This file is indexed.

/usr/lib/python3/dist-packages/sklearn/tests/test_naive_bayes.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import pickle
from io import BytesIO
import numpy as np
import scipy.sparse

from sklearn.datasets import load_digits, load_iris
from sklearn.cross_validation import cross_val_score, train_test_split

from sklearn.externals.six.moves import zip
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_greater

from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB

# Data is just 6 separable points in the plane
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
y = np.array([1, 1, 1, 2, 2, 2])

# A bit more random tests
rng = np.random.RandomState(0)
X1 = rng.normal(size=(10, 3))
y1 = (rng.normal(size=(10)) > 0).astype(np.int)

# Data is 6 random integer points in a 100 dimensional space classified to
# three classes.
X2 = rng.randint(5, size=(6, 100))
y2 = np.array([1, 1, 2, 2, 3, 3])


def test_gnb():
    # Gaussian Naive Bayes classification.
    # This checks that GaussianNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    clf = GaussianNB()
    y_pred = clf.fit(X, y).predict(X)
    assert_array_equal(y_pred, y)

    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

    # Test whether label mismatch between target y and classes raises
    # an Error
    # FIXME Remove this test once the more general partial_fit tests are merged
    assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1])


def test_gnb_prior():
    # Test whether class priors are properly set.
    clf = GaussianNB().fit(X, y)
    assert_array_almost_equal(np.array([3, 3]) / 6.0,
                              clf.class_prior_, 8)
    clf.fit(X1, y1)
    # Check that the class priors sum to 1
    assert_array_almost_equal(clf.class_prior_.sum(), 1)


def test_gnb_sample_weight():
    """Test whether sample weights are properly used in GNB. """
    # Sample weights all being 1 should not change results
    sw = np.ones(6)
    clf = GaussianNB().fit(X, y)
    clf_sw = GaussianNB().fit(X, y, sw)

    assert_array_almost_equal(clf.theta_, clf_sw.theta_)
    assert_array_almost_equal(clf.sigma_, clf_sw.sigma_)

    # Fitting twice with half sample-weights should result
    # in same result as fitting once with full weights
    sw = rng.rand(y.shape[0])
    clf1 = GaussianNB().fit(X, y, sample_weight=sw)
    clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2)
    clf2.partial_fit(X, y, sample_weight=sw / 2)

    assert_array_almost_equal(clf1.theta_, clf2.theta_)
    assert_array_almost_equal(clf1.sigma_, clf2.sigma_)

    # Check that duplicate entries and correspondingly increased sample
    # weights yield the same result
    ind = rng.randint(0, X.shape[0], 20)
    sample_weight = np.bincount(ind, minlength=X.shape[0])

    clf_dupl = GaussianNB().fit(X[ind], y[ind])
    clf_sw = GaussianNB().fit(X, y, sample_weight)

    assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_)
    assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_)


def test_discrete_prior():
    # Test whether class priors are properly set.
    for cls in [BernoulliNB, MultinomialNB]:
        clf = cls().fit(X2, y2)
        assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0),
                                  clf.class_log_prior_, 8)


def test_mnnb():
    # Test Multinomial Naive Bayes classification.
    # This checks that MultinomialNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    for X in [X2, scipy.sparse.csr_matrix(X2)]:
        # Check the ability to predict the learning set.
        clf = MultinomialNB()
        assert_raises(ValueError, clf.fit, -X, y2)
        y_pred = clf.fit(X, y2).predict(X)

        assert_array_equal(y_pred, y2)

        # Verify that np.log(clf.predict_proba(X)) gives the same results as
        # clf.predict_log_proba(X)
        y_pred_proba = clf.predict_proba(X)
        y_pred_log_proba = clf.predict_log_proba(X)
        assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

        # Check that incremental fitting yields the same results
        clf2 = MultinomialNB()
        clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2))
        clf2.partial_fit(X[2:5], y2[2:5])
        clf2.partial_fit(X[5:], y2[5:])

        y_pred2 = clf2.predict(X)
        assert_array_equal(y_pred2, y2)

        y_pred_proba2 = clf2.predict_proba(X)
        y_pred_log_proba2 = clf2.predict_log_proba(X)
        assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8)
        assert_array_almost_equal(y_pred_proba2, y_pred_proba)
        assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba)

        # Partial fit on the whole data at once should be the same as fit too
        clf3 = MultinomialNB()
        clf3.partial_fit(X, y2, classes=np.unique(y2))

        y_pred3 = clf3.predict(X)
        assert_array_equal(y_pred3, y2)
        y_pred_proba3 = clf3.predict_proba(X)
        y_pred_log_proba3 = clf3.predict_log_proba(X)
        assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8)
        assert_array_almost_equal(y_pred_proba3, y_pred_proba)
        assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba)


def check_partial_fit(cls):
    clf1 = cls()
    clf1.fit([[0, 1], [1, 0]], [0, 1])

    clf2 = cls()
    clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1])
    assert_array_equal(clf1.class_count_, clf2.class_count_)
    assert_array_equal(clf1.feature_count_, clf2.feature_count_)

    clf3 = cls()
    clf3.partial_fit([[0, 1]], [0], classes=[0, 1])
    clf3.partial_fit([[1, 0]], [1])
    assert_array_equal(clf1.class_count_, clf3.class_count_)
    assert_array_equal(clf1.feature_count_, clf3.feature_count_)


def test_discretenb_partial_fit():
    for cls in [MultinomialNB, BernoulliNB]:
        yield check_partial_fit, cls


def test_gnb_partial_fit():
    clf = GaussianNB().fit(X, y)
    clf_pf = GaussianNB().partial_fit(X, y, np.unique(y))
    assert_array_almost_equal(clf.theta_, clf_pf.theta_)
    assert_array_almost_equal(clf.sigma_, clf_pf.sigma_)
    assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_)

    clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y))
    clf_pf2.partial_fit(X[1::2], y[1::2])
    assert_array_almost_equal(clf.theta_, clf_pf2.theta_)
    assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_)
    assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_)


def test_discretenb_pickle():
    # Test picklability of discrete naive Bayes classifiers

    for cls in [BernoulliNB, MultinomialNB, GaussianNB]:
        clf = cls().fit(X2, y2)
        y_pred = clf.predict(X2)

        store = BytesIO()
        pickle.dump(clf, store)
        clf = pickle.load(BytesIO(store.getvalue()))

        assert_array_equal(y_pred, clf.predict(X2))

        if cls is not GaussianNB:
            # TODO re-enable me when partial_fit is implemented for GaussianNB

            # Test pickling of estimator trained with partial_fit
            clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2))
            clf2.partial_fit(X2[3:], y2[3:])
            store = BytesIO()
            pickle.dump(clf2, store)
            clf2 = pickle.load(BytesIO(store.getvalue()))
            assert_array_equal(y_pred, clf2.predict(X2))


def test_input_check_fit():
    # Test input checks for the fit method
    for cls in [BernoulliNB, MultinomialNB, GaussianNB]:
        # check shape consistency for number of samples at fit time
        assert_raises(ValueError, cls().fit, X2, y2[:-1])

        # check shape consistency for number of input features at predict time
        clf = cls().fit(X2, y2)
        assert_raises(ValueError, clf.predict, X2[:, :-1])


def test_input_check_partial_fit():
    for cls in [BernoulliNB, MultinomialNB]:
        # check shape consistency
        assert_raises(ValueError, cls().partial_fit, X2, y2[:-1],
                      classes=np.unique(y2))

        # classes is required for first call to partial fit
        assert_raises(ValueError, cls().partial_fit, X2, y2)

        # check consistency of consecutive classes values
        clf = cls()
        clf.partial_fit(X2, y2, classes=np.unique(y2))
        assert_raises(ValueError, clf.partial_fit, X2, y2,
                      classes=np.arange(42))

        # check consistency of input shape for partial_fit
        assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2)

        # check consistency of input shape for predict
        assert_raises(ValueError, clf.predict, X2[:, :-1])


def test_discretenb_predict_proba():
    # Test discrete NB classes' probability scores

    # The 100s below distinguish Bernoulli from multinomial.
    # FIXME: write a test to show this.
    X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]]
    X_multinomial = [[0, 1], [1, 3], [4, 0]]

    # test binary case (1-d output)
    y = [0, 0, 2]   # 2 is regression test for binary case, 02e673
    for cls, X in zip([BernoulliNB, MultinomialNB],
                      [X_bernoulli, X_multinomial]):
        clf = cls().fit(X, y)
        assert_equal(clf.predict(X[-1:]), 2)
        assert_equal(clf.predict_proba([X[0]]).shape, (1, 2))
        assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1),
                                  np.array([1., 1.]), 6)

    # test multiclass case (2-d output, must sum to one)
    y = [0, 1, 2]
    for cls, X in zip([BernoulliNB, MultinomialNB],
                      [X_bernoulli, X_multinomial]):
        clf = cls().fit(X, y)
        assert_equal(clf.predict_proba(X[0:1]).shape, (1, 3))
        assert_equal(clf.predict_proba(X[:2]).shape, (2, 3))
        assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1)
        assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1)
        assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1)
        assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1)


def test_discretenb_uniform_prior():
    # Test whether discrete NB classes fit a uniform prior
    # when fit_prior=False and class_prior=None

    for cls in [BernoulliNB, MultinomialNB]:
        clf = cls()
        clf.set_params(fit_prior=False)
        clf.fit([[0], [0], [1]], [0, 0, 1])
        prior = np.exp(clf.class_log_prior_)
        assert_array_equal(prior, np.array([.5, .5]))


def test_discretenb_provide_prior():
    # Test whether discrete NB classes use provided prior

    for cls in [BernoulliNB, MultinomialNB]:
        clf = cls(class_prior=[0.5, 0.5])
        clf.fit([[0], [0], [1]], [0, 0, 1])
        prior = np.exp(clf.class_log_prior_)
        assert_array_equal(prior, np.array([.5, .5]))

        # Inconsistent number of classes with prior
        assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2])
        assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1],
                      classes=[0, 1, 1])


def test_discretenb_provide_prior_with_partial_fit():
    # Test whether discrete NB classes use provided prior
    # when using partial_fit

    iris = load_iris()
    iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split(
        iris.data, iris.target, test_size=0.4, random_state=415)

    for cls in [BernoulliNB, MultinomialNB]:
        for prior in [None, [0.3, 0.3, 0.4]]:
            clf_full = cls(class_prior=prior)
            clf_full.fit(iris.data, iris.target)
            clf_partial = cls(class_prior=prior)
            clf_partial.partial_fit(iris_data1, iris_target1,
                                    classes=[0, 1, 2])
            clf_partial.partial_fit(iris_data2, iris_target2)
            assert_array_almost_equal(clf_full.class_log_prior_,
                                      clf_partial.class_log_prior_)


def test_sample_weight_multiclass():
    for cls in [BernoulliNB, MultinomialNB]:
        # check shape consistency for number of samples at fit time
        yield check_sample_weight_multiclass, cls


def check_sample_weight_multiclass(cls):
    X = [
        [0, 0, 1],
        [0, 1, 1],
        [0, 1, 1],
        [1, 0, 0],
    ]
    y = [0, 0, 1, 2]
    sample_weight = np.array([1, 1, 2, 2], dtype=np.float)
    sample_weight /= sample_weight.sum()
    clf = cls().fit(X, y, sample_weight=sample_weight)
    assert_array_equal(clf.predict(X), [0, 1, 1, 2])

    # Check sample weight using the partial_fit method
    clf = cls()
    clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2],
                    sample_weight=sample_weight[:2])
    clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3])
    clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:])
    assert_array_equal(clf.predict(X), [0, 1, 1, 2])


def test_sample_weight_mnb():
    clf = MultinomialNB()
    clf.fit([[1, 2], [1, 2], [1, 0]],
            [0, 0, 1],
            sample_weight=[1, 1, 4])
    assert_array_equal(clf.predict([[1, 0]]), [1])
    positive_prior = np.exp(clf.intercept_[0])
    assert_array_almost_equal([1 - positive_prior, positive_prior],
                              [1 / 3., 2 / 3.])


def test_coef_intercept_shape():
    # coef_ and intercept_ should have shapes as in other linear models.
    # Non-regression test for issue #2127.
    X = [[1, 0, 0], [1, 1, 1]]
    y = [1, 2]  # binary classification

    for clf in [MultinomialNB(), BernoulliNB()]:
        clf.fit(X, y)
        assert_equal(clf.coef_.shape, (1, 3))
        assert_equal(clf.intercept_.shape, (1,))


def test_check_accuracy_on_digits():
    # Non regression test to make sure that any further refactoring / optim
    # of the NB models do not harm the performance on a slightly non-linearly
    # separable dataset
    digits = load_digits()
    X, y = digits.data, digits.target
    binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8)
    X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8]

    # Multinomial NB
    scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10)
    assert_greater(scores.mean(), 0.86)

    scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10)
    assert_greater(scores.mean(), 0.94)

    # Bernoulli NB
    scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10)
    assert_greater(scores.mean(), 0.83)

    scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10)
    assert_greater(scores.mean(), 0.92)

    # Gaussian NB
    scores = cross_val_score(GaussianNB(), X, y, cv=10)
    assert_greater(scores.mean(), 0.77)

    scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10)
    assert_greater(scores.mean(), 0.86)


def test_feature_log_prob_bnb():
    # Test for issue #4268.
    # Tests that the feature log prob value computed by BernoulliNB when
    # alpha=1.0 is equal to the expression given in Manning, Raghavan,
    # and Schuetze's "Introduction to Information Retrieval" book:
    # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]])
    Y = np.array([0, 0, 1, 2, 2])

    # Fit Bernoulli NB w/ alpha = 1.0
    clf = BernoulliNB(alpha=1.0)
    clf.fit(X, Y)

    # Manually form the (log) numerator and denominator that
    # constitute P(feature presence | class)
    num = np.log(clf.feature_count_ + 1.0)
    denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T

    # Check manual estimate matches
    assert_array_equal(clf.feature_log_prob_, (num - denom))


def test_bnb():
    # Tests that BernoulliNB when alpha=1.0 gives the same values as
    # those given for the toy example in Manning, Raghavan, and
    # Schuetze's "Introduction to Information Retrieval" book:
    # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    # Training data points are:
    # Chinese Beijing Chinese (class: China)
    # Chinese Chinese Shanghai (class: China)
    # Chinese Macao (class: China)
    # Tokyo Japan Chinese (class: Japan)

    # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo
    X = np.array([[1, 1, 0, 0, 0, 0],
                  [0, 1, 0, 0, 1, 0],
                  [0, 1, 0, 1, 0, 0],
                  [0, 1, 1, 0, 0, 1]])

    # Classes are China (0), Japan (1)
    Y = np.array([0, 0, 0, 1])

    # Fit BernoulliBN w/ alpha = 1.0
    clf = BernoulliNB(alpha=1.0)
    clf.fit(X, Y)

    # Check the class prior is correct
    class_prior = np.array([0.75, 0.25])
    assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior)

    # Check the feature probabilities are correct
    feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2],
                             [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]])
    assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob)

    # Testing data point is:
    # Chinese Chinese Chinese Tokyo Japan
    X_test = np.array([[0, 1, 1, 0, 0, 1]])

    # Check the predictive probabilities are correct
    unnorm_predict_proba = np.array([[0.005183999999999999,
                                      0.02194787379972565]])
    predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba)
    assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)


def test_naive_bayes_scale_invariance():
    # Scaling the data should not change the prediction results
    iris = load_iris()
    X, y = iris.data, iris.target
    labels = [GaussianNB().fit(f * X, y).predict(f * X)
              for f in [1E-10, 1, 1E10]]
    assert_array_equal(labels[0], labels[1])
    assert_array_equal(labels[1], labels[2])