/usr/lib/python3/dist-packages/whoosh/classify.py is in python3-whoosh 2.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | # Copyright 2008 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
"""Classes and functions for classifying and extracting information from
documents.
"""
from __future__ import division
import random
from collections import defaultdict
from math import log
from whoosh.compat import xrange, iteritems
# Expansion models
class ExpansionModel(object):
def __init__(self, doc_count, field_length):
self.N = doc_count
self.collection_total = field_length
if self.N:
self.mean_length = self.collection_total / self.N
else:
self.mean_length = 0
def normalizer(self, maxweight, top_total):
raise NotImplementedError
def score(self, weight_in_top, weight_in_collection, top_total):
raise NotImplementedError
class Bo1Model(ExpansionModel):
def normalizer(self, maxweight, top_total):
f = maxweight / self.N
return (maxweight * log((1.0 + f) / f) + log(1.0 + f)) / log(2.0)
def score(self, weight_in_top, weight_in_collection, top_total):
f = weight_in_collection / self.N
return weight_in_top * log((1.0 + f) / f, 2) + log(1.0 + f, 2)
class Bo2Model(ExpansionModel):
def normalizer(self, maxweight, top_total):
f = maxweight * self.N / self.collection_total
return maxweight * log((1.0 + f) / f, 2) + log(1.0 + f, 2)
def score(self, weight_in_top, weight_in_collection, top_total):
f = weight_in_top * top_total / self.collection_total
return weight_in_top * log((1.0 + f) / f, 2) + log(1.0 + f, 2)
class KLModel(ExpansionModel):
def normalizer(self, maxweight, top_total):
return (maxweight * log(self.collection_total / top_total) / log(2.0)
* top_total)
def score(self, weight_in_top, weight_in_collection, top_total):
wit_over_tt = weight_in_top / top_total
wic_over_ct = weight_in_collection / self.collection_total
if wit_over_tt < wic_over_ct:
return 0
else:
return wit_over_tt * log(wit_over_tt
/ (weight_in_top / self.collection_total),
2)
class Expander(object):
"""Uses an ExpansionModel to expand the set of query terms based on the top
N result documents.
"""
def __init__(self, ixreader, fieldname, model=Bo1Model):
"""
:param reader: A :class:whoosh.reading.IndexReader object.
:param fieldname: The name of the field in which to search.
:param model: (classify.ExpansionModel) The model to use for expanding
the query terms. If you omit this parameter, the expander uses
:class:`Bo1Model` by default.
"""
self.ixreader = ixreader
self.fieldname = fieldname
doccount = self.ixreader.doc_count_all()
fieldlen = self.ixreader.field_length(fieldname)
if type(model) is type:
model = model(doccount, fieldlen)
self.model = model
# Maps words to their weight in the top N documents.
self.topN_weight = defaultdict(float)
# Total weight of all terms in the top N documents.
self.top_total = 0
def add(self, vector):
"""Adds forward-index information about one of the "top N" documents.
:param vector: A series of (text, weight) tuples, such as is
returned by Reader.vector_as("weight", docnum, fieldname).
"""
total_weight = 0
topN_weight = self.topN_weight
for word, weight in vector:
total_weight += weight
topN_weight[word] += weight
self.top_total += total_weight
def add_document(self, docnum):
ixreader = self.ixreader
if self.ixreader.has_vector(docnum, self.fieldname):
self.add(ixreader.vector_as("weight", docnum, self.fieldname))
elif self.ixreader.schema[self.fieldname].stored:
self.add_text(ixreader.stored_fields(docnum).get(self.fieldname))
else:
raise Exception("Field %r in document %s is not vectored or stored"
% (self.fieldname, docnum))
def add_text(self, string):
# Unfortunately since field.index() yields bytes texts, and we want
# unicode, we end up encoding and decoding unnecessarily.
#
# TODO: Find a way around this
field = self.ixreader.schema[self.fieldname]
from_bytes = field.from_bytes
self.add((from_bytes(text), weight) for text, _, weight, _
in field.index(string))
def expanded_terms(self, number, normalize=True):
"""Returns the N most important terms in the vectors added so far.
:param number: The number of terms to return.
:param normalize: Whether to normalize the weights.
:returns: A list of ("term", weight) tuples.
"""
model = self.model
fieldname = self.fieldname
ixreader = self.ixreader
field = ixreader.schema[fieldname]
tlist = []
maxweight = 0
# If no terms have been added, return an empty list
if not self.topN_weight:
return []
for word, weight in iteritems(self.topN_weight):
btext = field.to_bytes(word)
if (fieldname, btext) in ixreader:
cf = ixreader.frequency(fieldname, btext)
score = model.score(weight, cf, self.top_total)
if score > maxweight:
maxweight = score
tlist.append((score, word))
if normalize:
norm = model.normalizer(maxweight, self.top_total)
else:
norm = maxweight
tlist = [(weight / norm, t) for weight, t in tlist]
tlist.sort(key=lambda x: (0 - x[0], x[1]))
return [(t, weight) for weight, t in tlist[:number]]
# Similarity functions
def shingles(input, size=2):
d = defaultdict(int)
for shingle in (input[i:i + size]
for i in xrange(len(input) - (size - 1))):
d[shingle] += 1
return iteritems(d)
def simhash(features, hashbits=32):
if hashbits == 32:
hashfn = hash
else:
hashfn = lambda s: _hash(s, hashbits)
vs = [0] * hashbits
for feature, weight in features:
h = hashfn(feature)
for i in xrange(hashbits):
if h & (1 << i):
vs[i] += weight
else:
vs[i] -= weight
out = 0
for i, v in enumerate(vs):
if v > 0:
out |= 1 << i
return out
def _hash(s, hashbits):
# A variable-length version of Python's builtin hash
if s == "":
return 0
else:
x = ord(s[0]) << 7
m = 1000003
mask = 2 ** hashbits - 1
for c in s:
x = ((x * m) ^ ord(c)) & mask
x ^= len(s)
if x == -1:
x = -2
return x
def hamming_distance(first_hash, other_hash, hashbits=32):
x = (first_hash ^ other_hash) & ((1 << hashbits) - 1)
tot = 0
while x:
tot += 1
x &= x - 1
return tot
# Clustering
def kmeans(data, k, t=0.0001, distfun=None, maxiter=50, centers=None):
"""
One-dimensional K-means clustering function.
:param data: list of data points.
:param k: number of clusters.
:param t: tolerance; stop if changes between iterations are smaller than
this value.
:param distfun: a distance function.
:param centers: a list of centroids to start with.
:param maxiter: maximum number of iterations to run.
"""
# Adapted from a C version by Roger Zhang, <rogerz@cs.dal.ca>
# http://cs.smu.ca/~r_zhang/code/kmeans.c
DOUBLE_MAX = 1.797693e308
n = len(data)
error = DOUBLE_MAX # sum of squared euclidean distance
counts = [0] * k # size of each cluster
labels = [0] * n # output cluster label for each data point
# c1 is an array of len k of the temp centroids
c1 = [0] * k
# choose k initial centroids
if centers:
c = centers
else:
c = random.sample(data, k)
niter = 0
# main loop
while True:
# save error from last step
old_error = error
error = 0
# clear old counts and temp centroids
for i in xrange(k):
counts[i] = 0
c1[i] = 0
for h in xrange(n):
# identify the closest cluster
min_distance = DOUBLE_MAX
for i in xrange(k):
distance = (data[h] - c[i]) ** 2
if distance < min_distance:
labels[h] = i
min_distance = distance
# update size and temp centroid of the destination cluster
c1[labels[h]] += data[h]
counts[labels[h]] += 1
# update standard error
error += min_distance
for i in xrange(k): # update all centroids
c[i] = c1[i] / counts[i] if counts[i] else c1[i]
niter += 1
if (abs(error - old_error) < t) or (niter > maxiter):
break
return labels, c
# Sliding window clusters
def two_pass_variance(data):
n = 0
sum1 = 0
sum2 = 0
for x in data:
n += 1
sum1 = sum1 + x
mean = sum1 / n
for x in data:
sum2 += (x - mean) * (x - mean)
variance = sum2 / (n - 1)
return variance
def weighted_incremental_variance(data_weight_pairs):
mean = 0
S = 0
sumweight = 0
for x, weight in data_weight_pairs:
temp = weight + sumweight
Q = x - mean
R = Q * weight / temp
S += sumweight * Q * R
mean += R
sumweight = temp
Variance = S / (sumweight - 1) # if sample is the population, omit -1
return Variance
def swin(data, size):
clusters = []
for i, left in enumerate(data):
j = i
right = data[j]
while j < len(data) - 1 and right - left < size:
j += 1
right = data[j]
v = 99999
if j - i > 1:
v = two_pass_variance(data[i:j + 1])
clusters.append((left, right, j - i, v))
clusters.sort(key=lambda x: (0 - x[2], x[3]))
return clusters
|