This file is indexed.

/usr/lib/python3/dist-packages/whoosh/reading.py is in python3-whoosh 2.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.

"""This module contains classes that allow reading from an index.
"""

from math import log
from bisect import bisect_right
from heapq import heapify, heapreplace, heappop, nlargest

from whoosh import columns
from whoosh.compat import abstractmethod
from whoosh.compat import xrange, zip_, next, iteritems
from whoosh.filedb.filestore import OverlayStorage
from whoosh.matching import MultiMatcher
from whoosh.support.levenshtein import distance
from whoosh.system import emptybytes


# Exceptions

class ReaderClosed(Exception):
    """Exception raised when you try to do some operation on a closed searcher
    (or a Results object derived from a searcher that has since been closed).
    """

    message = "Operation on a closed reader"


class TermNotFound(Exception):
    pass


# Term Info base class

class TermInfo(object):
    """Represents a set of statistics about a term. This object is returned by
    :meth:`IndexReader.term_info`. These statistics may be useful for
    optimizations and scoring algorithms.
    """

    def __init__(self, weight=0, df=0, minlength=None,
                 maxlength=0, maxweight=0, minid=None, maxid=0):
        self._weight = weight
        self._df = df
        self._minlength = minlength
        self._maxlength = maxlength
        self._maxweight = maxweight
        self._minid = minid
        self._maxid = maxid

    def add_posting(self, docnum, weight, length=None):
        if self._minid is None:
            self._minid = docnum
        self._maxid = docnum
        self._weight += weight
        self._df += 1
        self._maxweight = max(self._maxweight, weight)

        if length is not None:
            if self._minlength is None:
                self._minlength = length
            else:
                self._minlength = min(self._minlength, length)
            self._maxlength = max(self._maxlength, length)

    def weight(self):
        """Returns the total frequency of the term across all documents.
        """

        return self._weight

    def doc_frequency(self):
        """Returns the number of documents the term appears in.
        """

        return self._df

    def min_length(self):
        """Returns the length of the shortest field value the term appears
        in.
        """

        return self._minlength

    def max_length(self):
        """Returns the length of the longest field value the term appears
        in.
        """

        return self._maxlength

    def max_weight(self):
        """Returns the number of times the term appears in the document in
        which it appears the most.
        """

        return self._maxweight

    def min_id(self):
        """Returns the lowest document ID this term appears in.
        """

        return self._minid

    def max_id(self):
        """Returns the highest document ID this term appears in.
        """

        return self._maxid


# Reader base class

class IndexReader(object):
    """Do not instantiate this object directly. Instead use Index.reader().
    """

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    @abstractmethod
    def __contains__(self, term):
        """Returns True if the given term tuple (fieldname, text) is
        in this reader.
        """
        raise NotImplementedError

    def codec(self):
        """Returns the :class:`whoosh.codec.base.Codec` object used to read
        this reader's segment. If this reader is not atomic
        (``reader.is_atomic() == True``), returns None.
        """

        return None

    def segment(self):
        """Returns the :class:`whoosh.index.Segment` object used by this reader.
        If this reader is not atomic (``reader.is_atomic() == True``), returns
        None.
        """

        return None

    def storage(self):
        """Returns the :class:`whoosh.filedb.filestore.Storage` object used by
        this reader to read its files. If the reader is not atomic,
        (``reader.is_atomic() == True``), returns None.
        """

        return None

    def is_atomic(self):
        return True

    def _text_to_bytes(self, fieldname, text):
        if fieldname not in self.schema:
            raise TermNotFound((fieldname, text))
        return self.schema[fieldname].to_bytes(text)

    def close(self):
        """Closes the open files associated with this reader.
        """

        pass

    def generation(self):
        """Returns the generation of the index being read, or -1 if the backend
        is not versioned.
        """

        return None

    @abstractmethod
    def indexed_field_names(self):
        """Returns an iterable of strings representing the names of the indexed
        fields. This may include additional names not explicitly listed in the
        Schema if you use "glob" fields.
        """

        raise NotImplementedError

    @abstractmethod
    def all_terms(self):
        """Yields (fieldname, text) tuples for every term in the index.
        """

        raise NotImplementedError

    def terms_from(self, fieldname, prefix):
        """Yields (fieldname, text) tuples for every term in the index starting
        at the given prefix.
        """

        # The default implementation just scans the whole list of terms
        for fname, text in self.all_terms():
            if fname < fieldname or text < prefix:
                continue
            yield (fname, text)

    @abstractmethod
    def term_info(self, fieldname, text):
        """Returns a :class:`TermInfo` object allowing access to various
        statistics about the given term.
        """

        raise NotImplementedError

    def expand_prefix(self, fieldname, prefix):
        """Yields terms in the given field that start with the given prefix.
        """

        for fn, text in self.terms_from(fieldname, prefix):
            if fn != fieldname or not text.startswith(prefix):
                return
            yield text

    def lexicon(self, fieldname):
        """Yields all bytestrings in the given field.
        """

        for fn, btext in self.terms_from(fieldname, emptybytes):
            if fn != fieldname:
                return
            yield btext

    def field_terms(self, fieldname):
        """Yields all term values (converted from on-disk bytes) in the given
        field.
        """

        from_bytes = self.schema[fieldname].from_bytes
        for btext in self.lexicon(fieldname):
            yield from_bytes(btext)

    def __iter__(self):
        """Yields ((fieldname, text), terminfo) tuples for each term in the
        reader, in lexical order.
        """

        term_info = self.term_info
        for term in self.all_terms():
            yield (term, term_info(*term))

    def iter_from(self, fieldname, text):
        """Yields ((fieldname, text), terminfo) tuples for all terms in the
        reader, starting at the given term.
        """

        term_info = self.term_info
        text = self._text_to_bytes(fieldname, text)
        for term in self.terms_from(fieldname, text):
            yield (term, term_info(*term))

    def iter_field(self, fieldname, prefix=''):
        """Yields (text, terminfo) tuples for all terms in the given field.
        """

        prefix = self._text_to_bytes(fieldname, prefix)
        for (fn, text), terminfo in self.iter_from(fieldname, prefix):
            if fn != fieldname:
                return
            yield text, terminfo

    def iter_prefix(self, fieldname, prefix):
        """Yields (text, terminfo) tuples for all terms in the given field with
        a certain prefix.
        """

        prefix = self._text_to_bytes(fieldname, prefix)
        for text, terminfo in self.iter_field(fieldname, prefix):
            if not text.startswith(prefix):
                return
            yield (text, terminfo)

    @abstractmethod
    def has_deletions(self):
        """Returns True if the underlying index/segment has deleted
        documents.
        """

        raise NotImplementedError

    def all_doc_ids(self):
        """Returns an iterator of all (undeleted) document IDs in the reader.
        """

        is_deleted = self.is_deleted
        return (docnum for docnum in xrange(self.doc_count_all())
                if not is_deleted(docnum))

    def iter_docs(self):
        """Yields a series of ``(docnum, stored_fields_dict)``
        tuples for the undeleted documents in the reader.
        """

        for docnum in self.all_doc_ids():
            yield docnum, self.stored_fields(docnum)

    @abstractmethod
    def is_deleted(self, docnum):
        """Returns True if the given document number is marked deleted.
        """

        raise NotImplementedError

    @abstractmethod
    def stored_fields(self, docnum):
        """Returns the stored fields for the given document number.

        :param numerickeys: use field numbers as the dictionary keys instead of
            field names.
        """

        raise NotImplementedError

    def all_stored_fields(self):
        """Yields the stored fields for all non-deleted documents.
        """

        is_deleted = self.is_deleted
        for docnum in xrange(self.doc_count_all()):
            if not is_deleted(docnum):
                yield self.stored_fields(docnum)

    @abstractmethod
    def doc_count_all(self):
        """Returns the total number of documents, DELETED OR UNDELETED,
        in this reader.
        """

        raise NotImplementedError

    @abstractmethod
    def doc_count(self):
        """Returns the total number of UNDELETED documents in this reader.
        """

        return self.doc_count_all() - self.deleted_count()

    @abstractmethod
    def frequency(self, fieldname, text):
        """Returns the total number of instances of the given term in the
        collection.
        """
        raise NotImplementedError

    @abstractmethod
    def doc_frequency(self, fieldname, text):
        """Returns how many documents the given term appears in.
        """
        raise NotImplementedError

    @abstractmethod
    def field_length(self, fieldname):
        """Returns the total number of terms in the given field. This is used
        by some scoring algorithms.
        """
        raise NotImplementedError

    @abstractmethod
    def min_field_length(self, fieldname):
        """Returns the minimum length of the field across all documents. This
        is used by some scoring algorithms.
        """
        raise NotImplementedError

    @abstractmethod
    def max_field_length(self, fieldname):
        """Returns the minimum length of the field across all documents. This
        is used by some scoring algorithms.
        """
        raise NotImplementedError

    @abstractmethod
    def doc_field_length(self, docnum, fieldname, default=0):
        """Returns the number of terms in the given field in the given
        document. This is used by some scoring algorithms.
        """
        raise NotImplementedError

    def first_id(self, fieldname, text):
        """Returns the first ID in the posting list for the given term. This
        may be optimized in certain backends.
        """

        text = self._text_to_bytes(fieldname, text)
        p = self.postings(fieldname, text)
        if p.is_active():
            return p.id()
        raise TermNotFound((fieldname, text))

    def iter_postings(self):
        """Low-level method, yields all postings in the reader as
        ``(fieldname, text, docnum, weight, valuestring)`` tuples.
        """

        for fieldname, btext in self.all_terms():
            m = self.postings(fieldname, btext)
            while m.is_active():
                yield (fieldname, btext, m.id(), m.weight(), m.value())
                m.next()

    @abstractmethod
    def postings(self, fieldname, text):
        """Returns a :class:`~whoosh.matching.Matcher` for the postings of the
        given term.

        >>> pr = reader.postings("content", "render")
        >>> pr.skip_to(10)
        >>> pr.id
        12

        :param fieldname: the field name or field number of the term.
        :param text: the text of the term.
        :rtype: :class:`whoosh.matching.Matcher`
        """

        raise NotImplementedError

    @abstractmethod
    def has_vector(self, docnum, fieldname):
        """Returns True if the given document has a term vector for the given
        field.
        """
        raise NotImplementedError

    @abstractmethod
    def vector(self, docnum, fieldname, format_=None):
        """Returns a :class:`~whoosh.matching.Matcher` object for the
        given term vector.

        >>> docnum = searcher.document_number(path=u'/a/b/c')
        >>> v = searcher.vector(docnum, "content")
        >>> v.all_as("frequency")
        [(u"apple", 3), (u"bear", 2), (u"cab", 2)]

        :param docnum: the document number of the document for which you want
            the term vector.
        :param fieldname: the field name or field number of the field for which
            you want the term vector.
        :rtype: :class:`whoosh.matching.Matcher`
        """
        raise NotImplementedError

    def vector_as(self, astype, docnum, fieldname):
        """Returns an iterator of (termtext, value) pairs for the terms in the
        given term vector. This is a convenient shortcut to calling vector()
        and using the Matcher object when all you want are the terms and/or
        values.

        >>> docnum = searcher.document_number(path=u'/a/b/c')
        >>> searcher.vector_as("frequency", docnum, "content")
        [(u"apple", 3), (u"bear", 2), (u"cab", 2)]

        :param docnum: the document number of the document for which you want
            the term vector.
        :param fieldname: the field name or field number of the field for which
            you want the term vector.
        :param astype: a string containing the name of the format you want the
            term vector's data in, for example "weights".
        """

        vec = self.vector(docnum, fieldname)
        if astype == "weight":
            while vec.is_active():
                yield (vec.id(), vec.weight())
                vec.next()
        else:
            format_ = self.schema[fieldname].format
            decoder = format_.decoder(astype)
            while vec.is_active():
                yield (vec.id(), decoder(vec.value()))
                vec.next()

    def corrector(self, fieldname):
        """Returns a :class:`whoosh.spelling.Corrector` object that suggests
        corrections based on the terms in the given field.
        """

        from whoosh.spelling import ReaderCorrector

        fieldobj = self.schema[fieldname]
        return ReaderCorrector(self, fieldname, fieldobj)

    def terms_within(self, fieldname, text, maxdist, prefix=0):
        """
        Returns a generator of words in the given field within ``maxdist``
        Damerau-Levenshtein edit distance of the given text.

        Important: the terms are returned in **no particular order**. The only
        criterion is that they are within ``maxdist`` edits of ``text``. You
        may want to run this method multiple times with increasing ``maxdist``
        values to ensure you get the closest matches first. You may also have
        additional information (such as term frequency or an acoustic matching
        algorithm) you can use to rank terms with the same edit distance.

        :param maxdist: the maximum edit distance.
        :param prefix: require suggestions to share a prefix of this length
            with the given word. This is often justifiable since most
            misspellings do not involve the first letter of the word.
            Using a prefix dramatically decreases the time it takes to generate
            the list of words.
        :param seen: an optional set object. Words that appear in the set will
            not be yielded.
        """

        fieldobj = self.schema[fieldname]
        for btext in self.expand_prefix(fieldname, text[:prefix]):
            word = fieldobj.from_bytes(btext)
            k = distance(word, text, limit=maxdist)
            if k <= maxdist:
                yield word

    def most_frequent_terms(self, fieldname, number=5, prefix=''):
        """Returns the top 'number' most frequent terms in the given field as a
        list of (frequency, text) tuples.
        """

        gen = ((terminfo.weight(), text) for text, terminfo
               in self.iter_prefix(fieldname, prefix))
        return nlargest(number, gen)

    def most_distinctive_terms(self, fieldname, number=5, prefix=''):
        """Returns the top 'number' terms with the highest `tf*idf` scores as
        a list of (score, text) tuples.
        """

        N = float(self.doc_count())
        gen = ((terminfo.weight() * log(N / terminfo.doc_frequency()), text)
               for text, terminfo in self.iter_prefix(fieldname, prefix))
        return nlargest(number, gen)

    def leaf_readers(self):
        """Returns a list of (IndexReader, docbase) pairs for the child readers
        of this reader if it is a composite reader. If this is not a composite
        reader, it returns `[(self, 0)]`.
        """

        return [(self, 0)]

    def supports_caches(self):
        return False

    def has_column(self, fieldname):
        return False

    def column_reader(self, fieldname, column=None, reverse=False,
                      translate=False):
        """

        :param fieldname: the name of the field for which to get a reader.
        :param column: if passed, use this Column object instead of the one
            associated with the field in the Schema.
        :param reverse: if passed, reverses the order of keys returned by the
            reader's ``sort_key()`` method. If the column type is not
            reversible, this will raise a ``NotImplementedError``.
        :param translate: if True, wrap the reader to call the field's
            ``from_bytes()`` method on the returned values.
        :return: a :class:`whoosh.columns.ColumnReader` object.
        """

        raise NotImplementedError


# Segment-based reader

class SegmentReader(IndexReader):
    def __init__(self, storage, schema, segment, generation=None, codec=None):
        self.schema = schema
        self.is_closed = False

        self._segment = segment
        self._segid = self._segment.segment_id()
        self._gen = generation

        # self.files is a storage object from which to load the segment files.
        # This is different from the general storage (which will be used for
        # caches) if the segment is in a compound file.
        if segment.is_compound():
            # Open the compound file as a storage object
            files = segment.open_compound_file(storage)
            # Use an overlay here instead of just the compound storage, in rare
            # circumstances a segment file may be added after the segment is
            # written
            self._storage = OverlayStorage(files, storage)
        else:
            self._storage = storage

        # Get subreaders from codec
        self._codec = codec if codec else segment.codec()
        self._terms = self._codec.terms_reader(self._storage, segment)
        self._perdoc = self._codec.per_document_reader(self._storage, segment)

    def codec(self):
        return self._codec

    def segment(self):
        return self._segment

    def storage(self):
        return self._storage

    def has_deletions(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.has_deletions()

    def doc_count(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.doc_count()

    def doc_count_all(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.doc_count_all()

    def is_deleted(self, docnum):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.is_deleted(docnum)

    def generation(self):
        return self._gen

    def __repr__(self):
        return "%s(%r, %r)" % (self.__class__.__name__, self._storage,
                               self._segment)

    def __contains__(self, term):
        if self.is_closed:
            raise ReaderClosed
        fieldname, text = term
        if fieldname not in self.schema:
            return False
        text = self._text_to_bytes(fieldname, text)
        return (fieldname, text) in self._terms

    def close(self):
        if self.is_closed:
            raise ReaderClosed("Reader already closed")
        self._terms.close()
        self._perdoc.close()

        # It's possible some weird codec that doesn't use storage might have
        # passed None instead of a storage object
        if self._storage:
            self._storage.close()

        self.is_closed = True

    def stored_fields(self, docnum):
        if self.is_closed:
            raise ReaderClosed
        assert docnum >= 0
        schema = self.schema
        sfs = self._perdoc.stored_fields(docnum)
        # Double-check with schema to filter out removed fields
        return dict(item for item in iteritems(sfs) if item[0] in schema)

    # Delegate doc methods to the per-doc reader

    def all_doc_ids(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.all_doc_ids()

    def iter_docs(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.iter_docs()

    def all_stored_fields(self):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.all_stored_fields()

    def field_length(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.field_length(fieldname)

    def min_field_length(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.min_field_length(fieldname)

    def max_field_length(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.max_field_length(fieldname)

    def doc_field_length(self, docnum, fieldname, default=0):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.doc_field_length(docnum, fieldname, default)

    def has_vector(self, docnum, fieldname):
        if self.is_closed:
            raise ReaderClosed
        return self._perdoc.has_vector(docnum, fieldname)

    #

    def _test_field(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        if fieldname not in self.schema:
            raise TermNotFound("No field %r" % fieldname)
        if self.schema[fieldname].format is None:
            raise TermNotFound("Field %r is not indexed" % fieldname)

    def indexed_field_names(self):
        return self._terms.indexed_field_names()

    def all_terms(self):
        if self.is_closed:
            raise ReaderClosed
        schema = self.schema
        return ((fieldname, text) for fieldname, text in self._terms.terms()
                if fieldname in schema)

    def terms_from(self, fieldname, prefix):
        self._test_field(fieldname)
        prefix = self._text_to_bytes(fieldname, prefix)
        schema = self.schema
        return ((fname, text) for fname, text
                in self._terms.terms_from(fieldname, prefix)
                if fname in schema)

    def term_info(self, fieldname, text):
        self._test_field(fieldname)
        text = self._text_to_bytes(fieldname, text)
        try:
            return self._terms.term_info(fieldname, text)
        except KeyError:
            raise TermNotFound("%s:%r" % (fieldname, text))

    def expand_prefix(self, fieldname, prefix):
        self._test_field(fieldname)
        prefix = self._text_to_bytes(fieldname, prefix)
        return IndexReader.expand_prefix(self, fieldname, prefix)

    def lexicon(self, fieldname):
        self._test_field(fieldname)
        return IndexReader.lexicon(self, fieldname)

    def __iter__(self):
        if self.is_closed:
            raise ReaderClosed
        schema = self.schema
        return ((term, terminfo) for term, terminfo in self._terms.items()
                if term[0] in schema)

    def iter_from(self, fieldname, text):
        self._test_field(fieldname)
        schema = self.schema
        text = self._text_to_bytes(fieldname, text)
        for term, terminfo in self._terms.items_from(fieldname, text):
            if term[0] not in schema:
                continue
            yield (term, terminfo)

    def frequency(self, fieldname, text):
        self._test_field(fieldname)
        text = self._text_to_bytes(fieldname, text)
        try:
            return self._terms.frequency(fieldname, text)
        except KeyError:
            return 0

    def doc_frequency(self, fieldname, text):
        self._test_field(fieldname)
        text = self._text_to_bytes(fieldname, text)
        try:
            return self._terms.doc_frequency(fieldname, text)
        except KeyError:
            return 0

    def postings(self, fieldname, text, scorer=None):
        from whoosh.matching.wrappers import FilterMatcher

        if self.is_closed:
            raise ReaderClosed
        if fieldname not in self.schema:
            raise TermNotFound("No  field %r" % fieldname)
        text = self._text_to_bytes(fieldname, text)
        format_ = self.schema[fieldname].format
        matcher = self._terms.matcher(fieldname, text, format_, scorer=scorer)
        deleted = frozenset(self._perdoc.deleted_docs())
        if deleted:
            matcher = FilterMatcher(matcher, deleted, exclude=True)
        return matcher

    def vector(self, docnum, fieldname, format_=None):
        if self.is_closed:
            raise ReaderClosed
        if fieldname not in self.schema:
            raise TermNotFound("No  field %r" % fieldname)
        vformat = format_ or self.schema[fieldname].vector
        if not vformat:
            raise Exception("No vectors are stored for field %r" % fieldname)
        return self._perdoc.vector(docnum, fieldname, vformat)

    def cursor(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        fieldobj = self.schema[fieldname]
        return self._terms.cursor(fieldname, fieldobj)

    def terms_within(self, fieldname, text, maxdist, prefix=0):
        # Replaces the horribly inefficient base implementation with one based
        # on skipping through the word list efficiently using a DFA

        fieldobj = self.schema[fieldname]
        spellfield = fieldobj.spelling_fieldname(fieldname)
        auto = self._codec.automata(self._storage, self._segment)
        fieldcur = self.cursor(spellfield)
        return auto.terms_within(fieldcur, text, maxdist, prefix)

    # Column methods

    def has_column(self, fieldname):
        if self.is_closed:
            raise ReaderClosed
        coltype = self.schema[fieldname].column_type
        return coltype and self._perdoc.has_column(fieldname)

    def column_reader(self, fieldname, column=None, reverse=False,
                      translate=True):
        if self.is_closed:
            raise ReaderClosed

        fieldobj = self.schema[fieldname]
        column = column or fieldobj.column_type
        if not column:
            raise Exception("No column for field %r in %r"
                            % (fieldname, self))

        if self._perdoc.has_column(fieldname):
            creader = self._perdoc.column_reader(fieldname, column)
            if reverse:
                creader.set_reverse()
        else:
            # This segment doesn't have a column file for this field, so create
            # a fake column reader that always returns the default value.
            default = column.default_value(reverse)
            creader = columns.EmptyColumnReader(default, self.doc_count_all())

        if translate:
            # Wrap the column in a Translator to give the caller
            # nice values instead of sortable representations
            fcv = fieldobj.from_column_value
            creader = columns.TranslatingColumnReader(creader, fcv)

        return creader


# Fake IndexReader class for empty indexes

class EmptyReader(IndexReader):
    def __init__(self, schema):
        self.schema = schema

    def __contains__(self, term):
        return False

    def __iter__(self):
        return iter([])

    def cursor(self, fieldname):
        from whoosh.codec.base import EmptyCursor

        return EmptyCursor()

    def indexed_field_names(self):
        return []

    def all_terms(self):
        return iter([])

    def term_info(self, fieldname, text):
        raise TermNotFound((fieldname, text))

    def iter_from(self, fieldname, text):
        return iter([])

    def iter_field(self, fieldname, prefix=''):
        return iter([])

    def iter_prefix(self, fieldname, prefix=''):
        return iter([])

    def lexicon(self, fieldname):
        return iter([])

    def has_deletions(self):
        return False

    def is_deleted(self, docnum):
        return False

    def stored_fields(self, docnum):
        raise KeyError("No document number %s" % docnum)

    def all_stored_fields(self):
        return iter([])

    def doc_count_all(self):
        return 0

    def doc_count(self):
        return 0

    def frequency(self, fieldname, text):
        return 0

    def doc_frequency(self, fieldname, text):
        return 0

    def field_length(self, fieldname):
        return 0

    def min_field_length(self, fieldname):
        return 0

    def max_field_length(self, fieldname):
        return 0

    def doc_field_length(self, docnum, fieldname, default=0):
        return default

    def postings(self, fieldname, text, scorer=None):
        raise TermNotFound("%s:%r" % (fieldname, text))

    def has_vector(self, docnum, fieldname):
        return False

    def vector(self, docnum, fieldname, format_=None):
        raise KeyError("No document number %s" % docnum)

    def most_frequent_terms(self, fieldname, number=5, prefix=''):
        return iter([])

    def most_distinctive_terms(self, fieldname, number=5, prefix=None):
        return iter([])


# Multisegment reader class

class MultiReader(IndexReader):
    """Do not instantiate this object directly. Instead use Index.reader().
    """

    def __init__(self, readers, generation=None):
        self.readers = readers
        self._gen = generation
        self.schema = None
        if readers:
            self.schema = readers[0].schema

        self.doc_offsets = []
        self.base = 0
        for r in self.readers:
            self.doc_offsets.append(self.base)
            self.base += r.doc_count_all()

        self.is_closed = False

    def _document_segment(self, docnum):
        return max(0, bisect_right(self.doc_offsets, docnum) - 1)

    def _segment_and_docnum(self, docnum):
        segmentnum = self._document_segment(docnum)
        offset = self.doc_offsets[segmentnum]
        return segmentnum, docnum - offset

    def cursor(self, fieldname):
        return MultiCursor([r.cursor(fieldname) for r in self.readers])

    def is_atomic(self):
        return False

    def leaf_readers(self):
        return zip_(self.readers, self.doc_offsets)

    def add_reader(self, reader):
        self.readers.append(reader)
        self.doc_offsets.append(self.base)
        self.base += reader.doc_count_all()

    def close(self):
        for d in self.readers:
            d.close()
        self.is_closed = True

    def generation(self):
        return self._gen

    def format(self, fieldname):
        for r in self.readers:
            fmt = r.format(fieldname)
            if fmt is not None:
                return fmt

    def vector_format(self, fieldname):
        for r in self.readers:
            vfmt = r.vector_format(fieldname)
            if vfmt is not None:
                return vfmt

    # Term methods

    def __contains__(self, term):
        return any(r.__contains__(term) for r in self.readers)

    def _merge_terms(self, iterlist):
        # Merge-sorts terms coming from a list of term iterators.

        # Create a map so we can look up each iterator by its id() value
        itermap = {}
        for it in iterlist:
            itermap[id(it)] = it

        # Fill in the list with the head term from each iterator.

        current = []
        for it in iterlist:
            try:
                term = next(it)
            except StopIteration:
                continue
            current.append((term, id(it)))
        # Number of active iterators
        active = len(current)

        # If only one iterator is active, just yield from it and return
        if active == 1:
            term, itid = current[0]
            it = itermap[itid]
            yield term
            for term in it:
                yield term
            return

        # Otherwise, do a streaming heap sort of the terms from the iterators
        heapify(current)
        while active:
            # Peek at the first term in the sorted list
            term = current[0][0]

            # Re-iterate on all items in the list that have that term
            while active and current[0][0] == term:
                it = itermap[current[0][1]]
                try:
                    nextterm = next(it)
                    heapreplace(current, (nextterm, id(it)))
                except StopIteration:
                    heappop(current)
                    active -= 1

            # Yield the term
            yield term

    def indexed_field_names(self):
        names = set()
        for r in self.readers:
            names.update(r.indexed_field_names())
        return iter(names)

    def all_terms(self):
        return self._merge_terms([r.all_terms() for r in self.readers])

    def terms_from(self, fieldname, prefix):
        return self._merge_terms([r.terms_from(fieldname, prefix)
                                  for r in self.readers])

    def term_info(self, fieldname, text):
        term = (fieldname, text)

        # Get the term infos for the sub-readers containing the term
        tis = [(r.term_info(fieldname, text), offset) for r, offset
               in zip_(self.readers, self.doc_offsets) if term in r]

        # If only one reader had the term, return its terminfo with the offset
        # added
        if not tis:
            raise TermNotFound(term)

        return combine_terminfos(tis)

    def frequency(self, fieldname, text):
        return sum(r.frequency(fieldname, text) for r in self.readers)

    def doc_frequency(self, fieldname, text):
        return sum(r.doc_frequency(fieldname, text) for r in self.readers)

    def postings(self, fieldname, text):
        # This method does not add a scorer; for that, use Searcher.postings()

        postreaders = []
        docoffsets = []
        term = (fieldname, text)

        for i, r in enumerate(self.readers):
            if term in r:
                offset = self.doc_offsets[i]
                pr = r.postings(fieldname, text)
                postreaders.append(pr)
                docoffsets.append(offset)

        if not postreaders:
            raise TermNotFound(fieldname, text)

        return MultiMatcher(postreaders, docoffsets)

    def first_id(self, fieldname, text):
        for i, r in enumerate(self.readers):
            try:
                id = r.first_id(fieldname, text)
            except (KeyError, TermNotFound):
                pass
            else:
                if id is None:
                    raise TermNotFound((fieldname, text))
                else:
                    return self.doc_offsets[i] + id

        raise TermNotFound((fieldname, text))

    # Deletion methods

    def has_deletions(self):
        return any(r.has_deletions() for r in self.readers)

    def is_deleted(self, docnum):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        return self.readers[segmentnum].is_deleted(segmentdoc)

    def stored_fields(self, docnum):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        return self.readers[segmentnum].stored_fields(segmentdoc)

    # Columns

    def has_column(self, fieldname):
        return any(r.has_column(fieldname) for r in self.readers)

    def column_reader(self, fieldname, column=None, reverse=False,
                      translate=True):
        crs = []
        doc_offsets = []
        for i, r in enumerate(self.readers):
            if r.has_column(fieldname):
                cr = r.column_reader(fieldname, column=column, reverse=reverse,
                                     translate=translate)
                crs.append(cr)
                doc_offsets.append(self.doc_offsets[i])
        return columns.MultiColumnReader(crs, doc_offsets)

    # Per doc methods

    def all_stored_fields(self):
        for reader in self.readers:
            for result in reader.all_stored_fields():
                yield result

    def doc_count_all(self):
        return sum(dr.doc_count_all() for dr in self.readers)

    def doc_count(self):
        return sum(dr.doc_count() for dr in self.readers)

    def field_length(self, fieldname):
        return sum(dr.field_length(fieldname) for dr in self.readers)

    def min_field_length(self, fieldname):
        return min(r.min_field_length(fieldname) for r in self.readers)

    def max_field_length(self, fieldname):
        return max(r.max_field_length(fieldname) for r in self.readers)

    def doc_field_length(self, docnum, fieldname, default=0):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        reader = self.readers[segmentnum]
        return reader.doc_field_length(segmentdoc, fieldname, default=default)

    def has_vector(self, docnum, fieldname):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        return self.readers[segmentnum].has_vector(segmentdoc, fieldname)

    def vector(self, docnum, fieldname, format_=None):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        return self.readers[segmentnum].vector(segmentdoc, fieldname)

    def vector_as(self, astype, docnum, fieldname):
        segmentnum, segmentdoc = self._segment_and_docnum(docnum)
        return self.readers[segmentnum].vector_as(astype, segmentdoc,
                                                  fieldname)


def combine_terminfos(tis):
    if len(tis) == 1:
        ti, offset = tis[0]
        ti._minid += offset
        ti._maxid += offset
        return ti

    # Combine the various statistics
    w = sum(ti.weight() for ti, _ in tis)
    df = sum(ti.doc_frequency() for ti, _ in tis)
    ml = min(ti.min_length() for ti, _ in tis)
    xl = max(ti.max_length() for ti, _ in tis)
    xw = max(ti.max_weight() for ti, _ in tis)

    # For min and max ID, we need to add the doc offsets
    mid = min(ti.min_id() + offset for ti, offset in tis)
    xid = max(ti.max_id() + offset for ti, offset in tis)

    return TermInfo(w, df, ml, xl, xw, mid, xid)


class MultiCursor(object):
    def __init__(self, cursors):
        self._cursors = [c for c in cursors if c.is_valid()]
        self._low = []
        self._text = None
        self.next()

    def _find_low(self):
        low = []
        lowterm = None

        for c in self._cursors:
            if c.is_valid():
                cterm = c.term()
                if low and cterm == lowterm:
                    low.append(c)
                elif low and cterm < lowterm:
                    low = [c]
                    lowterm = cterm

        self._low = low
        self._text = lowterm
        return lowterm

    def first(self):
        for c in self._cursors:
            c.first()
        return self._find_low()

    def find(self, term):
        for c in self._cursors:
            c.find(term)
        return self._find_low()

    def next(self):
        for c in self._cursors:
            c.next()
        return self._find_low()

    def term_info(self):
        tis = [c.term_info() for c in self._low]
        return combine_terminfos(tis) if tis else None

    def is_valid(self):
        return any(c.is_valid() for c in self._cursors)