/usr/lib/python3/dist-packages/whoosh/searching.py is in python3-whoosh 2.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 | # Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
"""This module contains classes and functions related to searching the index.
"""
from __future__ import division
import copy
import weakref
from math import ceil
from whoosh import classify, highlight, query, scoring
from whoosh.compat import iteritems, itervalues, iterkeys, xrange
from whoosh.idsets import DocIdSet, BitSet
from whoosh.reading import TermNotFound
from whoosh.util.cache import lru_cache
class NoTermsException(Exception):
"""Exception raised you try to access matched terms on a :class:`Results`
object was created without them. To record which terms matched in which
document, you need to call the :meth:`Searcher.search` method with
``terms=True``.
"""
message = "Results were created without recording terms"
class TimeLimit(Exception):
"""Raised by :class:`TimeLimitedCollector` if the time limit is reached
before the search finishes. If you have a reference to the collector, you
can get partial results by calling :meth:`TimeLimitedCollector.results`.
"""
pass
# Context class
class SearchContext(object):
"""A container for information about the current search that may be used
by the collector or the query objects to change how they operate.
"""
def __init__(self, needs_current=False, weighting=None, top_query=None,
limit=0):
"""
:param needs_current: if True, the search requires that the matcher
tree be "valid" and able to access information about the current
match. For queries during matcher instantiation, this means they
should not instantiate a matcher that doesn't allow access to the
current match's value, weight, and so on. For collectors, this
means they should advanced the matcher doc-by-doc rather than using
shortcut methods such as all_ids().
:param weighting: the Weighting object to use for scoring documents.
:param top_query: a reference to the top-level query object.
:param limit: the number of results requested by the user.
"""
self.needs_current = needs_current
self.weighting = weighting
self.top_query = top_query
self.limit = limit
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.__dict__)
def set(self, **kwargs):
ctx = copy.copy(self)
ctx.__dict__.update(kwargs)
return ctx
# Searcher class
class Searcher(object):
"""Wraps an :class:`~whoosh.reading.IndexReader` object and provides
methods for searching the index.
"""
def __init__(self, reader, weighting=scoring.BM25F, closereader=True,
fromindex=None, parent=None):
"""
:param reader: An :class:`~whoosh.reading.IndexReader` object for
the index to search.
:param weighting: A :class:`whoosh.scoring.Weighting` object to use to
score found documents.
:param closereader: Whether the underlying reader will be closed when
the searcher is closed.
:param fromindex: An optional reference to the index of the underlying
reader. This is required for :meth:`Searcher.up_to_date` and
:meth:`Searcher.refresh` to work.
"""
self.ixreader = reader
self.is_closed = False
self._closereader = closereader
self._ix = fromindex
self._doccount = self.ixreader.doc_count_all()
# Cache for PostingCategorizer objects (supports fields without columns)
self._field_caches = {}
if parent:
self.parent = weakref.ref(parent)
self.schema = parent.schema
self._idf_cache = parent._idf_cache
self._filter_cache = parent._filter_cache
else:
self.parent = None
self.schema = self.ixreader.schema
self._idf_cache = {}
self._filter_cache = {}
if type(weighting) is type:
self.weighting = weighting()
else:
self.weighting = weighting
self.leafreaders = None
self.subsearchers = None
if not self.ixreader.is_atomic():
self.leafreaders = self.ixreader.leaf_readers()
self.subsearchers = [(self._subsearcher(r), offset) for r, offset
in self.leafreaders]
# Copy attributes/methods from wrapped reader
for name in ("stored_fields", "all_stored_fields", "has_vector",
"vector", "vector_as", "lexicon", "field_terms",
"frequency", "doc_frequency", "term_info",
"doc_field_length", "corrector", "iter_docs"):
setattr(self, name, getattr(self.ixreader, name))
def __enter__(self):
return self
def __exit__(self, *exc_info):
self.close()
def _subsearcher(self, reader):
return self.__class__(reader, fromindex=self._ix,
weighting=self.weighting, parent=self)
def _offset_for_subsearcher(self, subsearcher):
for ss, offset in self.subsearchers:
if ss is subsearcher:
return offset
def leaf_searchers(self):
if self.is_atomic():
return [(self, 0)]
else:
return self.subsearchers
def is_atomic(self):
return self.reader().is_atomic()
def has_parent(self):
return self.parent is not None
def get_parent(self):
"""Returns the parent of this searcher (if has_parent() is True), or
else self.
"""
if self.has_parent():
# Call the weak reference to get the parent searcher
return self.parent()
else:
return self
def doc_count(self):
"""Returns the number of UNDELETED documents in the index.
"""
return self.ixreader.doc_count()
def doc_count_all(self):
"""Returns the total number of documents, DELETED OR UNDELETED, in
the index.
"""
return self._doccount
def field_length(self, fieldname):
if self.has_parent():
return self.get_parent().field_length(fieldname)
else:
return self.reader().field_length(fieldname)
def max_field_length(self, fieldname):
if self.has_parent():
return self.get_parent().max_field_length(fieldname)
else:
return self.reader().max_field_length(fieldname)
def up_to_date(self):
"""Returns True if this Searcher represents the latest version of the
index, for backends that support versioning.
"""
if not self._ix:
raise Exception("No reference to index")
return self._ix.latest_generation() == self.ixreader.generation()
def refresh(self):
"""Returns a fresh searcher for the latest version of the index::
my_searcher = my_searcher.refresh()
If the index has not changed since this searcher was created, this
searcher is simply returned.
This method may CLOSE underlying resources that are no longer needed
by the refreshed searcher, so you CANNOT continue to use the original
searcher after calling ``refresh()`` on it.
"""
if not self._ix:
raise Exception("No reference to index")
if self._ix.latest_generation() == self.reader().generation():
return self
# Get a new reader, re-using resources from the current reader if
# possible
self.is_closed = True
newreader = self._ix.reader(reuse=self.ixreader)
return self.__class__(newreader, fromindex=self._ix,
weighting=self.weighting)
def close(self):
if self._closereader:
self.ixreader.close()
self.is_closed = True
def avg_field_length(self, fieldname, default=None):
if not self.schema[fieldname].scorable:
return default
return self.field_length(fieldname) / (self._doccount or 1)
def reader(self):
"""Returns the underlying :class:`~whoosh.reading.IndexReader`.
"""
return self.ixreader
def context(self, **kwargs):
"""Generates a :class:`SearchContext` for this searcher.
"""
if "weighting" not in kwargs:
kwargs["weighting"] = self.weighting
return SearchContext(**kwargs)
def boolean_context(self):
"""Shortcut returns a SearchContext set for unscored (boolean)
searching.
"""
return self.context(needs_current=False, weighting=None)
def postings(self, fieldname, text, weighting=None, qf=1):
"""Returns a :class:`whoosh.matching.Matcher` for the postings of the
given term. Unlike the :func:`whoosh.reading.IndexReader.postings`
method, this method automatically sets the scoring functions on the
matcher from the searcher's weighting object.
"""
weighting = weighting or self.weighting
globalscorer = weighting.scorer(self, fieldname, text, qf=qf)
if self.is_atomic():
return self.ixreader.postings(fieldname, text, scorer=globalscorer)
else:
from whoosh.matching import MultiMatcher
matchers = []
docoffsets = []
term = (fieldname, text)
for subsearcher, offset in self.subsearchers:
r = subsearcher.reader()
if term in r:
# Make a segment-specific scorer; the scorer should call
# searcher.parent() to get global stats
scorer = weighting.scorer(subsearcher, fieldname, text, qf=qf)
m = r.postings(fieldname, text, scorer=scorer)
matchers.append(m)
docoffsets.append(offset)
if not matchers:
raise TermNotFound(fieldname, text)
return MultiMatcher(matchers, docoffsets, globalscorer)
def idf(self, fieldname, text):
"""Calculates the Inverse Document Frequency of the current term (calls
idf() on the searcher's Weighting object).
"""
# This method just calls the Weighting object's idf() method, but
# caches the result. So Weighting objects should call *this* method
# which will then call *their own* idf() methods.
cache = self._idf_cache
term = (fieldname, text)
if term in cache:
return cache[term]
idf = self.weighting.idf(self, fieldname, text)
cache[term] = idf
return idf
def document(self, **kw):
"""Convenience method returns the stored fields of a document
matching the given keyword arguments, where the keyword keys are
field names and the values are terms that must appear in the field.
This method is equivalent to::
searcher.stored_fields(searcher.document_number(<keyword args>))
Where Searcher.documents() returns a generator, this function returns
either a dictionary or None. Use it when you assume the given keyword
arguments either match zero or one documents (i.e. at least one of the
fields is a unique key).
>>> stored_fields = searcher.document(path=u"/a/b")
>>> if stored_fields:
... print(stored_fields['title'])
... else:
... print("There is no document with the path /a/b")
"""
for p in self.documents(**kw):
return p
def documents(self, **kw):
"""Convenience method returns the stored fields of a document
matching the given keyword arguments, where the keyword keys are field
names and the values are terms that must appear in the field.
Returns a generator of dictionaries containing the stored fields of any
documents matching the keyword arguments. If you do not specify any
arguments (``Searcher.documents()``), this method will yield **all**
documents.
>>> for stored_fields in searcher.documents(emailto=u"matt@whoosh.ca"):
... print("Email subject:", stored_fields['subject'])
"""
ixreader = self.ixreader
return (ixreader.stored_fields(docnum)
for docnum in self.document_numbers(**kw))
def _kw_to_text(self, kw):
for k, v in iteritems(kw):
field = self.schema[k]
kw[k] = field.to_bytes(v)
def _query_for_kw(self, kw):
subqueries = []
for key, value in iteritems(kw):
subqueries.append(query.Term(key, value))
if subqueries:
q = query.And(subqueries).normalize()
else:
q = query.Every()
return q
def document_number(self, **kw):
"""Returns the document number of the document matching the given
keyword arguments, where the keyword keys are field names and the
values are terms that must appear in the field.
>>> docnum = searcher.document_number(path=u"/a/b")
Where Searcher.document_numbers() returns a generator, this function
returns either an int or None. Use it when you assume the given keyword
arguments either match zero or one documents (i.e. at least one of the
fields is a unique key).
:rtype: int
"""
# In the common case where only one keyword was given, just use
# first_id() instead of building a query.
self._kw_to_text(kw)
if len(kw) == 1:
k, v = list(kw.items())[0]
try:
return self.reader().first_id(k, v)
except TermNotFound:
return None
else:
m = self._query_for_kw(kw).matcher(self, self.boolean_context())
if m.is_active():
return m.id()
def document_numbers(self, **kw):
"""Returns a generator of the document numbers for documents matching
the given keyword arguments, where the keyword keys are field names and
the values are terms that must appear in the field. If you do not
specify any arguments (``Searcher.document_numbers()``), this method
will yield **all** document numbers.
>>> docnums = list(searcher.document_numbers(emailto="matt@whoosh.ca"))
"""
self._kw_to_text(kw)
return self.docs_for_query(self._query_for_kw(kw))
def _find_unique(self, uniques):
# uniques is a list of ("unique_field_name", "field_value") tuples
delset = set()
for name, value in uniques:
docnum = self.document_number(**{name: value})
if docnum is not None:
delset.add(docnum)
return delset
@lru_cache(20)
def _query_to_comb(self, fq):
return BitSet(self.docs_for_query(fq), size=self.doc_count_all())
def _filter_to_comb(self, obj):
if obj is None:
return None
if isinstance(obj, (set, DocIdSet)):
c = obj
elif isinstance(obj, Results):
c = obj.docs()
elif isinstance(obj, ResultsPage):
c = obj.results.docs()
elif isinstance(obj, query.Query):
c = self._query_to_comb(obj)
else:
raise Exception("Don't know what to do with filter object %r"
% obj)
return c
def suggest(self, fieldname, text, limit=5, maxdist=2, prefix=0):
"""Returns a sorted list of suggested corrections for the given
mis-typed word ``text`` based on the contents of the given field::
>>> searcher.suggest("content", "specail")
["special"]
This is a convenience method. If you are planning to get suggestions
for multiple words in the same field, it is more efficient to get a
:class:`~whoosh.spelling.Corrector` object and use it directly::
corrector = searcher.corrector("fieldname")
for word in words:
print(corrector.suggest(word))
:param limit: only return up to this many suggestions. If there are not
enough terms in the field within ``maxdist`` of the given word, the
returned list will be shorter than this number.
:param maxdist: the largest edit distance from the given word to look
at. Numbers higher than 2 are not very effective or efficient.
:param prefix: require suggestions to share a prefix of this length
with the given word. This is often justifiable since most
misspellings do not involve the first letter of the word. Using a
prefix dramatically decreases the time it takes to generate the
list of words.
"""
c = self.reader().corrector(fieldname)
return c.suggest(text, limit=limit, maxdist=maxdist, prefix=prefix)
def key_terms(self, docnums, fieldname, numterms=5,
model=classify.Bo1Model, normalize=True):
"""Returns the 'numterms' most important terms from the documents
listed (by number) in 'docnums'. You can get document numbers for the
documents your interested in with the document_number() and
document_numbers() methods.
"Most important" is generally defined as terms that occur frequently in
the top hits but relatively infrequently in the collection as a whole.
>>> docnum = searcher.document_number(path=u"/a/b")
>>> keywords_and_scores = searcher.key_terms([docnum], "content")
This method returns a list of ("term", score) tuples. The score may be
useful if you want to know the "strength" of the key terms, however to
just get the terms themselves you can just do this:
>>> kws = [kw for kw, score in searcher.key_terms([docnum], "content")]
:param fieldname: Look at the terms in this field. This field must
store vectors.
:param docnums: A sequence of document numbers specifying which
documents to extract key terms from.
:param numterms: Return this number of important terms.
:param model: The classify.ExpansionModel to use. See the classify
module.
:param normalize: normalize the scores.
:returns: a list of ("term", score) tuples.
"""
expander = classify.Expander(self.ixreader, fieldname, model=model)
for docnum in docnums:
expander.add_document(docnum)
return expander.expanded_terms(numterms, normalize=normalize)
def key_terms_from_text(self, fieldname, text, numterms=5,
model=classify.Bo1Model, normalize=True):
"""Return the 'numterms' most important terms from the given text.
:param numterms: Return this number of important terms.
:param model: The classify.ExpansionModel to use. See the classify
module.
"""
expander = classify.Expander(self.ixreader, fieldname, model=model)
expander.add_text(text)
return expander.expanded_terms(numterms, normalize=normalize)
def more_like(self, docnum, fieldname, text=None, top=10, numterms=5,
model=classify.Bo1Model, normalize=False, filter=None):
"""Returns a :class:`Results` object containing documents similar to
the given document, based on "key terms" in the given field::
# Get the ID for the document you're interested in
docnum = search.document_number(path=u"/a/b/c")
r = searcher.more_like(docnum)
print("Documents like", searcher.stored_fields(docnum)["title"])
for hit in r:
print(hit["title"])
:param fieldname: the name of the field to use to test similarity.
:param text: by default, the method will attempt to load the contents
of the field from the stored fields for the document, or from a
term vector. If the field isn't stored or vectored in the index,
but you have access to the text another way (for example, loading
from a file or a database), you can supply it using the ``text``
parameter.
:param top: the number of results to return.
:param numterms: the number of "key terms" to extract from the hit and
search for. Using more terms is slower but gives potentially more
and more accurate results.
:param model: (expert) a :class:`whoosh.classify.ExpansionModel` to use
to compute "key terms".
:param normalize: whether to normalize term weights.
:param filter: a query, Results object, or set of docnums. The results
will only contain documents that are also in the filter object.
"""
if text:
kts = self.key_terms_from_text(fieldname, text, numterms=numterms,
model=model, normalize=normalize)
else:
kts = self.key_terms([docnum], fieldname, numterms=numterms,
model=model, normalize=normalize)
# Create an Or query from the key terms
q = query.Or([query.Term(fieldname, word, boost=weight)
for word, weight in kts])
return self.search(q, limit=top, filter=filter, mask=set([docnum]))
def search_page(self, query, pagenum, pagelen=10, **kwargs):
"""This method is Like the :meth:`Searcher.search` method, but returns
a :class:`ResultsPage` object. This is a convenience function for
getting a certain "page" of the results for the given query, which is
often useful in web search interfaces.
For example::
querystring = request.get("q")
query = queryparser.parse("content", querystring)
pagenum = int(request.get("page", 1))
pagelen = int(request.get("perpage", 10))
results = searcher.search_page(query, pagenum, pagelen=pagelen)
print("Page %d of %d" % (results.pagenum, results.pagecount))
print("Showing results %d-%d of %d"
% (results.offset + 1, results.offset + results.pagelen + 1,
len(results)))
for hit in results:
print("%d: %s" % (hit.rank + 1, hit["title"]))
(Note that results.pagelen might be less than the pagelen argument if
there aren't enough results to fill a page.)
Any additional keyword arguments you supply are passed through to
:meth:`Searcher.search`. For example, you can get paged results of a
sorted search::
results = searcher.search_page(q, 2, sortedby="date", reverse=True)
Currently, searching for page 100 with pagelen of 10 takes the same
amount of time as using :meth:`Searcher.search` to find the first 1000
results. That is, this method does not have any special optimizations
or efficiencies for getting a page from the middle of the full results
list. (A future enhancement may allow using previous page results to
improve the efficiency of finding the next page.)
This method will raise a ``ValueError`` if you ask for a page number
higher than the number of pages in the resulting query.
:param query: the :class:`whoosh.query.Query` object to match.
:param pagenum: the page number to retrieve, starting at ``1`` for the
first page.
:param pagelen: the number of results per page.
:returns: :class:`ResultsPage`
"""
if pagenum < 1:
raise ValueError("pagenum must be >= 1")
results = self.search(query, limit=pagenum * pagelen, **kwargs)
return ResultsPage(results, pagenum, pagelen)
def find(self, defaultfield, querystring, **kwargs):
from whoosh.qparser import QueryParser
qp = QueryParser(defaultfield, schema=self.ixreader.schema)
q = qp.parse(querystring)
return self.search(q, **kwargs)
def docs_for_query(self, q, for_deletion=False):
"""Returns an iterator of document numbers for documents matching the
given :class:`whoosh.query.Query` object.
"""
# If we're getting the document numbers so we can delete them, use the
# deletion_docs method instead of docs; this lets special queries
# (e.g. nested queries) override what gets deleted
if for_deletion:
method = q.deletion_docs
else:
method = q.docs
if self.subsearchers:
for s, offset in self.subsearchers:
for docnum in method(s):
yield docnum + offset
else:
for docnum in method(self):
yield docnum
def collector(self, limit=10, sortedby=None, reverse=False, groupedby=None,
collapse=None, collapse_limit=1, collapse_order=None,
optimize=True, filter=None, mask=None, terms=False,
maptype=None, scored=True):
"""Low-level method: returns a configured
:class:`whoosh.collectors.Collector` object based on the given
arguments. You can use this object with
:meth:`Searcher.search_with_collector` to search.
See the documentation for the :meth:`Searcher.search` method for a
description of the parameters.
This method may be useful to get a basic collector object and then wrap
it with another collector from ``whoosh.collectors`` or with a custom
collector of your own::
# Equivalent of
# results = mysearcher.search(myquery, limit=10)
# but with a time limt...
# Create a TopCollector
c = mysearcher.collector(limit=10)
# Wrap it with a TimeLimitedCollector with a time limit of
# 10.5 seconds
from whoosh.collectors import TimeLimitedCollector
c = TimeLimitCollector(c, 10.5)
# Search using the custom collector
results = mysearcher.search_with_collector(myquery, c)
"""
from whoosh import collectors
if limit is not None and limit < 1:
raise ValueError("limit must be >= 1")
if not scored and not sortedby:
c = collectors.UnsortedCollector()
elif sortedby:
c = collectors.SortingCollector(sortedby, limit=limit,
reverse=reverse)
elif groupedby or reverse or not limit or limit >= self.doc_count():
# A collector that gathers every matching document
c = collectors.UnlimitedCollector(reverse=reverse)
else:
# A collector that uses block quality optimizations and a heap
# queue to only collect the top N documents
c = collectors.TopCollector(limit, usequality=optimize)
if groupedby:
c = collectors.FacetCollector(c, groupedby, maptype=maptype)
if terms:
c = collectors.TermsCollector(c)
if collapse:
c = collectors.CollapseCollector(c, collapse, limit=collapse_limit,
order=collapse_order)
# Filtering wraps last so it sees the docs first
if filter or mask:
c = collectors.FilterCollector(c, filter, mask)
return c
def search(self, q, **kwargs):
"""Runs a :class:`whoosh.query.Query` object on this searcher and
returns a :class:`Results` object. See :doc:`/searching` for more
information.
This method takes many keyword arguments (documented below).
See :doc:`/facets` for information on using ``sortedby`` and/or
``groupedby``. See :ref:`collapsing` for more information on using
``collapse``, ``collapse_limit``, and ``collapse_order``.
:param query: a :class:`whoosh.query.Query` object to use to match
documents.
:param limit: the maximum number of documents to score. If you're only
interested in the top N documents, you can set limit=N to limit the
scoring for a faster search. Default is 10.
:param scored: whether to score the results. Overriden by ``sortedby``.
If both ``scored=False`` and ``sortedby=None``, the results will be
in arbitrary order, but will usually be computed faster than
scored or sorted results.
:param sortedby: see :doc:`/facets`.
:param reverse: Reverses the direction of the sort. Default is False.
:param groupedby: see :doc:`/facets`.
:param optimize: use optimizations to get faster results when possible.
Default is True.
:param filter: a query, Results object, or set of docnums. The results
will only contain documents that are also in the filter object.
:param mask: a query, Results object, or set of docnums. The results
will not contain any documents that are in the mask object.
:param terms: if True, record which terms were found in each matching
document. See :doc:`/searching` for more information. Default is
False.
:param maptype: by default, the results of faceting with ``groupedby``
is a dictionary mapping group names to ordered lists of document
numbers in the group. You can pass a
:class:`whoosh.sorting.FacetMap` subclass to this keyword argument
to specify a different (usually faster) method for grouping. For
example, ``maptype=sorting.Count`` would store only the count of
documents in each group, instead of the full list of document IDs.
:param collapse: a :doc:`facet </facets>` to use to collapse the
results. See :ref:`collapsing` for more information.
:param collapse_limit: the maximum number of documents to allow with
the same collapse key. See :ref:`collapsing` for more information.
:param collapse_order: an optional ordering :doc:`facet </facets>`
to control which documents are kept when collapsing. The default
(``collapse_order=None``) uses the results order (e.g. the highest
scoring documents in a scored search).
:rtype: :class:`Results`
"""
# Call the collector() method to build a collector based on the
# parameters passed to this method
c = self.collector(**kwargs)
# Call the lower-level method to run the collector
self.search_with_collector(q, c)
# Return the results object from the collector
return c.results()
def search_with_collector(self, q, collector, context=None):
"""Low-level method: runs a :class:`whoosh.query.Query` object on this
searcher using the given :class:`whoosh.collectors.Collector` object
to collect the results::
myquery = query.Term("content", "cabbage")
uc = collectors.UnlimitedCollector()
tc = TermsCollector(uc)
mysearcher.search_with_collector(myquery, tc)
print(tc.docterms)
print(tc.results())
Note that this method does not return a :class:`Results` object. You
need to access the collector to get a results object or other
information the collector might hold after the search.
:param q: a :class:`whoosh.query.Query` object to use to match
documents.
:param collector: a :class:`whoosh.collectors.Collector` object to feed
the results into.
"""
# Get the search context object from the searcher
context = context or self.context()
# Allow collector to set up based on the top-level information
collector.prepare(self, q, context)
collector.run()
def correct_query(self, q, qstring, correctors=None, terms=None, maxdist=2,
prefix=0, aliases=None):
"""
Returns a corrected version of the given user query using a default
:class:`whoosh.spelling.ReaderCorrector`.
The default:
* Corrects any words that don't appear in the index.
* Takes suggestions from the words in the index. To make certain fields
use custom correctors, use the ``correctors`` argument to pass a
dictionary mapping field names to :class:`whoosh.spelling.Corrector`
objects.
* ONLY CORRECTS FIELDS THAT HAVE THE ``spelling`` ATTRIBUTE in the
schema (or for which you pass a custom corrector). To automatically
check all fields, use ``allfields=True``. Spell checking fields
without ``spelling`` is slower.
Expert users who want more sophisticated correction behavior can create
a custom :class:`whoosh.spelling.QueryCorrector` and use that instead
of this method.
Returns a :class:`whoosh.spelling.Correction` object with a ``query``
attribute containing the corrected :class:`whoosh.query.Query` object
and a ``string`` attributes containing the corrected query string.
>>> from whoosh import qparser, highlight
>>> qtext = 'mary "litle lamb"'
>>> q = qparser.QueryParser("text", myindex.schema)
>>> mysearcher = myindex.searcher()
>>> correction = mysearcher().correct_query(q, qtext)
>>> correction.query
<query.And ...>
>>> correction.string
'mary "little lamb"'
>>> mysearcher.close()
You can use the ``Correction`` object's ``format_string`` method to
format the corrected query string using a
:class:`whoosh.highlight.Formatter` object. For example, you can format
the corrected string as HTML, emphasizing the changed words.
>>> hf = highlight.HtmlFormatter(classname="change")
>>> correction.format_string(hf)
'mary "<strong class="change term0">little</strong> lamb"'
:param q: the :class:`whoosh.query.Query` object to correct.
:param qstring: the original user query from which the query object was
created. You can pass None instead of a string, in which the
second item in the returned tuple will also be None.
:param correctors: an optional dictionary mapping fieldnames to
:class:`whoosh.spelling.Corrector` objects. By default, this method
uses the contents of the index to spell check the terms in the
query. You can use this argument to "override" some fields with a
different correct, for example a
:class:`whoosh.spelling.GraphCorrector`.
:param terms: a sequence of ``("fieldname", "text")`` tuples to correct
in the query. By default, this method corrects terms that don't
appear in the index. You can use this argument to override that
behavior and explicitly specify the terms that should be corrected.
:param maxdist: the maximum number of "edits" (insertions, deletions,
subsitutions, or transpositions of letters) allowed between the
original word and any suggestion. Values higher than ``2`` may be
slow.
:param prefix: suggested replacement words must share this number of
initial characters with the original word. Increasing this even to
just ``1`` can dramatically speed up suggestions, and may be
justifiable since spellling mistakes rarely involve the first
letter of a word.
:param aliases: an optional dictionary mapping field names in the query
to different field names to use as the source of spelling
suggestions. The mappings in ``correctors`` are applied after this.
:rtype: :class:`whoosh.spelling.Correction`
"""
reader = self.reader()
# Dictionary of field name alias mappings
if aliases is None:
aliases = {}
# Dictionary of custom per-field correctors
if correctors is None:
correctors = {}
# Remap correctors dict according to aliases
d = {}
for fieldname, corr in iteritems(correctors):
fieldname = aliases.get(fieldname, fieldname)
d[fieldname] = corr
correctors = d
# Fill in default corrector objects for fields that don't have a custom
# one in the "correctors" dictionary
fieldnames = self.schema.names()
for fieldname in fieldnames:
fieldname = aliases.get(fieldname, fieldname)
if fieldname not in correctors:
correctors[fieldname] = self.reader().corrector(fieldname)
# Get any missing terms in the query in the fields we're correcting
if terms is None:
terms = []
for token in q.all_tokens():
aname = aliases.get(token.fieldname, token.fieldname)
text = token.text
if aname in correctors and (aname, text) not in reader:
# Note that we use the original, not aliases fieldname here
# so if we correct the query we know what it was
terms.append((token.fieldname, token.text))
# Make q query corrector
from whoosh import spelling
sqc = spelling.SimpleQueryCorrector(correctors, terms, aliases)
return sqc.correct_query(q, qstring)
class Results(object):
"""This object is returned by a Searcher. This object represents the
results of a search query. You can mostly use it as if it was a list of
dictionaries, where each dictionary is the stored fields of the document at
that position in the results.
Note that a Results object keeps a reference to the Searcher that created
it, so keeping a reference to a Results object keeps the Searcher alive and
so keeps all files used by it open.
"""
def __init__(self, searcher, q, top_n, docset=None, facetmaps=None,
runtime=0, highlighter=None):
"""
:param searcher: the :class:`Searcher` object that produced these
results.
:param query: the original query that created these results.
:param top_n: a list of (score, docnum) tuples representing the top
N search results.
"""
self.searcher = searcher
self.q = q
self.top_n = top_n
self.docset = docset
self._facetmaps = facetmaps or {}
self.runtime = runtime
self.highlighter = highlighter or highlight.Highlighter()
self.collector = None
self._total = None
self._char_cache = {}
def __repr__(self):
return "<Top %s Results for %r runtime=%s>" % (len(self.top_n),
self.q,
self.runtime)
def __len__(self):
"""Returns the total number of documents that matched the query. Note
this may be more than the number of scored documents, given the value
of the ``limit`` keyword argument to :meth:`Searcher.search`.
If this Results object was created by searching with a ``limit``
keyword, then computing the exact length of the result set may be
expensive for large indexes or large result sets. You may consider
using :meth:`Results.has_exact_length`,
:meth:`Results.estimated_length`, and
:meth:`Results.estimated_min_length` to display an estimated size of
the result set instead of an exact number.
"""
if self._total is None:
self._total = self.collector.count()
return self._total
def __getitem__(self, n):
if isinstance(n, slice):
start, stop, step = n.indices(len(self.top_n))
return [Hit(self, self.top_n[i][1], i, self.top_n[i][0])
for i in xrange(start, stop, step)]
else:
if n >= len(self.top_n):
raise IndexError("results[%r]: Results only has %s hits"
% (n, len(self.top_n)))
return Hit(self, self.top_n[n][1], n, self.top_n[n][0])
def __iter__(self):
"""Yields a :class:`Hit` object for each result in ranked order.
"""
for i in xrange(len(self.top_n)):
yield Hit(self, self.top_n[i][1], i, self.top_n[i][0])
def __contains__(self, docnum):
"""Returns True if the given document number matched the query.
"""
return docnum in self.docs()
def __nonzero__(self):
return not self.is_empty()
__bool__ = __nonzero__
def is_empty(self):
"""Returns True if not documents matched the query.
"""
return self.scored_length() == 0
def items(self):
"""Returns an iterator of (docnum, score) pairs for the scored
documents in the results.
"""
return ((docnum, score) for score, docnum in self.top_n)
def fields(self, n):
"""Returns the stored fields for the document at the ``n`` th position
in the results. Use :meth:`Results.docnum` if you want the raw
document number instead of the stored fields.
"""
return self.searcher.stored_fields(self.top_n[n][1])
def facet_names(self):
"""Returns the available facet names, for use with the ``groups()``
method.
"""
return self._facetmaps.keys()
def groups(self, name=None):
"""If you generated facet groupings for the results using the
`groupedby` keyword argument to the ``search()`` method, you can use
this method to retrieve the groups. You can use the ``facet_names()``
method to get the list of available facet names.
>>> results = searcher.search(my_query, groupedby=["tag", "price"])
>>> results.facet_names()
["tag", "price"]
>>> results.groups("tag")
{"new": [12, 1, 4], "apple": [3, 10, 5], "search": [11]}
If you only used one facet, you can call the method without a facet
name to get the groups for the facet.
>>> results = searcher.search(my_query, groupedby="tag")
>>> results.groups()
{"new": [12, 1, 4], "apple": [3, 10, 5, 0], "search": [11]}
By default, this returns a dictionary mapping category names to a list
of document numbers, in the same relative order as they appear in the
results.
>>> results = mysearcher.search(myquery, groupedby="tag")
>>> docnums = results.groups()
>>> docnums['new']
[12, 1, 4]
You can then use :meth:`Searcher.stored_fields` to get the stored
fields associated with a document ID.
If you specified a different ``maptype`` for the facet when you
searched, the values in the dictionary depend on the
:class:`whoosh.sorting.FacetMap`.
>>> myfacet = sorting.FieldFacet("tag", maptype=sorting.Count)
>>> results = mysearcher.search(myquery, groupedby=myfacet)
>>> counts = results.groups()
{"new": 3, "apple": 4, "search": 1}
"""
if (name is None or name == "facet") and len(self._facetmaps) == 1:
# If there's only one facet, just use it; convert keys() to list
# for Python 3
name = list(self._facetmaps.keys())[0]
elif name not in self._facetmaps:
raise KeyError("%r not in facet names %r"
% (name, self.facet_names()))
return self._facetmaps[name].as_dict()
def has_exact_length(self):
"""Returns True if this results object already knows the exact number
of matching documents.
"""
if self.collector:
return self.collector.computes_count()
else:
return self._total is not None
def estimated_length(self):
"""The estimated maximum number of matching documents, or the
exact number of matching documents if it's known.
"""
if self.has_exact_length():
return len(self)
else:
return self.q.estimate_size(self.searcher.reader())
def estimated_min_length(self):
"""The estimated minimum number of matching documents, or the
exact number of matching documents if it's known.
"""
if self.has_exact_length():
return len(self)
else:
return self.q.estimate_min_size(self.searcher.reader())
def scored_length(self):
"""Returns the number of scored documents in the results, equal to or
less than the ``limit`` keyword argument to the search.
>>> r = mysearcher.search(myquery, limit=20)
>>> len(r)
1246
>>> r.scored_length()
20
This may be fewer than the total number of documents that match the
query, which is what ``len(Results)`` returns.
"""
return len(self.top_n)
def docs(self):
"""Returns a set-like object containing the document numbers that
matched the query.
"""
if self.docset is None:
self.docset = set(self.collector.all_ids())
return self.docset
def copy(self):
"""Returns a deep copy of this results object.
"""
# Shallow copy self to get attributes
r = copy.copy(self)
# Deep copies of docset and top_n in case they're modified
r.docset = copy.deepcopy(self.docset)
r.top_n = copy.deepcopy(self.top_n)
return r
def score(self, n):
"""Returns the score for the document at the Nth position in the list
of ranked documents. If the search was not scored, this may return
None.
"""
return self.top_n[n][0]
def docnum(self, n):
"""Returns the document number of the result at position n in the list
of ranked documents.
"""
return self.top_n[n][1]
def query_terms(self, expand=False, fieldname=None):
return self.q.existing_terms(self.searcher.reader(),
fieldname=fieldname, expand=expand)
def has_matched_terms(self):
"""Returns True if the search recorded which terms matched in which
documents.
>>> r = searcher.search(myquery)
>>> r.has_matched_terms()
False
>>>
"""
return hasattr(self, "docterms") and hasattr(self, "termdocs")
def matched_terms(self):
"""Returns the set of ``("fieldname", "text")`` tuples representing
terms from the query that matched one or more of the TOP N documents
(this does not report terms for documents that match the query but did
not score high enough to make the top N results). You can compare this
set to the terms from the original query to find terms which didn't
occur in any matching documents.
This is only valid if you used ``terms=True`` in the search call to
record matching terms. Otherwise it will raise an exception.
>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> results.terms()
set([("content", "alfa"), ("content", "charlie")])
>>> q.all_terms() - results.terms()
set([("content", "bravo")])
"""
if not self.has_matched_terms():
raise NoTermsException
return set(self.termdocs.keys())
def _get_fragmenter(self):
return self.highlighter.fragmenter
def _set_fragmenter(self, f):
self.highlighter.fragmenter = f
fragmenter = property(_get_fragmenter, _set_fragmenter)
def _get_formatter(self):
return self.highlighter.formatter
def _set_formatter(self, f):
self.highlighter.formatter = f
formatter = property(_get_formatter, _set_formatter)
def _get_scorer(self):
return self.highlighter.scorer
def _set_scorer(self, s):
self.highlighter.scorer = s
scorer = property(_get_scorer, _set_scorer)
def _get_order(self):
return self.highlighter.order
def _set_order(self, o):
self.highlighter.order = o
order = property(_get_order, _set_order)
def key_terms(self, fieldname, docs=10, numterms=5,
model=classify.Bo1Model, normalize=True):
"""Returns the 'numterms' most important terms from the top 'docs'
documents in these results. "Most important" is generally defined as
terms that occur frequently in the top hits but relatively infrequently
in the collection as a whole.
:param fieldname: Look at the terms in this field. This field must
store vectors.
:param docs: Look at this many of the top documents of the results.
:param numterms: Return this number of important terms.
:param model: The classify.ExpansionModel to use. See the classify
module.
:returns: list of unicode strings.
"""
if not len(self):
return []
docs = min(docs, len(self))
reader = self.searcher.reader()
expander = classify.Expander(reader, fieldname, model=model)
for _, docnum in self.top_n[:docs]:
expander.add_document(docnum)
return expander.expanded_terms(numterms, normalize=normalize)
def extend(self, results):
"""Appends hits from 'results' (that are not already in this
results object) to the end of these results.
:param results: another results object.
"""
docs = self.docs()
for item in results.top_n:
if item[1] not in docs:
self.top_n.append(item)
self.docset = docs | results.docs()
def filter(self, results):
"""Removes any hits that are not also in the other results object.
"""
if not len(results):
return
otherdocs = results.docs()
items = [item for item in self.top_n if item[1] in otherdocs]
self.docset = self.docs() & otherdocs
self.top_n = items
def upgrade(self, results, reverse=False):
"""Re-sorts the results so any hits that are also in 'results' appear
before hits not in 'results', otherwise keeping their current relative
positions. This does not add the documents in the other results object
to this one.
:param results: another results object.
:param reverse: if True, lower the position of hits in the other
results object instead of raising them.
"""
if not len(results):
return
otherdocs = results.docs()
arein = [item for item in self.top_n if item[1] in otherdocs]
notin = [item for item in self.top_n if item[1] not in otherdocs]
if reverse:
items = notin + arein
else:
items = arein + notin
self.top_n = items
def upgrade_and_extend(self, results):
"""Combines the effects of extend() and upgrade(): hits that are also
in 'results' are raised. Then any hits from the other results object
that are not in this results object are appended to the end.
:param results: another results object.
"""
if not len(results):
return
docs = self.docs()
otherdocs = results.docs()
arein = [item for item in self.top_n if item[1] in otherdocs]
notin = [item for item in self.top_n if item[1] not in otherdocs]
other = [item for item in results.top_n if item[1] not in docs]
self.docset = docs | otherdocs
self.top_n = arein + notin + other
class Hit(object):
"""Represents a single search result ("hit") in a Results object.
This object acts like a dictionary of the matching document's stored
fields. If for some reason you need an actual ``dict`` object, use
``Hit.fields()`` to get one.
>>> r = searcher.search(query.Term("content", "render"))
>>> r[0]
< Hit {title = u"Rendering the scene"} >
>>> r[0].rank
0
>>> r[0].docnum == 4592
True
>>> r[0].score
2.52045682
>>> r[0]["title"]
"Rendering the scene"
>>> r[0].keys()
["title"]
"""
def __init__(self, results, docnum, pos=None, score=None):
"""
:param results: the Results object this hit belongs to.
:param pos: the position in the results list of this hit, for example
pos = 0 means this is the first (highest scoring) hit.
:param docnum: the document number of this hit.
:param score: the score of this hit.
"""
self.results = results
self.searcher = results.searcher
self.reader = self.searcher.reader()
self.pos = self.rank = pos
self.docnum = docnum
self.score = score
self._fields = None
def fields(self):
"""Returns a dictionary of the stored fields of the document this
object represents.
"""
if self._fields is None:
self._fields = self.searcher.stored_fields(self.docnum)
return self._fields
def matched_terms(self):
"""Returns the set of ``("fieldname", "text")`` tuples representing
terms from the query that matched in this document. You can
compare this set to the terms from the original query to find terms
which didn't occur in this document.
This is only valid if you used ``terms=True`` in the search call to
record matching terms. Otherwise it will raise an exception.
>>> q = myparser.parse("alfa OR bravo OR charlie")
>>> results = searcher.search(q, terms=True)
>>> for hit in results:
... print(hit["title"])
... print("Contains:", hit.matched_terms())
... print("Doesn't contain:", q.all_terms() - hit.matched_terms())
"""
if not self.results.has_matched_terms():
raise NoTermsException
return self.results.docterms.get(self.docnum, [])
def highlights(self, fieldname, text=None, top=3, minscore=1):
"""Returns highlighted snippets from the given field::
r = searcher.search(myquery)
for hit in r:
print(hit["title"])
print(hit.highlights("content"))
See :doc:`/highlight`.
To change the fragmeter, formatter, order, or scorer used in
highlighting, you can set attributes on the results object::
from whoosh import highlight
results = searcher.search(myquery, terms=True)
results.fragmenter = highlight.SentenceFragmenter()
...or use a custom :class:`whoosh.highlight.Highlighter` object::
hl = highlight.Highlighter(fragmenter=sf)
results.highlighter = hl
:param fieldname: the name of the field you want to highlight.
:param text: by default, the method will attempt to load the contents
of the field from the stored fields for the document. If the field
you want to highlight isn't stored in the index, but you have
access to the text another way (for example, loading from a file or
a database), you can supply it using the ``text`` parameter.
:param top: the maximum number of fragments to return.
:param minscore: the minimum score for fragments to appear in the
highlights.
"""
hliter = self.results.highlighter
return hliter.highlight_hit(self, fieldname, text=text, top=top,
minscore=minscore)
def more_like_this(self, fieldname, text=None, top=10, numterms=5,
model=classify.Bo1Model, normalize=True, filter=None):
"""Returns a new Results object containing documents similar to this
hit, based on "key terms" in the given field::
r = searcher.search(myquery)
for hit in r:
print(hit["title"])
print("Top 3 similar documents:")
for subhit in hit.more_like_this("content", top=3):
print(" ", subhit["title"])
:param fieldname: the name of the field to use to test similarity.
:param text: by default, the method will attempt to load the contents
of the field from the stored fields for the document, or from a
term vector. If the field isn't stored or vectored in the index,
but you have access to the text another way (for example, loading
from a file or a database), you can supply it using the ``text``
parameter.
:param top: the number of results to return.
:param numterms: the number of "key terms" to extract from the hit and
search for. Using more terms is slower but gives potentially more
and more accurate results.
:param model: (expert) a :class:`whoosh.classify.ExpansionModel` to use
to compute "key terms".
:param normalize: whether to normalize term weights.
"""
return self.searcher.more_like(self.docnum, fieldname, text=text,
top=top, numterms=numterms, model=model,
normalize=normalize, filter=filter)
def __repr__(self):
return "<%s %r>" % (self.__class__.__name__, self.fields())
def __eq__(self, other):
if isinstance(other, Hit):
return self.fields() == other.fields()
elif isinstance(other, dict):
return self.fields() == other
else:
return False
def __len__(self):
return len(self.fields())
def __iter__(self):
return iterkeys(self.fields())
def __getitem__(self, fieldname):
if fieldname in self.fields():
return self._fields[fieldname]
reader = self.reader
if reader.has_column(fieldname):
cr = reader.column_reader(fieldname)
return cr[self.docnum]
raise KeyError(fieldname)
def __contains__(self, key):
return (key in self.fields()
or self.reader.has_column(key))
def items(self):
return list(self.fields().items())
def keys(self):
return list(self.fields().keys())
def values(self):
return list(self.fields().values())
def iteritems(self):
return iteritems(self.fields())
def iterkeys(self):
return iterkeys(self.fields())
def itervalues(self):
return itervalues(self.fields())
def get(self, key, default=None):
return self.fields().get(key, default)
def __setitem__(self, key, value):
raise NotImplementedError("You cannot modify a search result")
def __delitem__(self, key, value):
raise NotImplementedError("You cannot modify a search result")
def clear(self):
raise NotImplementedError("You cannot modify a search result")
def update(self, dict=None, **kwargs):
raise NotImplementedError("You cannot modify a search result")
class ResultsPage(object):
"""Represents a single page out of a longer list of results, as returned
by :func:`whoosh.searching.Searcher.search_page`. Supports a subset of the
interface of the :class:`~whoosh.searching.Results` object, namely getting
stored fields with __getitem__ (square brackets), iterating, and the
``score()`` and ``docnum()`` methods.
The ``offset`` attribute contains the results number this page starts at
(numbered from 0). For example, if the page length is 10, the ``offset``
attribute on the second page will be ``10``.
The ``pagecount`` attribute contains the number of pages available.
The ``pagenum`` attribute contains the page number. This may be less than
the page you requested if the results had too few pages. For example, if
you do::
ResultsPage(results, 5)
but the results object only contains 3 pages worth of hits, ``pagenum``
will be 3.
The ``pagelen`` attribute contains the number of results on this page
(which may be less than the page length you requested if this is the last
page of the results).
The ``total`` attribute contains the total number of hits in the results.
>>> mysearcher = myindex.searcher()
>>> pagenum = 2
>>> page = mysearcher.find_page(pagenum, myquery)
>>> print("Page %s of %s, results %s to %s of %s" %
... (pagenum, page.pagecount, page.offset+1,
... page.offset+page.pagelen, page.total))
>>> for i, fields in enumerate(page):
... print("%s. %r" % (page.offset + i + 1, fields))
>>> mysearcher.close()
To set highlighter attributes (for example ``formatter``), access the
underlying :class:`Results` object::
page.results.formatter = highlight.UppercaseFormatter()
"""
def __init__(self, results, pagenum, pagelen=10):
"""
:param results: a :class:`~whoosh.searching.Results` object.
:param pagenum: which page of the results to use, numbered from ``1``.
:param pagelen: the number of hits per page.
"""
self.results = results
self.total = len(results)
if pagenum < 1:
raise ValueError("pagenum must be >= 1")
self.pagecount = int(ceil(self.total / pagelen))
self.pagenum = min(self.pagecount, pagenum)
offset = (self.pagenum - 1) * pagelen
if (offset + pagelen) > self.total:
pagelen = self.total - offset
self.offset = offset
self.pagelen = pagelen
def __getitem__(self, n):
offset = self.offset
if isinstance(n, slice):
start, stop, step = n.indices(self.pagelen)
return self.results.__getitem__(slice(start + offset,
stop + offset, step))
else:
return self.results.__getitem__(n + offset)
def __iter__(self):
return iter(self.results[self.offset:self.offset + self.pagelen])
def __len__(self):
return self.total
def scored_length(self):
return self.results.scored_length()
def score(self, n):
"""Returns the score of the hit at the nth position on this page.
"""
return self.results.score(n + self.offset)
def docnum(self, n):
"""Returns the document number of the hit at the nth position on this
page.
"""
return self.results.docnum(n + self.offset)
def is_last_page(self):
"""Returns True if this object represents the last page of results.
"""
return self.pagecount == 0 or self.pagenum == self.pagecount
|