/usr/lib/python3/dist-packages/whoosh/reading.py is in python3-whoosh 2.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 | # Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
"""This module contains classes that allow reading from an index.
"""
from math import log
from bisect import bisect_right
from heapq import heapify, heapreplace, heappop, nlargest
from whoosh import columns
from whoosh.compat import abstractmethod
from whoosh.compat import xrange, zip_, next, iteritems
from whoosh.filedb.filestore import OverlayStorage
from whoosh.matching import MultiMatcher
from whoosh.support.levenshtein import distance
from whoosh.system import emptybytes
# Exceptions
class ReaderClosed(Exception):
"""Exception raised when you try to do some operation on a closed searcher
(or a Results object derived from a searcher that has since been closed).
"""
message = "Operation on a closed reader"
class TermNotFound(Exception):
pass
# Term Info base class
class TermInfo(object):
"""Represents a set of statistics about a term. This object is returned by
:meth:`IndexReader.term_info`. These statistics may be useful for
optimizations and scoring algorithms.
"""
def __init__(self, weight=0, df=0, minlength=None,
maxlength=0, maxweight=0, minid=None, maxid=0):
self._weight = weight
self._df = df
self._minlength = minlength
self._maxlength = maxlength
self._maxweight = maxweight
self._minid = minid
self._maxid = maxid
def add_posting(self, docnum, weight, length=None):
if self._minid is None:
self._minid = docnum
self._maxid = docnum
self._weight += weight
self._df += 1
self._maxweight = max(self._maxweight, weight)
if length is not None:
if self._minlength is None:
self._minlength = length
else:
self._minlength = min(self._minlength, length)
self._maxlength = max(self._maxlength, length)
def weight(self):
"""Returns the total frequency of the term across all documents.
"""
return self._weight
def doc_frequency(self):
"""Returns the number of documents the term appears in.
"""
return self._df
def min_length(self):
"""Returns the length of the shortest field value the term appears
in.
"""
return self._minlength
def max_length(self):
"""Returns the length of the longest field value the term appears
in.
"""
return self._maxlength
def max_weight(self):
"""Returns the number of times the term appears in the document in
which it appears the most.
"""
return self._maxweight
def min_id(self):
"""Returns the lowest document ID this term appears in.
"""
return self._minid
def max_id(self):
"""Returns the highest document ID this term appears in.
"""
return self._maxid
# Reader base class
class IndexReader(object):
"""Do not instantiate this object directly. Instead use Index.reader().
"""
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
@abstractmethod
def __contains__(self, term):
"""Returns True if the given term tuple (fieldname, text) is
in this reader.
"""
raise NotImplementedError
def codec(self):
"""Returns the :class:`whoosh.codec.base.Codec` object used to read
this reader's segment. If this reader is not atomic
(``reader.is_atomic() == True``), returns None.
"""
return None
def segment(self):
"""Returns the :class:`whoosh.index.Segment` object used by this reader.
If this reader is not atomic (``reader.is_atomic() == True``), returns
None.
"""
return None
def storage(self):
"""Returns the :class:`whoosh.filedb.filestore.Storage` object used by
this reader to read its files. If the reader is not atomic,
(``reader.is_atomic() == True``), returns None.
"""
return None
def is_atomic(self):
return True
def _text_to_bytes(self, fieldname, text):
if fieldname not in self.schema:
raise TermNotFound((fieldname, text))
return self.schema[fieldname].to_bytes(text)
def close(self):
"""Closes the open files associated with this reader.
"""
pass
def generation(self):
"""Returns the generation of the index being read, or -1 if the backend
is not versioned.
"""
return None
@abstractmethod
def indexed_field_names(self):
"""Returns an iterable of strings representing the names of the indexed
fields. This may include additional names not explicitly listed in the
Schema if you use "glob" fields.
"""
raise NotImplementedError
@abstractmethod
def all_terms(self):
"""Yields (fieldname, text) tuples for every term in the index.
"""
raise NotImplementedError
def terms_from(self, fieldname, prefix):
"""Yields (fieldname, text) tuples for every term in the index starting
at the given prefix.
"""
# The default implementation just scans the whole list of terms
for fname, text in self.all_terms():
if fname < fieldname or text < prefix:
continue
yield (fname, text)
@abstractmethod
def term_info(self, fieldname, text):
"""Returns a :class:`TermInfo` object allowing access to various
statistics about the given term.
"""
raise NotImplementedError
def expand_prefix(self, fieldname, prefix):
"""Yields terms in the given field that start with the given prefix.
"""
for fn, text in self.terms_from(fieldname, prefix):
if fn != fieldname or not text.startswith(prefix):
return
yield text
def lexicon(self, fieldname):
"""Yields all bytestrings in the given field.
"""
for fn, btext in self.terms_from(fieldname, emptybytes):
if fn != fieldname:
return
yield btext
def field_terms(self, fieldname):
"""Yields all term values (converted from on-disk bytes) in the given
field.
"""
from_bytes = self.schema[fieldname].from_bytes
for btext in self.lexicon(fieldname):
yield from_bytes(btext)
def __iter__(self):
"""Yields ((fieldname, text), terminfo) tuples for each term in the
reader, in lexical order.
"""
term_info = self.term_info
for term in self.all_terms():
yield (term, term_info(*term))
def iter_from(self, fieldname, text):
"""Yields ((fieldname, text), terminfo) tuples for all terms in the
reader, starting at the given term.
"""
term_info = self.term_info
text = self._text_to_bytes(fieldname, text)
for term in self.terms_from(fieldname, text):
yield (term, term_info(*term))
def iter_field(self, fieldname, prefix=''):
"""Yields (text, terminfo) tuples for all terms in the given field.
"""
prefix = self._text_to_bytes(fieldname, prefix)
for (fn, text), terminfo in self.iter_from(fieldname, prefix):
if fn != fieldname:
return
yield text, terminfo
def iter_prefix(self, fieldname, prefix):
"""Yields (text, terminfo) tuples for all terms in the given field with
a certain prefix.
"""
prefix = self._text_to_bytes(fieldname, prefix)
for text, terminfo in self.iter_field(fieldname, prefix):
if not text.startswith(prefix):
return
yield (text, terminfo)
@abstractmethod
def has_deletions(self):
"""Returns True if the underlying index/segment has deleted
documents.
"""
raise NotImplementedError
def all_doc_ids(self):
"""Returns an iterator of all (undeleted) document IDs in the reader.
"""
is_deleted = self.is_deleted
return (docnum for docnum in xrange(self.doc_count_all())
if not is_deleted(docnum))
def iter_docs(self):
"""Yields a series of ``(docnum, stored_fields_dict)``
tuples for the undeleted documents in the reader.
"""
for docnum in self.all_doc_ids():
yield docnum, self.stored_fields(docnum)
@abstractmethod
def is_deleted(self, docnum):
"""Returns True if the given document number is marked deleted.
"""
raise NotImplementedError
@abstractmethod
def stored_fields(self, docnum):
"""Returns the stored fields for the given document number.
:param numerickeys: use field numbers as the dictionary keys instead of
field names.
"""
raise NotImplementedError
def all_stored_fields(self):
"""Yields the stored fields for all non-deleted documents.
"""
is_deleted = self.is_deleted
for docnum in xrange(self.doc_count_all()):
if not is_deleted(docnum):
yield self.stored_fields(docnum)
@abstractmethod
def doc_count_all(self):
"""Returns the total number of documents, DELETED OR UNDELETED,
in this reader.
"""
raise NotImplementedError
@abstractmethod
def doc_count(self):
"""Returns the total number of UNDELETED documents in this reader.
"""
return self.doc_count_all() - self.deleted_count()
@abstractmethod
def frequency(self, fieldname, text):
"""Returns the total number of instances of the given term in the
collection.
"""
raise NotImplementedError
@abstractmethod
def doc_frequency(self, fieldname, text):
"""Returns how many documents the given term appears in.
"""
raise NotImplementedError
@abstractmethod
def field_length(self, fieldname):
"""Returns the total number of terms in the given field. This is used
by some scoring algorithms.
"""
raise NotImplementedError
@abstractmethod
def min_field_length(self, fieldname):
"""Returns the minimum length of the field across all documents. This
is used by some scoring algorithms.
"""
raise NotImplementedError
@abstractmethod
def max_field_length(self, fieldname):
"""Returns the minimum length of the field across all documents. This
is used by some scoring algorithms.
"""
raise NotImplementedError
@abstractmethod
def doc_field_length(self, docnum, fieldname, default=0):
"""Returns the number of terms in the given field in the given
document. This is used by some scoring algorithms.
"""
raise NotImplementedError
def first_id(self, fieldname, text):
"""Returns the first ID in the posting list for the given term. This
may be optimized in certain backends.
"""
text = self._text_to_bytes(fieldname, text)
p = self.postings(fieldname, text)
if p.is_active():
return p.id()
raise TermNotFound((fieldname, text))
def iter_postings(self):
"""Low-level method, yields all postings in the reader as
``(fieldname, text, docnum, weight, valuestring)`` tuples.
"""
for fieldname, btext in self.all_terms():
m = self.postings(fieldname, btext)
while m.is_active():
yield (fieldname, btext, m.id(), m.weight(), m.value())
m.next()
@abstractmethod
def postings(self, fieldname, text):
"""Returns a :class:`~whoosh.matching.Matcher` for the postings of the
given term.
>>> pr = reader.postings("content", "render")
>>> pr.skip_to(10)
>>> pr.id
12
:param fieldname: the field name or field number of the term.
:param text: the text of the term.
:rtype: :class:`whoosh.matching.Matcher`
"""
raise NotImplementedError
@abstractmethod
def has_vector(self, docnum, fieldname):
"""Returns True if the given document has a term vector for the given
field.
"""
raise NotImplementedError
@abstractmethod
def vector(self, docnum, fieldname, format_=None):
"""Returns a :class:`~whoosh.matching.Matcher` object for the
given term vector.
>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> v = searcher.vector(docnum, "content")
>>> v.all_as("frequency")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]
:param docnum: the document number of the document for which you want
the term vector.
:param fieldname: the field name or field number of the field for which
you want the term vector.
:rtype: :class:`whoosh.matching.Matcher`
"""
raise NotImplementedError
def vector_as(self, astype, docnum, fieldname):
"""Returns an iterator of (termtext, value) pairs for the terms in the
given term vector. This is a convenient shortcut to calling vector()
and using the Matcher object when all you want are the terms and/or
values.
>>> docnum = searcher.document_number(path=u'/a/b/c')
>>> searcher.vector_as("frequency", docnum, "content")
[(u"apple", 3), (u"bear", 2), (u"cab", 2)]
:param docnum: the document number of the document for which you want
the term vector.
:param fieldname: the field name or field number of the field for which
you want the term vector.
:param astype: a string containing the name of the format you want the
term vector's data in, for example "weights".
"""
vec = self.vector(docnum, fieldname)
if astype == "weight":
while vec.is_active():
yield (vec.id(), vec.weight())
vec.next()
else:
format_ = self.schema[fieldname].format
decoder = format_.decoder(astype)
while vec.is_active():
yield (vec.id(), decoder(vec.value()))
vec.next()
def corrector(self, fieldname):
"""Returns a :class:`whoosh.spelling.Corrector` object that suggests
corrections based on the terms in the given field.
"""
from whoosh.spelling import ReaderCorrector
fieldobj = self.schema[fieldname]
return ReaderCorrector(self, fieldname, fieldobj)
def terms_within(self, fieldname, text, maxdist, prefix=0):
"""
Returns a generator of words in the given field within ``maxdist``
Damerau-Levenshtein edit distance of the given text.
Important: the terms are returned in **no particular order**. The only
criterion is that they are within ``maxdist`` edits of ``text``. You
may want to run this method multiple times with increasing ``maxdist``
values to ensure you get the closest matches first. You may also have
additional information (such as term frequency or an acoustic matching
algorithm) you can use to rank terms with the same edit distance.
:param maxdist: the maximum edit distance.
:param prefix: require suggestions to share a prefix of this length
with the given word. This is often justifiable since most
misspellings do not involve the first letter of the word.
Using a prefix dramatically decreases the time it takes to generate
the list of words.
:param seen: an optional set object. Words that appear in the set will
not be yielded.
"""
fieldobj = self.schema[fieldname]
for btext in self.expand_prefix(fieldname, text[:prefix]):
word = fieldobj.from_bytes(btext)
k = distance(word, text, limit=maxdist)
if k <= maxdist:
yield word
def most_frequent_terms(self, fieldname, number=5, prefix=''):
"""Returns the top 'number' most frequent terms in the given field as a
list of (frequency, text) tuples.
"""
gen = ((terminfo.weight(), text) for text, terminfo
in self.iter_prefix(fieldname, prefix))
return nlargest(number, gen)
def most_distinctive_terms(self, fieldname, number=5, prefix=''):
"""Returns the top 'number' terms with the highest `tf*idf` scores as
a list of (score, text) tuples.
"""
N = float(self.doc_count())
gen = ((terminfo.weight() * log(N / terminfo.doc_frequency()), text)
for text, terminfo in self.iter_prefix(fieldname, prefix))
return nlargest(number, gen)
def leaf_readers(self):
"""Returns a list of (IndexReader, docbase) pairs for the child readers
of this reader if it is a composite reader. If this is not a composite
reader, it returns `[(self, 0)]`.
"""
return [(self, 0)]
def supports_caches(self):
return False
def has_column(self, fieldname):
return False
def column_reader(self, fieldname, column=None, reverse=False,
translate=False):
"""
:param fieldname: the name of the field for which to get a reader.
:param column: if passed, use this Column object instead of the one
associated with the field in the Schema.
:param reverse: if passed, reverses the order of keys returned by the
reader's ``sort_key()`` method. If the column type is not
reversible, this will raise a ``NotImplementedError``.
:param translate: if True, wrap the reader to call the field's
``from_bytes()`` method on the returned values.
:return: a :class:`whoosh.columns.ColumnReader` object.
"""
raise NotImplementedError
# Segment-based reader
class SegmentReader(IndexReader):
def __init__(self, storage, schema, segment, generation=None, codec=None):
self.schema = schema
self.is_closed = False
self._segment = segment
self._segid = self._segment.segment_id()
self._gen = generation
# self.files is a storage object from which to load the segment files.
# This is different from the general storage (which will be used for
# caches) if the segment is in a compound file.
if segment.is_compound():
# Open the compound file as a storage object
files = segment.open_compound_file(storage)
# Use an overlay here instead of just the compound storage, in rare
# circumstances a segment file may be added after the segment is
# written
self._storage = OverlayStorage(files, storage)
else:
self._storage = storage
# Get subreaders from codec
self._codec = codec if codec else segment.codec()
self._terms = self._codec.terms_reader(self._storage, segment)
self._perdoc = self._codec.per_document_reader(self._storage, segment)
def codec(self):
return self._codec
def segment(self):
return self._segment
def storage(self):
return self._storage
def has_deletions(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.has_deletions()
def doc_count(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.doc_count()
def doc_count_all(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.doc_count_all()
def is_deleted(self, docnum):
if self.is_closed:
raise ReaderClosed
return self._perdoc.is_deleted(docnum)
def generation(self):
return self._gen
def __repr__(self):
return "%s(%r, %r)" % (self.__class__.__name__, self._storage,
self._segment)
def __contains__(self, term):
if self.is_closed:
raise ReaderClosed
fieldname, text = term
if fieldname not in self.schema:
return False
text = self._text_to_bytes(fieldname, text)
return (fieldname, text) in self._terms
def close(self):
if self.is_closed:
raise ReaderClosed("Reader already closed")
self._terms.close()
self._perdoc.close()
# It's possible some weird codec that doesn't use storage might have
# passed None instead of a storage object
if self._storage:
self._storage.close()
self.is_closed = True
def stored_fields(self, docnum):
if self.is_closed:
raise ReaderClosed
assert docnum >= 0
schema = self.schema
sfs = self._perdoc.stored_fields(docnum)
# Double-check with schema to filter out removed fields
return dict(item for item in iteritems(sfs) if item[0] in schema)
# Delegate doc methods to the per-doc reader
def all_doc_ids(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.all_doc_ids()
def iter_docs(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.iter_docs()
def all_stored_fields(self):
if self.is_closed:
raise ReaderClosed
return self._perdoc.all_stored_fields()
def field_length(self, fieldname):
if self.is_closed:
raise ReaderClosed
return self._perdoc.field_length(fieldname)
def min_field_length(self, fieldname):
if self.is_closed:
raise ReaderClosed
return self._perdoc.min_field_length(fieldname)
def max_field_length(self, fieldname):
if self.is_closed:
raise ReaderClosed
return self._perdoc.max_field_length(fieldname)
def doc_field_length(self, docnum, fieldname, default=0):
if self.is_closed:
raise ReaderClosed
return self._perdoc.doc_field_length(docnum, fieldname, default)
def has_vector(self, docnum, fieldname):
if self.is_closed:
raise ReaderClosed
return self._perdoc.has_vector(docnum, fieldname)
#
def _test_field(self, fieldname):
if self.is_closed:
raise ReaderClosed
if fieldname not in self.schema:
raise TermNotFound("No field %r" % fieldname)
if self.schema[fieldname].format is None:
raise TermNotFound("Field %r is not indexed" % fieldname)
def indexed_field_names(self):
return self._terms.indexed_field_names()
def all_terms(self):
if self.is_closed:
raise ReaderClosed
schema = self.schema
return ((fieldname, text) for fieldname, text in self._terms.terms()
if fieldname in schema)
def terms_from(self, fieldname, prefix):
self._test_field(fieldname)
prefix = self._text_to_bytes(fieldname, prefix)
schema = self.schema
return ((fname, text) for fname, text
in self._terms.terms_from(fieldname, prefix)
if fname in schema)
def term_info(self, fieldname, text):
self._test_field(fieldname)
text = self._text_to_bytes(fieldname, text)
try:
return self._terms.term_info(fieldname, text)
except KeyError:
raise TermNotFound("%s:%r" % (fieldname, text))
def expand_prefix(self, fieldname, prefix):
self._test_field(fieldname)
prefix = self._text_to_bytes(fieldname, prefix)
return IndexReader.expand_prefix(self, fieldname, prefix)
def lexicon(self, fieldname):
self._test_field(fieldname)
return IndexReader.lexicon(self, fieldname)
def __iter__(self):
if self.is_closed:
raise ReaderClosed
schema = self.schema
return ((term, terminfo) for term, terminfo in self._terms.items()
if term[0] in schema)
def iter_from(self, fieldname, text):
self._test_field(fieldname)
schema = self.schema
text = self._text_to_bytes(fieldname, text)
for term, terminfo in self._terms.items_from(fieldname, text):
if term[0] not in schema:
continue
yield (term, terminfo)
def frequency(self, fieldname, text):
self._test_field(fieldname)
text = self._text_to_bytes(fieldname, text)
try:
return self._terms.frequency(fieldname, text)
except KeyError:
return 0
def doc_frequency(self, fieldname, text):
self._test_field(fieldname)
text = self._text_to_bytes(fieldname, text)
try:
return self._terms.doc_frequency(fieldname, text)
except KeyError:
return 0
def postings(self, fieldname, text, scorer=None):
from whoosh.matching.wrappers import FilterMatcher
if self.is_closed:
raise ReaderClosed
if fieldname not in self.schema:
raise TermNotFound("No field %r" % fieldname)
text = self._text_to_bytes(fieldname, text)
format_ = self.schema[fieldname].format
matcher = self._terms.matcher(fieldname, text, format_, scorer=scorer)
deleted = frozenset(self._perdoc.deleted_docs())
if deleted:
matcher = FilterMatcher(matcher, deleted, exclude=True)
return matcher
def vector(self, docnum, fieldname, format_=None):
if self.is_closed:
raise ReaderClosed
if fieldname not in self.schema:
raise TermNotFound("No field %r" % fieldname)
vformat = format_ or self.schema[fieldname].vector
if not vformat:
raise Exception("No vectors are stored for field %r" % fieldname)
return self._perdoc.vector(docnum, fieldname, vformat)
def cursor(self, fieldname):
if self.is_closed:
raise ReaderClosed
fieldobj = self.schema[fieldname]
return self._terms.cursor(fieldname, fieldobj)
def terms_within(self, fieldname, text, maxdist, prefix=0):
# Replaces the horribly inefficient base implementation with one based
# on skipping through the word list efficiently using a DFA
fieldobj = self.schema[fieldname]
spellfield = fieldobj.spelling_fieldname(fieldname)
auto = self._codec.automata(self._storage, self._segment)
fieldcur = self.cursor(spellfield)
return auto.terms_within(fieldcur, text, maxdist, prefix)
# Column methods
def has_column(self, fieldname):
if self.is_closed:
raise ReaderClosed
coltype = self.schema[fieldname].column_type
return coltype and self._perdoc.has_column(fieldname)
def column_reader(self, fieldname, column=None, reverse=False,
translate=True):
if self.is_closed:
raise ReaderClosed
fieldobj = self.schema[fieldname]
column = column or fieldobj.column_type
if not column:
raise Exception("No column for field %r in %r"
% (fieldname, self))
if self._perdoc.has_column(fieldname):
creader = self._perdoc.column_reader(fieldname, column)
if reverse:
creader.set_reverse()
else:
# This segment doesn't have a column file for this field, so create
# a fake column reader that always returns the default value.
default = column.default_value(reverse)
creader = columns.EmptyColumnReader(default, self.doc_count_all())
if translate:
# Wrap the column in a Translator to give the caller
# nice values instead of sortable representations
fcv = fieldobj.from_column_value
creader = columns.TranslatingColumnReader(creader, fcv)
return creader
# Fake IndexReader class for empty indexes
class EmptyReader(IndexReader):
def __init__(self, schema):
self.schema = schema
def __contains__(self, term):
return False
def __iter__(self):
return iter([])
def cursor(self, fieldname):
from whoosh.codec.base import EmptyCursor
return EmptyCursor()
def indexed_field_names(self):
return []
def all_terms(self):
return iter([])
def term_info(self, fieldname, text):
raise TermNotFound((fieldname, text))
def iter_from(self, fieldname, text):
return iter([])
def iter_field(self, fieldname, prefix=''):
return iter([])
def iter_prefix(self, fieldname, prefix=''):
return iter([])
def lexicon(self, fieldname):
return iter([])
def has_deletions(self):
return False
def is_deleted(self, docnum):
return False
def stored_fields(self, docnum):
raise KeyError("No document number %s" % docnum)
def all_stored_fields(self):
return iter([])
def doc_count_all(self):
return 0
def doc_count(self):
return 0
def frequency(self, fieldname, text):
return 0
def doc_frequency(self, fieldname, text):
return 0
def field_length(self, fieldname):
return 0
def min_field_length(self, fieldname):
return 0
def max_field_length(self, fieldname):
return 0
def doc_field_length(self, docnum, fieldname, default=0):
return default
def postings(self, fieldname, text, scorer=None):
raise TermNotFound("%s:%r" % (fieldname, text))
def has_vector(self, docnum, fieldname):
return False
def vector(self, docnum, fieldname, format_=None):
raise KeyError("No document number %s" % docnum)
def most_frequent_terms(self, fieldname, number=5, prefix=''):
return iter([])
def most_distinctive_terms(self, fieldname, number=5, prefix=None):
return iter([])
# Multisegment reader class
class MultiReader(IndexReader):
"""Do not instantiate this object directly. Instead use Index.reader().
"""
def __init__(self, readers, generation=None):
self.readers = readers
self._gen = generation
self.schema = None
if readers:
self.schema = readers[0].schema
self.doc_offsets = []
self.base = 0
for r in self.readers:
self.doc_offsets.append(self.base)
self.base += r.doc_count_all()
self.is_closed = False
def _document_segment(self, docnum):
return max(0, bisect_right(self.doc_offsets, docnum) - 1)
def _segment_and_docnum(self, docnum):
segmentnum = self._document_segment(docnum)
offset = self.doc_offsets[segmentnum]
return segmentnum, docnum - offset
def cursor(self, fieldname):
return MultiCursor([r.cursor(fieldname) for r in self.readers])
def is_atomic(self):
return False
def leaf_readers(self):
return zip_(self.readers, self.doc_offsets)
def add_reader(self, reader):
self.readers.append(reader)
self.doc_offsets.append(self.base)
self.base += reader.doc_count_all()
def close(self):
for d in self.readers:
d.close()
self.is_closed = True
def generation(self):
return self._gen
def format(self, fieldname):
for r in self.readers:
fmt = r.format(fieldname)
if fmt is not None:
return fmt
def vector_format(self, fieldname):
for r in self.readers:
vfmt = r.vector_format(fieldname)
if vfmt is not None:
return vfmt
# Term methods
def __contains__(self, term):
return any(r.__contains__(term) for r in self.readers)
def _merge_terms(self, iterlist):
# Merge-sorts terms coming from a list of term iterators.
# Create a map so we can look up each iterator by its id() value
itermap = {}
for it in iterlist:
itermap[id(it)] = it
# Fill in the list with the head term from each iterator.
current = []
for it in iterlist:
try:
term = next(it)
except StopIteration:
continue
current.append((term, id(it)))
# Number of active iterators
active = len(current)
# If only one iterator is active, just yield from it and return
if active == 1:
term, itid = current[0]
it = itermap[itid]
yield term
for term in it:
yield term
return
# Otherwise, do a streaming heap sort of the terms from the iterators
heapify(current)
while active:
# Peek at the first term in the sorted list
term = current[0][0]
# Re-iterate on all items in the list that have that term
while active and current[0][0] == term:
it = itermap[current[0][1]]
try:
nextterm = next(it)
heapreplace(current, (nextterm, id(it)))
except StopIteration:
heappop(current)
active -= 1
# Yield the term
yield term
def indexed_field_names(self):
names = set()
for r in self.readers:
names.update(r.indexed_field_names())
return iter(names)
def all_terms(self):
return self._merge_terms([r.all_terms() for r in self.readers])
def terms_from(self, fieldname, prefix):
return self._merge_terms([r.terms_from(fieldname, prefix)
for r in self.readers])
def term_info(self, fieldname, text):
term = (fieldname, text)
# Get the term infos for the sub-readers containing the term
tis = [(r.term_info(fieldname, text), offset) for r, offset
in zip_(self.readers, self.doc_offsets) if term in r]
# If only one reader had the term, return its terminfo with the offset
# added
if not tis:
raise TermNotFound(term)
return combine_terminfos(tis)
def frequency(self, fieldname, text):
return sum(r.frequency(fieldname, text) for r in self.readers)
def doc_frequency(self, fieldname, text):
return sum(r.doc_frequency(fieldname, text) for r in self.readers)
def postings(self, fieldname, text):
# This method does not add a scorer; for that, use Searcher.postings()
postreaders = []
docoffsets = []
term = (fieldname, text)
for i, r in enumerate(self.readers):
if term in r:
offset = self.doc_offsets[i]
pr = r.postings(fieldname, text)
postreaders.append(pr)
docoffsets.append(offset)
if not postreaders:
raise TermNotFound(fieldname, text)
return MultiMatcher(postreaders, docoffsets)
def first_id(self, fieldname, text):
for i, r in enumerate(self.readers):
try:
id = r.first_id(fieldname, text)
except (KeyError, TermNotFound):
pass
else:
if id is None:
raise TermNotFound((fieldname, text))
else:
return self.doc_offsets[i] + id
raise TermNotFound((fieldname, text))
# Deletion methods
def has_deletions(self):
return any(r.has_deletions() for r in self.readers)
def is_deleted(self, docnum):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
return self.readers[segmentnum].is_deleted(segmentdoc)
def stored_fields(self, docnum):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
return self.readers[segmentnum].stored_fields(segmentdoc)
# Columns
def has_column(self, fieldname):
return any(r.has_column(fieldname) for r in self.readers)
def column_reader(self, fieldname, column=None, reverse=False,
translate=True):
crs = []
doc_offsets = []
for i, r in enumerate(self.readers):
if r.has_column(fieldname):
cr = r.column_reader(fieldname, column=column, reverse=reverse,
translate=translate)
crs.append(cr)
doc_offsets.append(self.doc_offsets[i])
return columns.MultiColumnReader(crs, doc_offsets)
# Per doc methods
def all_stored_fields(self):
for reader in self.readers:
for result in reader.all_stored_fields():
yield result
def doc_count_all(self):
return sum(dr.doc_count_all() for dr in self.readers)
def doc_count(self):
return sum(dr.doc_count() for dr in self.readers)
def field_length(self, fieldname):
return sum(dr.field_length(fieldname) for dr in self.readers)
def min_field_length(self, fieldname):
return min(r.min_field_length(fieldname) for r in self.readers)
def max_field_length(self, fieldname):
return max(r.max_field_length(fieldname) for r in self.readers)
def doc_field_length(self, docnum, fieldname, default=0):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
reader = self.readers[segmentnum]
return reader.doc_field_length(segmentdoc, fieldname, default=default)
def has_vector(self, docnum, fieldname):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
return self.readers[segmentnum].has_vector(segmentdoc, fieldname)
def vector(self, docnum, fieldname, format_=None):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
return self.readers[segmentnum].vector(segmentdoc, fieldname)
def vector_as(self, astype, docnum, fieldname):
segmentnum, segmentdoc = self._segment_and_docnum(docnum)
return self.readers[segmentnum].vector_as(astype, segmentdoc,
fieldname)
def combine_terminfos(tis):
if len(tis) == 1:
ti, offset = tis[0]
ti._minid += offset
ti._maxid += offset
return ti
# Combine the various statistics
w = sum(ti.weight() for ti, _ in tis)
df = sum(ti.doc_frequency() for ti, _ in tis)
ml = min(ti.min_length() for ti, _ in tis)
xl = max(ti.max_length() for ti, _ in tis)
xw = max(ti.max_weight() for ti, _ in tis)
# For min and max ID, we need to add the doc offsets
mid = min(ti.min_id() + offset for ti, offset in tis)
xid = max(ti.max_id() + offset for ti, offset in tis)
return TermInfo(w, df, ml, xl, xw, mid, xid)
class MultiCursor(object):
def __init__(self, cursors):
self._cursors = [c for c in cursors if c.is_valid()]
self._low = []
self._text = None
self.next()
def _find_low(self):
low = []
lowterm = None
for c in self._cursors:
if c.is_valid():
cterm = c.term()
if low and cterm == lowterm:
low.append(c)
elif low and cterm < lowterm:
low = [c]
lowterm = cterm
self._low = low
self._text = lowterm
return lowterm
def first(self):
for c in self._cursors:
c.first()
return self._find_low()
def find(self, term):
for c in self._cursors:
c.find(term)
return self._find_low()
def next(self):
for c in self._cursors:
c.next()
return self._find_low()
def term_info(self):
tis = [c.term_info() for c in self._low]
return combine_terminfos(tis) if tis else None
def is_valid(self):
return any(c.is_valid() for c in self._cursors)
|