This file is indexed.

/usr/lib/python3/dist-packages/sklearn/tests/test_random_projection.py is in python3-sklearn 0.17.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from __future__ import division

import numpy as np
import scipy.sparse as sp

from sklearn.metrics import euclidean_distances

from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import gaussian_random_matrix
from sklearn.random_projection import sparse_random_matrix
from sklearn.random_projection import SparseRandomProjection
from sklearn.random_projection import GaussianRandomProjection

from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_warns
from sklearn.utils import DataDimensionalityWarning

all_sparse_random_matrix = [sparse_random_matrix]
all_dense_random_matrix = [gaussian_random_matrix]
all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix)

all_SparseRandomProjection = [SparseRandomProjection]
all_DenseRandomProjection = [GaussianRandomProjection]
all_RandomProjection = set(all_SparseRandomProjection +
                           all_DenseRandomProjection)


# Make some random data with uniformly located non zero entries with
# Gaussian distributed values
def make_sparse_random_data(n_samples, n_features, n_nonzeros):
    rng = np.random.RandomState(0)
    data_coo = sp.coo_matrix(
        (rng.randn(n_nonzeros),
         (rng.randint(n_samples, size=n_nonzeros),
          rng.randint(n_features, size=n_nonzeros))),
        shape=(n_samples, n_features))
    return data_coo.toarray(), data_coo.tocsr()


def densify(matrix):
    if not sp.issparse(matrix):
        return matrix
    else:
        return matrix.toarray()


n_samples, n_features = (10, 1000)
n_nonzeros = int(n_samples * n_features / 100.)
data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros)


###############################################################################
# test on JL lemma
###############################################################################
def test_invalid_jl_domain():
    assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1)
    assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0)
    assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1)
    assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5)


def test_input_size_jl_min_dim():
    assert_raises(ValueError, johnson_lindenstrauss_min_dim,
                  3 * [100], 2 * [0.9])

    assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100],
                  2 * [0.9])

    johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)),
                                  0.5 * np.ones((10, 10)))


###############################################################################
# tests random matrix generation
###############################################################################
def check_input_size_random_matrix(random_matrix):
    assert_raises(ValueError, random_matrix, 0, 0)
    assert_raises(ValueError, random_matrix, -1, 1)
    assert_raises(ValueError, random_matrix, 1, -1)
    assert_raises(ValueError, random_matrix, 1, 0)
    assert_raises(ValueError, random_matrix, -1, 0)


def check_size_generated(random_matrix):
    assert_equal(random_matrix(1, 5).shape, (1, 5))
    assert_equal(random_matrix(5, 1).shape, (5, 1))
    assert_equal(random_matrix(5, 5).shape, (5, 5))
    assert_equal(random_matrix(1, 1).shape, (1, 1))


def check_zero_mean_and_unit_norm(random_matrix):
    # All random matrix should produce a transformation matrix
    # with zero mean and unit norm for each columns

    A = densify(random_matrix(10000, 1, random_state=0))

    assert_array_almost_equal(0, np.mean(A), 3)
    assert_array_almost_equal(1.0, np.linalg.norm(A),  1)


def check_input_with_sparse_random_matrix(random_matrix):
    n_components, n_features = 5, 10

    for density in [-1., 0.0, 1.1]:
        assert_raises(ValueError,
                      random_matrix, n_components, n_features, density=density)


def test_basic_property_of_random_matrix():
    # Check basic properties of random matrix generation
    for random_matrix in all_random_matrix:
        yield check_input_size_random_matrix, random_matrix
        yield check_size_generated, random_matrix
        yield check_zero_mean_and_unit_norm, random_matrix

    for random_matrix in all_sparse_random_matrix:
        yield check_input_with_sparse_random_matrix, random_matrix

        random_matrix_dense = \
            lambda n_components, n_features, random_state: random_matrix(
                n_components, n_features, random_state=random_state,
                density=1.0)
        yield check_zero_mean_and_unit_norm, random_matrix_dense


def test_gaussian_random_matrix():
    # Check some statical properties of Gaussian random matrix
    # Check that the random matrix follow the proper distribution.
    # Let's say that each element of a_{ij} of A is taken from
    #   a_ij ~ N(0.0, 1 / n_components).
    #
    n_components = 100
    n_features = 1000
    A = gaussian_random_matrix(n_components, n_features, random_state=0)

    assert_array_almost_equal(0.0, np.mean(A), 2)
    assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1)


def test_sparse_random_matrix():
    # Check some statical properties of sparse random matrix
    n_components = 100
    n_features = 500

    for density in [0.3, 1.]:
        s = 1 / density

        A = sparse_random_matrix(n_components,
                                 n_features,
                                 density=density,
                                 random_state=0)
        A = densify(A)

        # Check possible values
        values = np.unique(A)
        assert_in(np.sqrt(s) / np.sqrt(n_components), values)
        assert_in(- np.sqrt(s) / np.sqrt(n_components), values)

        if density == 1.0:
            assert_equal(np.size(values), 2)
        else:
            assert_in(0., values)
            assert_equal(np.size(values), 3)

        # Check that the random matrix follow the proper distribution.
        # Let's say that each element of a_{ij} of A is taken from
        #
        # - -sqrt(s) / sqrt(n_components)   with probability 1 / 2s
        # -  0                              with probability 1 - 1 / s
        # - +sqrt(s) / sqrt(n_components)   with probability 1 / 2s
        #
        assert_almost_equal(np.mean(A == 0.0),
                            1 - 1 / s, decimal=2)
        assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)),
                            1 / (2 * s), decimal=2)
        assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)),
                            1 / (2 * s), decimal=2)

        assert_almost_equal(np.var(A == 0.0, ddof=1),
                            (1 - 1 / s) * 1 / s, decimal=2)
        assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components),
                                   ddof=1),
                            (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)
        assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components),
                                   ddof=1),
                            (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2)


###############################################################################
# tests on random projection transformer
###############################################################################
def test_sparse_random_projection_transformer_invalid_density():
    for RandomProjection in all_SparseRandomProjection:
        assert_raises(ValueError,
                      RandomProjection(density=1.1).fit, data)

        assert_raises(ValueError,
                      RandomProjection(density=0).fit, data)

        assert_raises(ValueError,
                      RandomProjection(density=-0.1).fit, data)


def test_random_projection_transformer_invalid_input():
    for RandomProjection in all_RandomProjection:
        assert_raises(ValueError,
                      RandomProjection(n_components='auto').fit, [[0, 1, 2]])

        assert_raises(ValueError,
                      RandomProjection(n_components=-10).fit, data)


def test_try_to_transform_before_fit():
    for RandomProjection in all_RandomProjection:
        assert_raises(ValueError,
                      RandomProjection(n_components='auto').transform, data)


def test_too_many_samples_to_find_a_safe_embedding():
    data, _ = make_sparse_random_data(1000, 100, 1000)

    for RandomProjection in all_RandomProjection:
        rp = RandomProjection(n_components='auto', eps=0.1)
        expected_msg = (
            'eps=0.100000 and n_samples=1000 lead to a target dimension'
            ' of 5920 which is larger than the original space with'
            ' n_features=100')
        assert_raise_message(ValueError, expected_msg, rp.fit, data)


def test_random_projection_embedding_quality():
    data, _ = make_sparse_random_data(8, 5000, 15000)
    eps = 0.2

    original_distances = euclidean_distances(data, squared=True)
    original_distances = original_distances.ravel()
    non_identical = original_distances != 0.0

    # remove 0 distances to avoid division by 0
    original_distances = original_distances[non_identical]

    for RandomProjection in all_RandomProjection:
        rp = RandomProjection(n_components='auto', eps=eps, random_state=0)
        projected = rp.fit_transform(data)

        projected_distances = euclidean_distances(projected, squared=True)
        projected_distances = projected_distances.ravel()

        # remove 0 distances to avoid division by 0
        projected_distances = projected_distances[non_identical]

        distances_ratio = projected_distances / original_distances

        # check that the automatically tuned values for the density respect the
        # contract for eps: pairwise distances are preserved according to the
        # Johnson-Lindenstrauss lemma
        assert_less(distances_ratio.max(), 1 + eps)
        assert_less(1 - eps, distances_ratio.min())


def test_SparseRandomProjection_output_representation():
    for SparseRandomProjection in all_SparseRandomProjection:
        # when using sparse input, the projected data can be forced to be a
        # dense numpy array
        rp = SparseRandomProjection(n_components=10, dense_output=True,
                                    random_state=0)
        rp.fit(data)
        assert isinstance(rp.transform(data), np.ndarray)

        sparse_data = sp.csr_matrix(data)
        assert isinstance(rp.transform(sparse_data), np.ndarray)

        # the output can be left to a sparse matrix instead
        rp = SparseRandomProjection(n_components=10, dense_output=False,
                                    random_state=0)
        rp = rp.fit(data)
        # output for dense input will stay dense:
        assert isinstance(rp.transform(data), np.ndarray)

        # output for sparse output will be sparse:
        assert sp.issparse(rp.transform(sparse_data))


def test_correct_RandomProjection_dimensions_embedding():
    for RandomProjection in all_RandomProjection:
        rp = RandomProjection(n_components='auto',
                              random_state=0,
                              eps=0.5).fit(data)

        # the number of components is adjusted from the shape of the training
        # set
        assert_equal(rp.n_components, 'auto')
        assert_equal(rp.n_components_, 110)

        if RandomProjection in all_SparseRandomProjection:
            assert_equal(rp.density, 'auto')
            assert_almost_equal(rp.density_, 0.03, 2)

        assert_equal(rp.components_.shape, (110, n_features))

        projected_1 = rp.transform(data)
        assert_equal(projected_1.shape, (n_samples, 110))

        # once the RP is 'fitted' the projection is always the same
        projected_2 = rp.transform(data)
        assert_array_equal(projected_1, projected_2)

        # fit transform with same random seed will lead to the same results
        rp2 = RandomProjection(random_state=0, eps=0.5)
        projected_3 = rp2.fit_transform(data)
        assert_array_equal(projected_1, projected_3)

        # Try to transform with an input X of size different from fitted.
        assert_raises(ValueError, rp.transform, data[:, 1:5])

        # it is also possible to fix the number of components and the density
        # level
        if RandomProjection in all_SparseRandomProjection:
            rp = RandomProjection(n_components=100, density=0.001,
                                  random_state=0)
            projected = rp.fit_transform(data)
            assert_equal(projected.shape, (n_samples, 100))
            assert_equal(rp.components_.shape, (100, n_features))
            assert_less(rp.components_.nnz, 115)  # close to 1% density
            assert_less(85, rp.components_.nnz)  # close to 1% density


def test_warning_n_components_greater_than_n_features():
    n_features = 20
    data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))

    for RandomProjection in all_RandomProjection:
        assert_warns(DataDimensionalityWarning,
                     RandomProjection(n_components=n_features + 1).fit, data)


def test_works_with_sparse_data():
    n_features = 20
    data, _ = make_sparse_random_data(5, n_features, int(n_features / 4))

    for RandomProjection in all_RandomProjection:
        rp_dense = RandomProjection(n_components=3,
                                    random_state=1).fit(data)
        rp_sparse = RandomProjection(n_components=3,
                                     random_state=1).fit(sp.csr_matrix(data))
        assert_array_almost_equal(densify(rp_dense.components_),
                                  densify(rp_sparse.components_))