This file is indexed.

/usr/lib/python3/dist-packages/sklearn/tests/test_calibration.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause

import numpy as np
from scipy import sparse

from sklearn.utils.testing import (assert_array_almost_equal, assert_equal,
                                   assert_greater, assert_almost_equal,
                                   assert_greater_equal,
                                   assert_array_equal,
                                   assert_raises,
                                   ignore_warnings,
                                   assert_warns_message)
from sklearn.datasets import make_classification, make_blobs
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.svm import LinearSVC
from sklearn.linear_model import Ridge
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.metrics import brier_score_loss, log_loss
from sklearn.calibration import CalibratedClassifierCV
from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration
from sklearn.calibration import calibration_curve


@ignore_warnings
def test_calibration():
    """Test calibration objects with isotonic and sigmoid"""
    n_samples = 100
    X, y = make_classification(n_samples=2 * n_samples, n_features=6,
                               random_state=42)
    sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)

    X -= X.min()  # MultinomialNB only allows positive X

    # split train and test
    X_train, y_train, sw_train = \
        X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_test, y_test = X[n_samples:], y[n_samples:]

    # Naive-Bayes
    clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train)
    prob_pos_clf = clf.predict_proba(X_test)[:, 1]

    pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1)
    assert_raises(ValueError, pc_clf.fit, X, y)

    # Naive Bayes with calibration
    for this_X_train, this_X_test in [(X_train, X_test),
                                      (sparse.csr_matrix(X_train),
                                       sparse.csr_matrix(X_test))]:
        for method in ['isotonic', 'sigmoid']:
            pc_clf = CalibratedClassifierCV(clf, method=method, cv=2)
            # Note that this fit overwrites the fit on the entire training
            # set
            pc_clf.fit(this_X_train, y_train, sample_weight=sw_train)
            prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1]

            # Check that brier score has improved after calibration
            assert_greater(brier_score_loss(y_test, prob_pos_clf),
                           brier_score_loss(y_test, prob_pos_pc_clf))

            # Check invariance against relabeling [0, 1] -> [1, 2]
            pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train)
            prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1]
            assert_array_almost_equal(prob_pos_pc_clf,
                                      prob_pos_pc_clf_relabeled)

            # Check invariance against relabeling [0, 1] -> [-1, 1]
            pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train)
            prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1]
            assert_array_almost_equal(prob_pos_pc_clf,
                                      prob_pos_pc_clf_relabeled)

            # Check invariance against relabeling [0, 1] -> [1, 0]
            pc_clf.fit(this_X_train, (y_train + 1) % 2,
                       sample_weight=sw_train)
            prob_pos_pc_clf_relabeled = \
                pc_clf.predict_proba(this_X_test)[:, 1]
            if method == "sigmoid":
                assert_array_almost_equal(prob_pos_pc_clf,
                                          1 - prob_pos_pc_clf_relabeled)
            else:
                # Isotonic calibration is not invariant against relabeling
                # but should improve in both cases
                assert_greater(brier_score_loss(y_test, prob_pos_clf),
                               brier_score_loss((y_test + 1) % 2,
                                                prob_pos_pc_clf_relabeled))

        # check that calibration can also deal with regressors that have
        # a decision_function
        clf_base_regressor = CalibratedClassifierCV(Ridge())
        clf_base_regressor.fit(X_train, y_train)
        clf_base_regressor.predict(X_test)

        # Check failure cases:
        # only "isotonic" and "sigmoid" should be accepted as methods
        clf_invalid_method = CalibratedClassifierCV(clf, method="foo")
        assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train)

        # base-estimators should provide either decision_function or
        # predict_proba (most regressors, for instance, should fail)
        clf_base_regressor = \
            CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid")
        assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train)


def test_sample_weight_warning():
    n_samples = 100
    X, y = make_classification(n_samples=2 * n_samples, n_features=6,
                               random_state=42)

    sample_weight = np.random.RandomState(seed=42).uniform(size=len(y))
    X_train, y_train, sw_train = \
        X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_test = X[n_samples:]

    for method in ['sigmoid', 'isotonic']:
        base_estimator = LinearSVC(random_state=42)
        calibrated_clf = CalibratedClassifierCV(base_estimator, method=method)
        # LinearSVC does not currently support sample weights but they
        # can still be used for the calibration step (with a warning)
        msg = "LinearSVC does not support sample_weight."
        assert_warns_message(
            UserWarning, msg,
            calibrated_clf.fit, X_train, y_train, sample_weight=sw_train)
        probs_with_sw = calibrated_clf.predict_proba(X_test)

        # As the weights are used for the calibration, they should still yield
        # a different predictions
        calibrated_clf.fit(X_train, y_train)
        probs_without_sw = calibrated_clf.predict_proba(X_test)

        diff = np.linalg.norm(probs_with_sw - probs_without_sw)
        assert_greater(diff, 0.1)


def test_calibration_multiclass():
    """Test calibration for multiclass """
    # test multi-class setting with classifier that implements
    # only decision function
    clf = LinearSVC()
    X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42,
                          centers=3, cluster_std=3.0)

    # Use categorical labels to check that CalibratedClassifierCV supports
    # them correctly
    target_names = np.array(['a', 'b', 'c'])
    y = target_names[y_idx]

    X_train, y_train = X[::2], y[::2]
    X_test, y_test = X[1::2], y[1::2]

    clf.fit(X_train, y_train)
    for method in ['isotonic', 'sigmoid']:
        cal_clf = CalibratedClassifierCV(clf, method=method, cv=2)
        cal_clf.fit(X_train, y_train)
        probas = cal_clf.predict_proba(X_test)
        assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test)))

        # Check that log-loss of calibrated classifier is smaller than
        # log-loss of naively turned OvR decision function to probabilities
        # via softmax
        def softmax(y_pred):
            e = np.exp(-y_pred)
            return e / e.sum(axis=1).reshape(-1, 1)
        uncalibrated_log_loss = \
            log_loss(y_test, softmax(clf.decision_function(X_test)))
        calibrated_log_loss = log_loss(y_test, probas)
        assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss)

    # Test that calibration of a multiclass classifier decreases log-loss
    # for RandomForestClassifier
    X, y = make_blobs(n_samples=100, n_features=2, random_state=42,
                      cluster_std=3.0)
    X_train, y_train = X[::2], y[::2]
    X_test, y_test = X[1::2], y[1::2]

    clf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf.fit(X_train, y_train)
    clf_probs = clf.predict_proba(X_test)
    loss = log_loss(y_test, clf_probs)

    for method in ['isotonic', 'sigmoid']:
        cal_clf = CalibratedClassifierCV(clf, method=method, cv=3)
        cal_clf.fit(X_train, y_train)
        cal_clf_probs = cal_clf.predict_proba(X_test)
        cal_loss = log_loss(y_test, cal_clf_probs)
        assert_greater(loss, cal_loss)


def test_calibration_prefit():
    """Test calibration for prefitted classifiers"""
    n_samples = 50
    X, y = make_classification(n_samples=3 * n_samples, n_features=6,
                               random_state=42)
    sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)

    X -= X.min()  # MultinomialNB only allows positive X

    # split train and test
    X_train, y_train, sw_train = \
        X[:n_samples], y[:n_samples], sample_weight[:n_samples]
    X_calib, y_calib, sw_calib = \
        X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \
        sample_weight[n_samples:2 * n_samples]
    X_test, y_test = X[2 * n_samples:], y[2 * n_samples:]

    # Naive-Bayes
    clf = MultinomialNB()
    clf.fit(X_train, y_train, sw_train)
    prob_pos_clf = clf.predict_proba(X_test)[:, 1]

    # Naive Bayes with calibration
    for this_X_calib, this_X_test in [(X_calib, X_test),
                                      (sparse.csr_matrix(X_calib),
                                       sparse.csr_matrix(X_test))]:
        for method in ['isotonic', 'sigmoid']:
            pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit")

            for sw in [sw_calib, None]:
                pc_clf.fit(this_X_calib, y_calib, sample_weight=sw)
                y_prob = pc_clf.predict_proba(this_X_test)
                y_pred = pc_clf.predict(this_X_test)
                prob_pos_pc_clf = y_prob[:, 1]
                assert_array_equal(y_pred,
                                   np.array([0, 1])[np.argmax(y_prob, axis=1)])

                assert_greater(brier_score_loss(y_test, prob_pos_clf),
                               brier_score_loss(y_test, prob_pos_pc_clf))


def test_sigmoid_calibration():
    """Test calibration values with Platt sigmoid model"""
    exF = np.array([5, -4, 1.0])
    exY = np.array([1, -1, -1])
    # computed from my python port of the C++ code in LibSVM
    AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512])
    assert_array_almost_equal(AB_lin_libsvm,
                              _sigmoid_calibration(exF, exY), 3)
    lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1]))
    sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF)
    assert_array_almost_equal(lin_prob, sk_prob, 6)

    # check that _SigmoidCalibration().fit only accepts 1d array or 2d column
    # arrays
    assert_raises(ValueError, _SigmoidCalibration().fit,
                  np.vstack((exF, exF)), exY)


def test_calibration_curve():
    """Check calibration_curve function"""
    y_true = np.array([0, 0, 0, 1, 1, 1])
    y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.])
    prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2)
    prob_true_unnormalized, prob_pred_unnormalized = \
        calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True)
    assert_equal(len(prob_true), len(prob_pred))
    assert_equal(len(prob_true), 2)
    assert_almost_equal(prob_true, [0, 1])
    assert_almost_equal(prob_pred, [0.1, 0.9])
    assert_almost_equal(prob_true, prob_true_unnormalized)
    assert_almost_equal(prob_pred, prob_pred_unnormalized)

    # probabilities outside [0, 1] should not be accepted when normalize
    # is set to False
    assert_raises(ValueError, calibration_curve, [1.1], [-0.1],
                  normalize=False)


def test_calibration_nan_imputer():
    """Test that calibration can accept nan"""
    X, y = make_classification(n_samples=10, n_features=2,
                               n_informative=2, n_redundant=0,
                               random_state=42)
    X[0, 0] = np.nan
    clf = Pipeline(
        [('imputer', Imputer()),
         ('rf', RandomForestClassifier(n_estimators=1))])
    clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic')
    clf_c.fit(X, y)
    clf_c.predict(X)