validation
    assert_equal(1., precision_score([1, 1], [1, 1]))
    assert_equal(1., recall_score([1, 1], [1, 1]))
    assert_equal(1., f1_score([1, 1], [1, 1]))

    assert_equal(0., precision_score([-1, -1], [-1, -1]))
    assert_equal(0., recall_score([-1, -1], [-1, -1]))
    assert_equal(0., f1_score([-1, -1], [-1, -1]))


@ignore_warnings
def test_precision_recall_f_extra_labels():
    # Test handling of explicit additional (not in input) labels to PRF
    y_true = [1, 3, 3, 2]
    y_pred = [1, 1, 3, 2]
    y_true_bin = label_binarize(y_true, classes=np.arange(5))
    y_pred_bin = label_binarize(y_pred, classes=np.arange(5))
    data = [(y_true, y_pred),
            (y_true_bin, y_pred_bin)]

    for i, (y_true, y_pred) in enumerate(data):
        # No average: zeros in array
        actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4],
                              average=None)
        assert_array_almost_equal([0., 1., 1., .5, 0.], actual)

        # Macro average is changed
        actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4],
                              average='macro')
        assert_array_almost_equal(np.mean([0., 1., 1., .5, 0.]), actual)

        # No effect otheriwse
        for average in ['micro', 'weighted', 'samples']:
            if average == 'samples' and i == 0:
                continue
            assert_almost_equal(recall_score(y_true, y_pred,
                                             labels=[0, 1, 2, 3, 4],
                                             average=average),
                                recall_score(y_true, y_pred, labels=None,
                                             average=average))

    # Error when introducing invalid label in multilabel case
    # (although it would only affect performance if average='macro'/None)
    for average in [None, 'macro', 'micro', 'samples']:
        assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin,
                      labels=np.arange(6), average=average)
        assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin,
                      labels=np.arange(-1, 4), average=average)


@ignore_warnings
def test_precision_recall_f_ignored_labels():
    # Test a subset of labels may be requested for PRF
    y_true = [1, 1, 2, 3]
    y_pred = [1, 3, 3, 3]
    y_true_bin = label_binarize(y_true, classes=np.arange(5))
    y_pred_bin = label_binarize(y_pred, classes=np.arange(5))
    data = [(y_true, y_pred),
            (y_true_bin, y_pred_bin)]

    for i, (y_true, y_pred) in enumerate(data):
        recall_13 = partial(recall_score, y_true, y_pred, labels=[1, 3])
        recall_all = partial(recall_score, y_true, y_pred, labels=None)

        assert_array_almost_equal([.5, 1.], recall_13(average=None))
        assert_almost_equal((.5 + 1.) / 2, recall_13(average='macro'))
        assert_almost_equal((.5 * 2 + 1. * 1) / 3,
                            recall_13(average='weighted'))
        assert_almost_equal(2. / 3, recall_13(average='micro'))

        # ensure the above were meaningful tests:
        for average in ['macro', 'weighted', 'micro']:
            assert_not_equal(recall_13(average=average),
                             recall_all(average=average))


def test_average_precision_score_score_non_binary_class():
    # Test that average_precision_score function returns an error when trying
    # to compute average_precision_score for multiclass task.
    rng = check_random_state(404)
    y_pred = rng.rand(10)

    # y_true contains three different class values
    y_true = rng.randint(0, 3, size=10)
    assert_raise_message(ValueError, "multiclass format is not supported",
                         average_precision_score, y_true, y_pred)


def test_average_precision_score_duplicate_values():
    # Duplicate values with precision-recall require a different
    # processing than when computing the AUC of a ROC, because the
    # precision-recall curve is a decreasing curve
    # The following situtation corresponds to a perfect
    # test statistic, the average_precision_score should be 1
    y_true = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
    y_score = [0, .1, .1, .4, .5, .6, .6, .9, .9, 1, 1]
    assert_equal(average_precision_score(y_true, y_score), 1)


def test_average_precision_score_tied_values():
    # Here if we go from left to right in y_true, the 0 values are
    # are separated from the 1 values, so it appears that we've
    # Correctly sorted our classifications. But in fact the first two
    # values have the same score (0.5) and so the first two values
    # could be swapped around, creating an imperfect sorting. This
    # imperfection should come through in the end score, making it less
    # than one.
    y_true = [0, 1, 1]
    y_score = [.5, .5, .6]
    assert_not_equal(average_precision_score(y_true, y_score), 1.)


@ignore_warnings
def test_precision_recall_fscore_support_errors():
    y_true, y_pred, _ = make_prediction(binary=True)

    # Bad beta
    assert_raises(ValueError, precision_recall_fscore_support,
                  y_true, y_pred, beta=0.0)

    # Bad pos_label
    assert_raises(ValueError, precision_recall_fscore_support,
                  y_true, y_pred, pos_label=2, average='macro')

    # Bad average option
    assert_raises(ValueError, precision_recall_fscore_support,
                  [0, 1, 2], [1, 2, 0], average='mega')


def test_confusion_matrix_binary():
    # Test confusion matrix - binary classification case
    y_true, y_pred, _ = make_prediction(binary=True)

    def test(y_true, y_pred):
        cm = confusion_matrix(y_true, y_pred)
        assert_array_equal(cm, [[22, 3], [8, 17]])

        tp, fp, fn, tn = cm.flatten()
        num = (tp * tn - fp * fn)
        den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

        true_mcc = 0 if den == 0 else num / den
        mcc = matthews_corrcoef(y_true, y_pred)
        assert_array_almost_equal(mcc, true_mcc, decimal=2)
        assert_array_almost_equal(mcc, 0.57, decimal=2)

    test(y_true, y_pred)
    test([str(y) for y in y_true],
         [str(y) for y in y_pred])


def test_cohen_kappa():
    # These label vectors reproduce the contingency matrix from Artstein and
    # Poesio (2008), Table 1: np.array([[20, 20], [10, 50]]).
    y1 = np.array([0] * 40 + [1] * 60)
    y2 = np.array([0] * 20 + [1] * 20 + [0] * 10 + [1] * 50)
    kappa = cohen_kappa_score(y1, y2)
    assert_almost_equal(kappa, .348, decimal=3)
    assert_equal(kappa, cohen_kappa_score(y2, y1))

    # Add spurious labels and ignore them.
    y1 = np.append(y1, [2] * 4)
    y2 = np.append(y2, [2] * 4)
    assert_equal(cohen_kappa_score(y1, y2, labels=[0, 1]), kappa)

    assert_almost_equal(cohen_kappa_score(y1, y1), 1.)

    # Multiclass example: Artstein and Poesio, Table 4.
    y1 = np.array([0] * 46 + [1] * 44 + [2] * 10)
    y2 = np.array([0] * 52 + [1] * 32 + [2] * 16)
    assert_almost_equal(cohen_kappa_score(y1, y2), .8013, decimal=4)


@ignore_warnings
def test_matthews_corrcoef_nan():
    assert_equal(matthews_corrcoef([0], [1]), 0.0)
    assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0)


def test_precision_recall_f1_score_multiclass():
    # Test Precision Recall and F1 Score for multiclass classification task
    y_true, y_pred, _ = make_prediction(binary=False)

    # compute scores with default labels introspection
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)
    assert_array_almost_equal(p, [0.83, 0.33, 0.42], 2)
    assert_array_almost_equal(r, [0.79, 0.09, 0.90], 2)
    assert_array_almost_equal(f, [0.81, 0.15, 0.57], 2)
    assert_array_equal(s, [24, 31, 20])

    # averaging tests
    ps = precision_score(y_true, y_pred, pos_label=1, average='micro')
    assert_array_almost_equal(ps, 0.53, 2)

    rs = recall_score(y_true, y_pred, average='micro')
    assert_array_almost_equal(rs, 0.53, 2)

    fs = f1_score(y_true, y_pred, average='micro')
    assert_array_almost_equal(fs, 0.53, 2)

    ps = precision_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(ps, 0.53, 2)

    rs = recall_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(rs, 0.60, 2)

    fs = f1_score(y_true, y_pred, average='macro')
    assert_array_almost_equal(fs, 0.51, 2)

    ps = precision_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(ps, 0.51, 2)

    rs = recall_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(rs, 0.53, 2)

    fs = f1_score(y_true, y_pred, average='weighted')
    assert_array_almost_equal(fs, 0.47, 2)

    assert_raises(ValueError, precision_score, y_true, y_pred,
                  average="samples")
    assert_raises(ValueError, recall_score, y_true, y_pred, average="samples")
    assert_raises(ValueError, f1_score, y_true, y_pred, average="samples")
    assert_raises(ValueError, fbeta_score, y_true, y_pred, average="samples",
                  beta=0.5)

    # same prediction but with and explicit label ordering
    p, r, f, s = precision_recall_fscore_support(
        y_true, y_pred, labels=[0, 2, 1], average=None)
    assert_array_almost_equal(p, [0.83, 0.41, 0.33], 2)
    assert_array_almost_equal(r, [0.79, 0.90, 0.10], 2)
    assert_array_almost_equal(f, [0.81, 0.57, 0.15], 2)
    assert_array_equal(s, [24, 20, 31])


def test_precision_refcall_f1_score_multilabel_unordered_labels():
    # test that labels need not be sorted in the multilabel case
    y_true = np.array([[1, 1, 0, 0]])
    y_pred = np.array([[0, 0, 1, 1]])
    for average in ['samples', 'micro', 'macro', 'weighted', None]:
        p, r, f, s = precision_recall_fscore_support(
            y_true, y_pred, labels=[3, 0, 1, 2], warn_for=[], average=average)
        assert_array_equal(p, 0)
        assert_array_equal(r, 0)
        assert_array_equal(f, 0)
        if average is None:
            assert_array_equal(s, [0, 1, 1, 0])


def test_precision_recall_f1_score_multiclass_pos_label_none():
    # Test Precision Recall and F1 Score for multiclass classification task
    # GH Issue #1296
    # initialize data
    y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1])
    y_pred = np.array([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1])

    # compute scores with default labels introspection
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 pos_label=None,
                                                 average='weighted')


def test_zero_precision_recall():
    # Check that pathological cases do not bring NaNs

    old_error_settings = np.seterr(all='raise')

    try:
        y_true = np.array([0, 1, 2, 0, 1, 2])
        y_pred = np.array([2, 0, 1, 1, 2, 0])

        assert_almost_equal(precision_score(y_true, y_pred,
                                            average='weighted'), 0.0, 2)
        assert_almost_equal(recall_score(y_true, y_pred, average='weighted'),
                            0.0, 2)
        assert_almost_equal(f1_score(y_true, y_pred, average='weighted'),
                            0.0, 2)

    finally:
        np.seterr(**old_error_settings)


def test_confusion_matrix_multiclass():
    # Test confusion matrix - multi-class case
    y_true, y_pred, _ = make_prediction(binary=False)

    def test(y_true, y_pred, string_type=False):
        # compute confusion matrix with default labels introspection
        cm = confusion_matrix(y_true, y_pred)
        assert_array_equal(cm, [[19, 4, 1],
                                [4, 3, 24],
                                [0, 2, 18]])

        # compute confusion matrix with explicit label ordering
        labels = ['0', '2', '1'] if string_type else [0, 2, 1]
        cm = confusion_matrix(y_true,
                              y_pred,
                              labels=labels)
        assert_array_equal(cm, [[19, 1, 4],
                                [0, 18, 2],
                                [4, 24, 3]])

    test(y_true, y_pred)
    test(list(str(y) for y in y_true),
         list(str(y) for y in y_pred),
         string_type=True)


def test_confusion_matrix_multiclass_subset_labels():
    # Test confusion matrix - multi-class case with subset of labels
    y_true, y_pred, _ = make_prediction(binary=False)

    # compute confusion matrix with only first two labels considered
    cm = confusion_matrix(y_true, y_pred, labels=[0, 1])
    assert_array_equal(cm, [[19, 4],
                            [4, 3]])

    # compute confusion matrix with explicit label ordering for only subset
    # of labels
    cm = confusion_matrix(y_true, y_pred, labels=[2, 1])
    assert_array_equal(cm, [[18, 2],
                            [24, 3]])


def test_classification_report_multiclass():
    # Test performance report
    iris = datasets.load_iris()
    y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)

    # print classification report with class names
    expected_report = """\
             precision    recall  f1-score   support

     setosa       0.83      0.79      0.81        24
 versicolor       0.33      0.10      0.15        31
  virginica       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(
        y_true, y_pred, labels=np.arange(len(iris.target_names)),
        target_names=iris.target_names)
    assert_equal(report, expected_report)
    # print classification report with label detection
    expected_report = """\
             precision    recall  f1-score   support

          0       0.83      0.79      0.81        24
          1       0.33      0.10      0.15        31
          2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_digits():
    # Test performance report with added digits in floating point values
    iris = datasets.load_iris()
    y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)

    # print classification report with class names
    expected_report = """\
             precision    recall  f1-score   support

     setosa    0.82609   0.79167   0.80851        24
 versicolor    0.33333   0.09677   0.15000        31
  virginica    0.41860   0.90000   0.57143        20

avg / total    0.51375   0.53333   0.47310        75
"""
    report = classification_report(
        y_true, y_pred, labels=np.arange(len(iris.target_names)),
        target_names=iris.target_names, digits=5)
    assert_equal(report, expected_report)
    # print classification report with label detection
    expected_report = """\
             precision    recall  f1-score   support

          0       0.83      0.79      0.81        24
          1       0.33      0.10      0.15        31
          2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_string_label():
    y_true, y_pred, _ = make_prediction(binary=False)

    y_true = np.array(["blue", "green", "red"])[y_true]
    y_pred = np.array(["blue", "green", "red"])[y_pred]

    expected_report = """\
             precision    recall  f1-score   support

       blue       0.83      0.79      0.81        24
      green       0.33      0.10      0.15        31
        red       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)

    expected_report = """\
             precision    recall  f1-score   support

          a       0.83      0.79      0.81        24
          b       0.33      0.10      0.15        31
          c       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    report = classification_report(y_true, y_pred,
                                   target_names=["a", "b", "c"])
    assert_equal(report, expected_report)


def test_classification_report_multiclass_with_unicode_label():
    y_true, y_pred, _ = make_prediction(binary=False)

    labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"])
    y_true = labels[y_true]
    y_pred = labels[y_pred]

    expected_report = u"""\
             precision    recall  f1-score   support

      blue\xa2       0.83      0.79      0.81        24
     green\xa2       0.33      0.10      0.15        31
       red\xa2       0.42      0.90      0.57        20

avg / total       0.51      0.53      0.47        75
"""
    if np_version[:3] < (1, 7, 0):
        expected_message = ("NumPy < 1.7.0 does not implement"
                            " searchsorted on unicode data correctly.")
        assert_raise_message(RuntimeError, expected_message,
                             classification_report, y_true, y_pred)
    else:
        report = classification_report(y_true, y_pred)
        assert_equal(report, expected_report)


def test_multilabel_classification_report():
    n_classes = 4
    n_samples = 50

    _, y_true = make_multilabel_classification(n_features=1,
                                               n_samples=n_samples,
                                               n_classes=n_classes,
                                               random_state=0)

    _, y_pred = make_multilabel_classification(n_features=1,
                                               n_samples=n_samples,
                                               n_classes=n_classes,
                                               random_state=1)

    expected_report = """\
             precision    recall  f1-score   support

          0       0.50      0.67      0.57        24
          1       0.51      0.74      0.61        27
          2       0.29      0.08      0.12        26
          3       0.52      0.56      0.54        27

avg / total       0.45      0.51      0.46       104
"""

    report = classification_report(y_true, y_pred)
    assert_equal(report, expected_report)


def test_multilabel_zero_one_loss_subset():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(zero_one_loss(y1, y2), 0.5)
    assert_equal(zero_one_loss(y1, y1), 0)
    assert_equal(zero_one_loss(y2, y2), 0)
    assert_equal(zero_one_loss(y2, np.logical_not(y2)), 1)
    assert_equal(zero_one_loss(y1, np.logical_not(y1)), 1)
    assert_equal(zero_one_loss(y1, np.zeros(y1.shape)), 1)
    assert_equal(zero_one_loss(y2, np.zeros(y1.shape)), 1)


def test_multilabel_hamming_loss():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    assert_equal(hamming_loss(y1, y2), 1 / 6)
    assert_equal(hamming_loss(y1, y1), 0)
    assert_equal(hamming_loss(y2, y2), 0)
    assert_equal(hamming_loss(y2, 1 - y2), 1)
    assert_equal(hamming_loss(y1, 1 - y1), 1)
    assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6)
    assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5)


def test_multilabel_jaccard_similarity_score():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])

    # size(y1 \inter y2) = [1, 2]
    # size(y1 \union y2) = [2, 2]

    assert_equal(jaccard_similarity_score(y1, y2), 0.75)
    assert_equal(jaccard_similarity_score(y1, y1), 1)
    assert_equal(jaccard_similarity_score(y2, y2), 1)
    assert_equal(jaccard_similarity_score(y2, np.logical_not(y2)), 0)
    assert_equal(jaccard_similarity_score(y1, np.logical_not(y1)), 0)
    assert_equal(jaccard_similarity_score(y1, np.zeros(y1.shape)), 0)
    assert_equal(jaccard_similarity_score(y2, np.zeros(y1.shape)), 0)


@ignore_warnings
def test_precision_recall_f1_score_multilabel_1():
    # Test precision_recall_f1_score on a crafted multilabel example
    # First crafted example

    y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1]])
    y_pred = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [1, 0, 1, 0]])

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None)

    # tp = [0, 1, 1, 0]
    # fn = [1, 0, 0, 1]
    # fp = [1, 1, 0, 0]
    # Check per class

    assert_array_almost_equal(p, [0.0, 0.5, 1.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 1.0, 1.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
    assert_array_almost_equal(s, [1, 1, 1, 1], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.83, 1, 0], 2)

    # Check macro
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 1.5 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2.5 / 1.5 * 0.25)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"),
                        np.mean(f2))

    # Check micro
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    # Check weighted
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 1.5 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2.5 / 1.5 * 0.25)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))
    # Check samples
    # |h(x_i) inter y_i | = [0, 1, 1]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [1, 1, 2]
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"),
                        0.5)


@ignore_warnings
def test_precision_recall_f1_score_multilabel_2():
    # Test precision_recall_f1_score on a crafted multilabel example 2
    # Second crafted example
    y_true = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]])
    y_pred = np.array([[0, 0, 0, 1], [0, 0, 0, 1], [1, 1, 0, 0]])

    # tp = [ 0.  1.  0.  0.]
    # fp = [ 1.  0.  0.  2.]
    # fn = [ 1.  1.  1.  0.]

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average=None)
    assert_array_almost_equal(p, [0.0, 1.0, 0.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 0.5, 0.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 0.66, 0.0, 0.0], 2)
    assert_array_almost_equal(s, [1, 2, 1, 0], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.55, 0, 0], 2)

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 0.25)
    assert_almost_equal(r, 0.25)
    assert_almost_equal(f, 2 * 0.25 * 0.25 / 0.5)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 0.25)
    assert_almost_equal(r, 0.125)
    assert_almost_equal(f, 2 / 12)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="macro"),
                        np.mean(f2))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 2 / 4)
    assert_almost_equal(r, 1 / 4)
    assert_almost_equal(f, 2 / 3 * 2 / 4)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    # Check samples
    # |h(x_i) inter y_i | = [0, 0, 1]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [1, 1, 2]

    assert_almost_equal(p, 1 / 6)
    assert_almost_equal(r, 1 / 6)
    assert_almost_equal(f, 2 / 4 * 1 / 3)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="samples"),
                        0.1666, 2)


@ignore_warnings
def test_precision_recall_f1_score_with_an_empty_prediction():
    y_true = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0]])
    y_pred = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 1, 0]])

    # true_pos = [ 0.  1.  1.  0.]
    # false_pos = [ 0.  0.  0.  1.]
    # false_neg = [ 1.  1.  0.  0.]
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average=None)
    assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
    assert_array_almost_equal(s, [1, 2, 1, 0], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2)

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 1.5 / 4)
    assert_almost_equal(f, 2.5 / (4 * 1.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="macro"),
                        np.mean(f2))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 2 / 3)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 3 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, (2 / 1.5 + 1) / 4)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    # |h(x_i) inter y_i | = [0, 0, 2]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [0, 1, 2]
    assert_almost_equal(p, 1 / 3)
    assert_almost_equal(r, 1 / 3)
    assert_almost_equal(f, 1 / 3)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="samples"),
                        0.333, 2)


def test_precision_recall_f1_no_labels():
    y_true = np.zeros((20, 3))
    y_pred = np.zeros_like(y_true)

    # tp = [0, 0, 0]
    # fn = [0, 0, 0]
    # fp = [0, 0, 0]
    # support = [0, 0, 0]
    # |y_hat_i inter y_i | = [0, 0, 0]
    # |y_i| = [0, 0, 0]
    # |y_hat_i| = [0, 0, 0]

    for beta in [1]:
        p, r, f, s = assert_warns(UndefinedMetricWarning,
                                  precision_recall_fscore_support,
                                  y_true, y_pred, average=None, beta=beta)
        assert_array_almost_equal(p, [0, 0, 0], 2)
        assert_array_almost_equal(r, [0, 0, 0], 2)
        assert_array_almost_equal(f, [0, 0, 0], 2)
        assert_array_almost_equal(s, [0, 0, 0], 2)

        fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
                             y_true, y_pred, beta=beta, average=None)
        assert_array_almost_equal(fbeta, [0, 0, 0], 2)

        for average in ["macro", "micro", "weighted", "samples"]:
            p, r, f, s = assert_warns(UndefinedMetricWarning,
                                      precision_recall_fscore_support,
                                      y_true, y_pred, average=average,
                                      beta=beta)
            assert_almost_equal(p, 0)
            assert_almost_equal(r, 0)
            assert_almost_equal(f, 0)
            assert_equal(s, None)

            fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
                                 y_true, y_pred,
                                 beta=beta, average=average)
            assert_almost_equal(fbeta, 0)


def test_prf_warnings():
    # average of per-label scores
    f, w = precision_recall_fscore_support, UndefinedMetricWarning
    my_assert = assert_warns_message
    for average in [None, 'weighted', 'macro']:
        msg = ('Precision and F-score are ill-defined and '
               'being set to 0.0 in labels with no predicted samples.')
        my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average)

        msg = ('Recall and F-score are ill-defined and '
               'being set to 0.0 in labels with no true samples.')
        my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average)

        # average of per-sample scores
        msg = ('Precision and F-score are ill-defined and '
               'being set to 0.0 in samples with no predicted labels.')
        my_assert(w, msg, f, np.array([[1, 0], [1, 0]]),
                  np.array([[1, 0], [0, 0]]), average='samples')

        msg = ('Recall and F-score are ill-defined and '
               'being set to 0.0 in samples with no true labels.')
        my_assert(w, msg, f, np.array([[1, 0], [0, 0]]),
                  np.array([[1, 0], [1, 0]]),
                  average='samples')

        # single score: micro-average
        msg = ('Precision and F-score are ill-defined and '
               'being set to 0.0 due to no predicted samples.')
        my_assert(w, msg, f, np.array([[1, 1], [1, 1]]),
                  np.array([[0, 0], [0, 0]]), average='micro')

        msg = ('Recall and F-score are ill-defined and '
               'being set to 0.0 due to no true samples.')
        my_assert(w, msg, f, np.array([[0, 0], [0, 0]]),
                  np.array([[1, 1], [1, 1]]), average='micro')

        # single postive label
        msg = ('Precision and F-score are ill-defined and '
               'being set to 0.0 due to no predicted samples.')
        my_assert(w, msg, f, [1, 1], [-1, -1], average='macro')

        msg = ('Recall and F-score are ill-defined and '
               'being set to 0.0 due to no true samples.')
        my_assert(w, msg, f, [-1, -1], [1, 1], average='macro')


def test_recall_warnings():
    assert_no_warnings(recall_score,
                       np.array([[1, 1], [1, 1]]),
                       np.array([[0, 0], [0, 0]]),
                       average='micro')
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')
        recall_score(np.array([[0, 0], [0, 0]]),
                     np.array([[1, 1], [1, 1]]),
                     average='micro')
        assert_equal(str(record.pop().message),
                     'Recall is ill-defined and '
                     'being set to 0.0 due to no true samples.')


def test_precision_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')

        precision_score(np.array([[1, 1], [1, 1]]),
                        np.array([[0, 0], [0, 0]]),
                        average='micro')
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')

    assert_no_warnings(precision_score,
                       np.array([[0, 0], [0, 0]]),
                       np.array([[1, 1], [1, 1]]),
                       average='micro')


def test_fscore_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')

        for score in [f1_score, partial(fbeta_score, beta=2)]:
            score(np.array([[1, 1], [1, 1]]),
                  np.array([[0, 0], [0, 0]]),
                  average='micro')
            assert_equal(str(record.pop().message),
                         'F-score is ill-defined and '
                         'being set to 0.0 due to no predicted samples.')
            score(np.array([[0, 0], [0, 0]]),
                  np.array([[1, 1], [1, 1]]),
                  average='micro')
            assert_equal(str(record.pop().message),
                         'F-score is ill-defined and '
                         'being set to 0.0 due to no true samples.')


def test_prf_average_compat():
    # Ensure warning if f1_score et al.'s average is implicit for multiclass
    y_true = [1, 2, 3, 3]
    y_pred = [1, 2, 3, 1]
    y_true_bin = [0, 1, 1]
    y_pred_bin = [0, 1, 0]

    for metric in [precision_score, recall_score, f1_score,
                   partial(fbeta_score, beta=2)]:
        score = assert_warns(DeprecationWarning, metric, y_true, y_pred)
        score_weighted = assert_no_warnings(metric, y_true, y_pred,
                                            average='weighted')
        assert_equal(score, score_weighted,
                     'average does not act like "weighted" by default')

        # check binary passes without warning
        assert_no_warnings(metric, y_true_bin, y_pred_bin)

        # but binary with pos_label=None should behave like multiclass
        score = assert_warns(DeprecationWarning, metric,
                             y_true_bin, y_pred_bin, pos_label=None)
        score_weighted = assert_no_warnings(metric, y_true_bin, y_pred_bin,
                                            pos_label=None, average='weighted')
        assert_equal(score, score_weighted,
                     'average does not act like "weighted" by default with '
                     'binary data and pos_label=None')


def test__check_targets():
    # Check that _check_targets correctly merges target types, squeezes
    # output and fails if input lengths differ.
    IND = 'multilabel-indicator'
    MC = 'multiclass'
    BIN = 'binary'
    CNT = 'continuous'
    MMC = 'multiclass-multioutput'
    MCN = 'continuous-multioutput'
    # all of length 3
    EXAMPLES = [
        (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])),
        # must not be considered binary
        (IND, np.array([[0, 1], [1, 0], [1, 1]])),
        (MC, [2, 3, 1]),
        (BIN, [0, 1, 1]),
        (CNT, [0., 1.5, 1.]),
        (MC, np.array([[2], [3], [1]])),
        (BIN, np.array([[0], [1], [1]])),
        (CNT, np.array([[0.], [1.5], [1.]])),
        (MMC, np.array([[0, 2], [1, 3], [2, 3]])),
        (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])),
    ]
    # expected type given input types, or None for error
    # (types will be tried in either order)
    EXPECTED = {
        (IND, IND): IND,
        (MC, MC): MC,
        (BIN, BIN): BIN,

        (MC, IND): None,
        (BIN, IND): None,
        (BIN, MC): MC,

        # Disallowed types
        (CNT, CNT): None,
        (MMC, MMC): None,
        (MCN, MCN): None,
        (IND, CNT): None,
        (MC, CNT): None,
        (BIN, CNT): None,
        (MMC, CNT): None,
        (MCN, CNT): None,
        (IND, MMC): None,
        (MC, MMC): None,
        (BIN, MMC): None,
        (MCN, MMC): None,
        (IND, MCN): None,
        (MC, MCN): None,
        (BIN, MCN): None,
    }

    for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2):
        try:
            expected = EXPECTED[type1, type2]
        except KeyError:
            expected = EXPECTED[type2, type1]
        if expected is None:
            assert_raises(ValueError, _check_targets, y1, y2)

            if type1 != type2:
                assert_raise_message(
                    ValueError,
                    "Can't handle mix of {0} and {1}".format(type1, type2),
                    _check_targets, y1, y2)

            else:
                if type1 not in (BIN, MC, IND):
                    assert_raise_message(ValueError,
                                         "{0} is not supported".format(type1),
                                         _check_targets, y1, y2)

        else:
            merged_type, y1out, y2out = _check_targets(y1, y2)
            assert_equal(merged_type, expected)
            if merged_type.startswith('multilabel'):
                assert_equal(y1out.format, 'csr')
                assert_equal(y2out.format, 'csr')
            else:
                assert_array_equal(y1out, np.squeeze(y1))
                assert_array_equal(y2out, np.squeeze(y2))
            assert_raises(ValueError, _check_targets, y1[:-1], y2)

    # Make sure seq of seq is not supported
    y1 = [(1, 2,), (0, 2, 3)]
    y2 = [(2,), (0, 2,)]
    msg = ('You appear to be using a legacy multi-label data representation. '
           'Sequence of sequences are no longer supported; use a binary array'
           ' or sparse matrix instead.')
    assert_raise_message(ValueError, msg, _check_targets, y1, y2)


def test_hinge_loss_binary():
    y_true = np.array([-1, 1, 1, -1])
    pred_decision = np.array([-8.5, 0.5, 1.5, -0.3])
    assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4)

    y_true = np.array([0, 2, 2, 0])
    pred_decision = np.array([-8.5, 0.5, 1.5, -0.3])
    assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4)


def test_hinge_loss_multiclass():
    pred_decision = np.array([
        [+0.36, -0.17, -0.58, -0.99],
        [-0.54, -0.37, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.54, -0.38, -0.48, -0.58],
        [-2.36, -0.79, -0.27, +0.24],
        [-1.45, -0.58, -0.38, -0.17]
    ])
    y_true = np.array([0, 1, 2, 1, 3, 2])
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][3] + pred_decision[4][2],
        1 - pred_decision[5][2] + pred_decision[5][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision),
                 dummy_hinge_loss)


def test_hinge_loss_multiclass_missing_labels_with_labels_none():
    y_true = np.array([0, 1, 2, 2])
    pred_decision = np.array([
        [+1.27, 0.034, -0.68, -1.40],
        [-1.45, -0.58, -0.38, -0.17],
        [-2.36, -0.79, -0.27, +0.24],
        [-2.36, -0.79, -0.27, +0.24]
    ])
    error_message = ("Please include all labels in y_true "
                     "or pass labels as third argument")
    assert_raise_message(ValueError,
                         error_message,
                         hinge_loss, y_true, pred_decision)


def test_hinge_loss_multiclass_with_missing_labels():
    pred_decision = np.array([
        [+0.36, -0.17, -0.58, -0.99],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17]
    ])
    y_true = np.array([0, 1, 2, 1, 2])
    labels = np.array([0, 1, 2, 3])
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][2] + pred_decision[4][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision, labels=labels),
                 dummy_hinge_loss)


def test_hinge_loss_multiclass_invariance_lists():
    # Currently, invariance of string and integer labels cannot be tested
    # in common invariance tests because invariance tests for multiclass
    # decision functions is not implemented yet.
    y_true = ['blue', 'green', 'red',
              'green', 'white', 'red']
    pred_decision = [
        [+0.36, -0.17, -0.58, -0.99],
        [-0.55, -0.38, -0.48, -0.58],
        [-1.45, -0.58, -0.38, -0.17],
        [-0.55, -0.38, -0.48, -0.58],
        [-2.36, -0.79, -0.27, +0.24],
        [-1.45, -0.58, -0.38, -0.17]]
    dummy_losses = np.array([
        1 - pred_decision[0][0] + pred_decision[0][1],
        1 - pred_decision[1][1] + pred_decision[1][2],
        1 - pred_decision[2][2] + pred_decision[2][3],
        1 - pred_decision[3][1] + pred_decision[3][2],
        1 - pred_decision[4][3] + pred_decision[4][2],
        1 - pred_decision[5][2] + pred_decision[5][3]
    ])
    dummy_losses[dummy_losses <= 0] = 0
    dummy_hinge_loss = np.mean(dummy_losses)
    assert_equal(hinge_loss(y_true, pred_decision),
                 dummy_hinge_loss)


def test_log_loss():
    # binary case with symbolic labels ("no" < "yes")
    y_true = ["no", "no", "no", "yes", "yes", "yes"]
    y_pred = np.array([[0.5, 0.5], [0.1, 0.9], [0.01, 0.99],
                       [0.9, 0.1], [0.75, 0.25], [0.001, 0.999]])
    loss = log_loss(y_true, y_pred)
    assert_almost_equal(loss, 1.8817971)

    # multiclass case; adapted from http://bit.ly/RJJHWA
    y_true = [1, 0, 2]
    y_pred = [[0.2, 0.7, 0.1], [0.6, 0.2, 0.2], [0.6, 0.1, 0.3]]
    loss = log_loss(y_true, y_pred, normalize=True)
    assert_almost_equal(loss, 0.6904911)

    # check that we got all the shapes and axes right
    # by doubling the length of y_true and y_pred
    y_true *= 2
    y_pred *= 2
    loss = log_loss(y_true, y_pred, normalize=False)
    assert_almost_equal(loss, 0.6904911 * 6, decimal=6)

    # check eps and handling of absolute zero and one probabilities
    y_pred = np.asarray(y_pred) > .5
    loss = log_loss(y_true, y_pred, normalize=True, eps=.1)
    assert_almost_equal(loss, log_loss(y_true, np.clip(y_pred, .1, .9)))

    # raise error if number of classes are not equal.
    y_true = [1, 0, 2]
    y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1]]
    assert_raises(ValueError, log_loss, y_true, y_pred)

    # case when y_true is a string array object
    y_true = ["ham", "spam", "spam", "ham"]
    y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]]
    loss = log_loss(y_true, y_pred)
    assert_almost_equal(loss, 1.0383217, decimal=6)


def test_brier_score_loss():
    # Check brier_score_loss function
    y_true = np.array([0, 1, 1, 0, 1, 1])
    y_pred = np.array([0.1, 0.8, 0.9, 0.3, 1., 0.95])
    true_score = linalg.norm(y_true - y_pred) ** 2 / len(y_true)

    assert_almost_equal(brier_score_loss(y_true, y_true), 0.0)
    assert_almost_equal(brier_score_loss(y_true, y_pred), true_score)
    assert_almost_equal(brier_score_loss(1. + y_true, y_pred),
                        true_score)
    assert_almost_equal(brier_score_loss(2 * y_true - 1, y_pred),
                        true_score)
    assert_raises(ValueError, brier_score_loss, y_true, y_pred[1:])
    assert_raises(ValueError, brier_score_loss, y_true, y_pred + 1.)
    assert_raises(ValueError, brier_score_loss, y_true, y_pred - 1.)