This file is indexed.

/usr/lib/python3/dist-packages/whoosh/searching.py is in python3-whoosh 2.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.

"""This module contains classes and functions related to searching the index.
"""


from __future__ import division
import copy
import weakref
from math import ceil

from whoosh import classify, highlight, query, scoring
from whoosh.compat import iteritems, itervalues, iterkeys, xrange
from whoosh.idsets import DocIdSet, BitSet
from whoosh.reading import TermNotFound
from whoosh.util.cache import lru_cache


class NoTermsException(Exception):
    """Exception raised you try to access matched terms on a :class:`Results`
    object was created without them. To record which terms matched in which
    document, you need to call the :meth:`Searcher.search` method with
    ``terms=True``.
    """

    message = "Results were created without recording terms"


class TimeLimit(Exception):
    """Raised by :class:`TimeLimitedCollector` if the time limit is reached
    before the search finishes. If you have a reference to the collector, you
    can get partial results by calling :meth:`TimeLimitedCollector.results`.
    """

    pass


# Context class

class SearchContext(object):
    """A container for information about the current search that may be used
    by the collector or the query objects to change how they operate.
    """

    def __init__(self, needs_current=False, weighting=None, top_query=None,
                 limit=0):
        """
        :param needs_current: if True, the search requires that the matcher
            tree be "valid" and able to access information about the current
            match. For queries during matcher instantiation, this means they
            should not instantiate a matcher that doesn't allow access to the
            current match's value, weight, and so on. For collectors, this
            means they should advanced the matcher doc-by-doc rather than using
            shortcut methods such as all_ids().
        :param weighting: the Weighting object to use for scoring documents.
        :param top_query: a reference to the top-level query object.
        :param limit: the number of results requested by the user.
        """

        self.needs_current = needs_current
        self.weighting = weighting
        self.top_query = top_query
        self.limit = limit

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self.__dict__)

    def set(self, **kwargs):
        ctx = copy.copy(self)
        ctx.__dict__.update(kwargs)
        return ctx


# Searcher class

class Searcher(object):
    """Wraps an :class:`~whoosh.reading.IndexReader` object and provides
    methods for searching the index.
    """

    def __init__(self, reader, weighting=scoring.BM25F, closereader=True,
                 fromindex=None, parent=None):
        """
        :param reader: An :class:`~whoosh.reading.IndexReader` object for
            the index to search.
        :param weighting: A :class:`whoosh.scoring.Weighting` object to use to
            score found documents.
        :param closereader: Whether the underlying reader will be closed when
            the searcher is closed.
        :param fromindex: An optional reference to the index of the underlying
            reader. This is required for :meth:`Searcher.up_to_date` and
            :meth:`Searcher.refresh` to work.
        """

        self.ixreader = reader
        self.is_closed = False
        self._closereader = closereader
        self._ix = fromindex
        self._doccount = self.ixreader.doc_count_all()
        # Cache for PostingCategorizer objects (supports fields without columns)
        self._field_caches = {}

        if parent:
            self.parent = weakref.ref(parent)
            self.schema = parent.schema
            self._idf_cache = parent._idf_cache
            self._filter_cache = parent._filter_cache
        else:
            self.parent = None
            self.schema = self.ixreader.schema
            self._idf_cache = {}
            self._filter_cache = {}

        if type(weighting) is type:
            self.weighting = weighting()
        else:
            self.weighting = weighting

        self.leafreaders = None
        self.subsearchers = None
        if not self.ixreader.is_atomic():
            self.leafreaders = self.ixreader.leaf_readers()
            self.subsearchers = [(self._subsearcher(r), offset) for r, offset
                                 in self.leafreaders]

        # Copy attributes/methods from wrapped reader
        for name in ("stored_fields", "all_stored_fields", "has_vector",
                     "vector", "vector_as", "lexicon", "field_terms",
                     "frequency", "doc_frequency", "term_info",
                     "doc_field_length", "corrector", "iter_docs"):
            setattr(self, name, getattr(self.ixreader, name))

    def __enter__(self):
        return self

    def __exit__(self, *exc_info):
        self.close()

    def _subsearcher(self, reader):
        return self.__class__(reader, fromindex=self._ix,
                              weighting=self.weighting, parent=self)

    def _offset_for_subsearcher(self, subsearcher):
        for ss, offset in self.subsearchers:
            if ss is subsearcher:
                return offset

    def leaf_searchers(self):
        if self.is_atomic():
            return [(self, 0)]
        else:
            return self.subsearchers

    def is_atomic(self):
        return self.reader().is_atomic()

    def has_parent(self):
        return self.parent is not None

    def get_parent(self):
        """Returns the parent of this searcher (if has_parent() is True), or
        else self.
        """

        if self.has_parent():
            # Call the weak reference to get the parent searcher
            return self.parent()
        else:
            return self

    def doc_count(self):
        """Returns the number of UNDELETED documents in the index.
        """

        return self.ixreader.doc_count()

    def doc_count_all(self):
        """Returns the total number of documents, DELETED OR UNDELETED, in
        the index.
        """

        return self._doccount

    def field_length(self, fieldname):
        if self.has_parent():
            return self.get_parent().field_length(fieldname)
        else:
            return self.reader().field_length(fieldname)

    def max_field_length(self, fieldname):
        if self.has_parent():
            return self.get_parent().max_field_length(fieldname)
        else:
            return self.reader().max_field_length(fieldname)

    def up_to_date(self):
        """Returns True if this Searcher represents the latest version of the
        index, for backends that support versioning.
        """

        if not self._ix:
            raise Exception("No reference to index")
        return self._ix.latest_generation() == self.ixreader.generation()

    def refresh(self):
        """Returns a fresh searcher for the latest version of the index::

            my_searcher = my_searcher.refresh()

        If the index has not changed since this searcher was created, this
        searcher is simply returned.

        This method may CLOSE underlying resources that are no longer needed
        by the refreshed searcher, so you CANNOT continue to use the original
        searcher after calling ``refresh()`` on it.
        """

        if not self._ix:
            raise Exception("No reference to index")
        if self._ix.latest_generation() == self.reader().generation():
            return self

        # Get a new reader, re-using resources from the current reader if
        # possible
        self.is_closed = True
        newreader = self._ix.reader(reuse=self.ixreader)
        return self.__class__(newreader, fromindex=self._ix,
                              weighting=self.weighting)

    def close(self):
        if self._closereader:
            self.ixreader.close()
        self.is_closed = True

    def avg_field_length(self, fieldname, default=None):
        if not self.schema[fieldname].scorable:
            return default
        return self.field_length(fieldname) / (self._doccount or 1)

    def reader(self):
        """Returns the underlying :class:`~whoosh.reading.IndexReader`.
        """
        return self.ixreader

    def context(self, **kwargs):
        """Generates a :class:`SearchContext` for this searcher.
        """

        if "weighting" not in kwargs:
            kwargs["weighting"] = self.weighting

        return SearchContext(**kwargs)

    def boolean_context(self):
        """Shortcut returns a SearchContext set for unscored (boolean)
        searching.
        """

        return self.context(needs_current=False, weighting=None)

    def postings(self, fieldname, text, weighting=None, qf=1):
        """Returns a :class:`whoosh.matching.Matcher` for the postings of the
        given term. Unlike the :func:`whoosh.reading.IndexReader.postings`
        method, this method automatically sets the scoring functions on the
        matcher from the searcher's weighting object.
        """

        weighting = weighting or self.weighting
        globalscorer = weighting.scorer(self, fieldname, text, qf=qf)

        if self.is_atomic():
            return self.ixreader.postings(fieldname, text, scorer=globalscorer)
        else:
            from whoosh.matching import MultiMatcher

            matchers = []
            docoffsets = []
            term = (fieldname, text)
            for subsearcher, offset in self.subsearchers:
                r = subsearcher.reader()
                if term in r:
                    # Make a segment-specific scorer; the scorer should call
                    # searcher.parent() to get global stats
                    scorer = weighting.scorer(subsearcher, fieldname, text, qf=qf)
                    m = r.postings(fieldname, text, scorer=scorer)
                    matchers.append(m)
                    docoffsets.append(offset)

            if not matchers:
                raise TermNotFound(fieldname, text)

            return MultiMatcher(matchers, docoffsets, globalscorer)

    def idf(self, fieldname, text):
        """Calculates the Inverse Document Frequency of the current term (calls
        idf() on the searcher's Weighting object).
        """

        # This method just calls the Weighting object's idf() method, but
        # caches the result. So Weighting objects should call *this* method
        # which will then call *their own* idf() methods.

        cache = self._idf_cache
        term = (fieldname, text)
        if term in cache:
            return cache[term]

        idf = self.weighting.idf(self, fieldname, text)
        cache[term] = idf
        return idf

    def document(self, **kw):
        """Convenience method returns the stored fields of a document
        matching the given keyword arguments, where the keyword keys are
        field names and the values are terms that must appear in the field.

        This method is equivalent to::

            searcher.stored_fields(searcher.document_number(<keyword args>))

        Where Searcher.documents() returns a generator, this function returns
        either a dictionary or None. Use it when you assume the given keyword
        arguments either match zero or one documents (i.e. at least one of the
        fields is a unique key).

        >>> stored_fields = searcher.document(path=u"/a/b")
        >>> if stored_fields:
        ...   print(stored_fields['title'])
        ... else:
        ...   print("There is no document with the path /a/b")
        """

        for p in self.documents(**kw):
            return p

    def documents(self, **kw):
        """Convenience method returns the stored fields of a document
        matching the given keyword arguments, where the keyword keys are field
        names and the values are terms that must appear in the field.

        Returns a generator of dictionaries containing the stored fields of any
        documents matching the keyword arguments. If you do not specify any
        arguments (``Searcher.documents()``), this method will yield **all**
        documents.

        >>> for stored_fields in searcher.documents(emailto=u"matt@whoosh.ca"):
        ...   print("Email subject:", stored_fields['subject'])
        """

        ixreader = self.ixreader
        return (ixreader.stored_fields(docnum)
                for docnum in self.document_numbers(**kw))

    def _kw_to_text(self, kw):
        for k, v in iteritems(kw):
            field = self.schema[k]
            kw[k] = field.to_bytes(v)

    def _query_for_kw(self, kw):
        subqueries = []
        for key, value in iteritems(kw):
            subqueries.append(query.Term(key, value))
        if subqueries:
            q = query.And(subqueries).normalize()
        else:
            q = query.Every()
        return q

    def document_number(self, **kw):
        """Returns the document number of the document matching the given
        keyword arguments, where the keyword keys are field names and the
        values are terms that must appear in the field.

        >>> docnum = searcher.document_number(path=u"/a/b")

        Where Searcher.document_numbers() returns a generator, this function
        returns either an int or None. Use it when you assume the given keyword
        arguments either match zero or one documents (i.e. at least one of the
        fields is a unique key).

        :rtype: int
        """

        # In the common case where only one keyword was given, just use
        # first_id() instead of building a query.

        self._kw_to_text(kw)
        if len(kw) == 1:
            k, v = list(kw.items())[0]
            try:
                return self.reader().first_id(k, v)
            except TermNotFound:
                return None
        else:
            m = self._query_for_kw(kw).matcher(self, self.boolean_context())
            if m.is_active():
                return m.id()

    def document_numbers(self, **kw):
        """Returns a generator of the document numbers for documents matching
        the given keyword arguments, where the keyword keys are field names and
        the values are terms that must appear in the field. If you do not
        specify any arguments (``Searcher.document_numbers()``), this method
        will yield **all** document numbers.

        >>> docnums = list(searcher.document_numbers(emailto="matt@whoosh.ca"))
        """

        self._kw_to_text(kw)
        return self.docs_for_query(self._query_for_kw(kw))

    def _find_unique(self, uniques):
        # uniques is a list of ("unique_field_name", "field_value") tuples
        delset = set()
        for name, value in uniques:
            docnum = self.document_number(**{name: value})
            if docnum is not None:
                delset.add(docnum)
        return delset

    @lru_cache(20)
    def _query_to_comb(self, fq):
        return BitSet(self.docs_for_query(fq), size=self.doc_count_all())

    def _filter_to_comb(self, obj):
        if obj is None:
            return None
        if isinstance(obj, (set, DocIdSet)):
            c = obj
        elif isinstance(obj, Results):
            c = obj.docs()
        elif isinstance(obj, ResultsPage):
            c = obj.results.docs()
        elif isinstance(obj, query.Query):
            c = self._query_to_comb(obj)
        else:
            raise Exception("Don't know what to do with filter object %r"
                            % obj)

        return c

    def suggest(self, fieldname, text, limit=5, maxdist=2, prefix=0):
        """Returns a sorted list of suggested corrections for the given
        mis-typed word ``text`` based on the contents of the given field::

            >>> searcher.suggest("content", "specail")
            ["special"]

        This is a convenience method. If you are planning to get suggestions
        for multiple words in the same field, it is more efficient to get a
        :class:`~whoosh.spelling.Corrector` object and use it directly::

            corrector = searcher.corrector("fieldname")
            for word in words:
                print(corrector.suggest(word))

        :param limit: only return up to this many suggestions. If there are not
            enough terms in the field within ``maxdist`` of the given word, the
            returned list will be shorter than this number.
        :param maxdist: the largest edit distance from the given word to look
            at. Numbers higher than 2 are not very effective or efficient.
        :param prefix: require suggestions to share a prefix of this length
            with the given word. This is often justifiable since most
            misspellings do not involve the first letter of the word. Using a
            prefix dramatically decreases the time it takes to generate the
            list of words.
        """

        c = self.reader().corrector(fieldname)
        return c.suggest(text, limit=limit, maxdist=maxdist, prefix=prefix)

    def key_terms(self, docnums, fieldname, numterms=5,
                  model=classify.Bo1Model, normalize=True):
        """Returns the 'numterms' most important terms from the documents
        listed (by number) in 'docnums'. You can get document numbers for the
        documents your interested in with the document_number() and
        document_numbers() methods.

        "Most important" is generally defined as terms that occur frequently in
        the top hits but relatively infrequently in the collection as a whole.

        >>> docnum = searcher.document_number(path=u"/a/b")
        >>> keywords_and_scores = searcher.key_terms([docnum], "content")

        This method returns a list of ("term", score) tuples. The score may be
        useful if you want to know the "strength" of the key terms, however to
        just get the terms themselves you can just do this:

        >>> kws = [kw for kw, score in searcher.key_terms([docnum], "content")]

        :param fieldname: Look at the terms in this field. This field must
            store vectors.
        :param docnums: A sequence of document numbers specifying which
            documents to extract key terms from.
        :param numterms: Return this number of important terms.
        :param model: The classify.ExpansionModel to use. See the classify
            module.
        :param normalize: normalize the scores.
        :returns: a list of ("term", score) tuples.
        """

        expander = classify.Expander(self.ixreader, fieldname, model=model)
        for docnum in docnums:
            expander.add_document(docnum)
        return expander.expanded_terms(numterms, normalize=normalize)

    def key_terms_from_text(self, fieldname, text, numterms=5,
                            model=classify.Bo1Model, normalize=True):
        """Return the 'numterms' most important terms from the given text.

        :param numterms: Return this number of important terms.
        :param model: The classify.ExpansionModel to use. See the classify
            module.
        """

        expander = classify.Expander(self.ixreader, fieldname, model=model)
        expander.add_text(text)
        return expander.expanded_terms(numterms, normalize=normalize)

    def more_like(self, docnum, fieldname, text=None, top=10, numterms=5,
                  model=classify.Bo1Model, normalize=False, filter=None):
        """Returns a :class:`Results` object containing documents similar to
        the given document, based on "key terms" in the given field::

            # Get the ID for the document you're interested in
            docnum = search.document_number(path=u"/a/b/c")

            r = searcher.more_like(docnum)

            print("Documents like", searcher.stored_fields(docnum)["title"])
            for hit in r:
                print(hit["title"])

        :param fieldname: the name of the field to use to test similarity.
        :param text: by default, the method will attempt to load the contents
            of the field from the stored fields for the document, or from a
            term vector. If the field isn't stored or vectored in the index,
            but you have access to the text another way (for example, loading
            from a file or a database), you can supply it using the ``text``
            parameter.
        :param top: the number of results to return.
        :param numterms: the number of "key terms" to extract from the hit and
            search for. Using more terms is slower but gives potentially more
            and more accurate results.
        :param model: (expert) a :class:`whoosh.classify.ExpansionModel` to use
            to compute "key terms".
        :param normalize: whether to normalize term weights.
        :param filter: a query, Results object, or set of docnums. The results
            will only contain documents that are also in the filter object.
        """

        if text:
            kts = self.key_terms_from_text(fieldname, text, numterms=numterms,
                                           model=model, normalize=normalize)
        else:
            kts = self.key_terms([docnum], fieldname, numterms=numterms,
                                 model=model, normalize=normalize)
        # Create an Or query from the key terms
        q = query.Or([query.Term(fieldname, word, boost=weight)
                      for word, weight in kts])

        return self.search(q, limit=top, filter=filter, mask=set([docnum]))

    def search_page(self, query, pagenum, pagelen=10, **kwargs):
        """This method is Like the :meth:`Searcher.search` method, but returns
        a :class:`ResultsPage` object. This is a convenience function for
        getting a certain "page" of the results for the given query, which is
        often useful in web search interfaces.

        For example::

            querystring = request.get("q")
            query = queryparser.parse("content", querystring)

            pagenum = int(request.get("page", 1))
            pagelen = int(request.get("perpage", 10))

            results = searcher.search_page(query, pagenum, pagelen=pagelen)
            print("Page %d of %d" % (results.pagenum, results.pagecount))
            print("Showing results %d-%d of %d"
                  % (results.offset + 1, results.offset + results.pagelen + 1,
                     len(results)))
            for hit in results:
                print("%d: %s" % (hit.rank + 1, hit["title"]))

        (Note that results.pagelen might be less than the pagelen argument if
        there aren't enough results to fill a page.)

        Any additional keyword arguments you supply are passed through to
        :meth:`Searcher.search`. For example, you can get paged results of a
        sorted search::

            results = searcher.search_page(q, 2, sortedby="date", reverse=True)

        Currently, searching for page 100 with pagelen of 10 takes the same
        amount of time as using :meth:`Searcher.search` to find the first 1000
        results. That is, this method does not have any special optimizations
        or efficiencies for getting a page from the middle of the full results
        list. (A future enhancement may allow using previous page results to
        improve the efficiency of finding the next page.)

        This method will raise a ``ValueError`` if you ask for a page number
        higher than the number of pages in the resulting query.

        :param query: the :class:`whoosh.query.Query` object to match.
        :param pagenum: the page number to retrieve, starting at ``1`` for the
            first page.
        :param pagelen: the number of results per page.
        :returns: :class:`ResultsPage`
        """

        if pagenum < 1:
            raise ValueError("pagenum must be >= 1")

        results = self.search(query, limit=pagenum * pagelen, **kwargs)
        return ResultsPage(results, pagenum, pagelen)

    def find(self, defaultfield, querystring, **kwargs):
        from whoosh.qparser import QueryParser
        qp = QueryParser(defaultfield, schema=self.ixreader.schema)
        q = qp.parse(querystring)
        return self.search(q, **kwargs)

    def docs_for_query(self, q, for_deletion=False):
        """Returns an iterator of document numbers for documents matching the
        given :class:`whoosh.query.Query` object.
        """

        # If we're getting the document numbers so we can delete them, use the
        # deletion_docs method instead of docs; this lets special queries
        # (e.g. nested queries) override what gets deleted
        if for_deletion:
            method = q.deletion_docs
        else:
            method = q.docs

        if self.subsearchers:
            for s, offset in self.subsearchers:
                for docnum in method(s):
                    yield docnum + offset
        else:
            for docnum in method(self):
                yield docnum

    def collector(self, limit=10, sortedby=None, reverse=False, groupedby=None,
                  collapse=None, collapse_limit=1, collapse_order=None,
                  optimize=True, filter=None, mask=None, terms=False,
                  maptype=None, scored=True):
        """Low-level method: returns a configured
        :class:`whoosh.collectors.Collector` object based on the given
        arguments. You can use this object with
        :meth:`Searcher.search_with_collector` to search.

        See the documentation for the :meth:`Searcher.search` method for a
        description of the parameters.

        This method may be useful to get a basic collector object and then wrap
        it with another collector from ``whoosh.collectors`` or with a custom
        collector of your own::

            # Equivalent of
            # results = mysearcher.search(myquery, limit=10)
            # but with a time limt...

            # Create a TopCollector
            c = mysearcher.collector(limit=10)

            # Wrap it with a TimeLimitedCollector with a time limit of
            # 10.5 seconds
            from whoosh.collectors import TimeLimitedCollector
            c = TimeLimitCollector(c, 10.5)

            # Search using the custom collector
            results = mysearcher.search_with_collector(myquery, c)
        """

        from whoosh import collectors

        if limit is not None and limit < 1:
            raise ValueError("limit must be >= 1")

        if not scored and not sortedby:
            c = collectors.UnsortedCollector()
        elif sortedby:
            c = collectors.SortingCollector(sortedby, limit=limit,
                                            reverse=reverse)
        elif groupedby or reverse or not limit or limit >= self.doc_count():
            # A collector that gathers every matching document
            c = collectors.UnlimitedCollector(reverse=reverse)
        else:
            # A collector that uses block quality optimizations and a heap
            # queue to only collect the top N documents
            c = collectors.TopCollector(limit, usequality=optimize)

        if groupedby:
            c = collectors.FacetCollector(c, groupedby, maptype=maptype)
        if terms:
            c = collectors.TermsCollector(c)
        if collapse:
            c = collectors.CollapseCollector(c, collapse, limit=collapse_limit,
                                             order=collapse_order)

        # Filtering wraps last so it sees the docs first
        if filter or mask:
            c = collectors.FilterCollector(c, filter, mask)
        return c

    def search(self, q, **kwargs):
        """Runs a :class:`whoosh.query.Query` object on this searcher and
        returns a :class:`Results` object. See :doc:`/searching` for more
        information.

        This method takes many keyword arguments (documented below).

        See :doc:`/facets` for information on using ``sortedby`` and/or
        ``groupedby``. See :ref:`collapsing` for more information on using
        ``collapse``, ``collapse_limit``, and ``collapse_order``.

        :param query: a :class:`whoosh.query.Query` object to use to match
            documents.
        :param limit: the maximum number of documents to score. If you're only
            interested in the top N documents, you can set limit=N to limit the
            scoring for a faster search. Default is 10.
        :param scored: whether to score the results. Overriden by ``sortedby``.
            If both ``scored=False`` and ``sortedby=None``, the results will be
            in arbitrary order, but will usually be computed faster than
            scored or sorted results.
        :param sortedby: see :doc:`/facets`.
        :param reverse: Reverses the direction of the sort. Default is False.
        :param groupedby: see :doc:`/facets`.
        :param optimize: use optimizations to get faster results when possible.
            Default is True.
        :param filter: a query, Results object, or set of docnums. The results
            will only contain documents that are also in the filter object.
        :param mask: a query, Results object, or set of docnums. The results
            will not contain any documents that are in the mask object.
        :param terms: if True, record which terms were found in each matching
            document. See :doc:`/searching` for more information. Default is
            False.
        :param maptype: by default, the results of faceting with ``groupedby``
            is a dictionary mapping group names to ordered lists of document
            numbers in the group. You can pass a
            :class:`whoosh.sorting.FacetMap` subclass to this keyword argument
            to specify a different (usually faster) method for grouping. For
            example, ``maptype=sorting.Count`` would store only the count of
            documents in each group, instead of the full list of document IDs.
        :param collapse: a :doc:`facet </facets>` to use to collapse the
            results. See :ref:`collapsing` for more information.
        :param collapse_limit: the maximum number of documents to allow with
            the same collapse key. See :ref:`collapsing` for more information.
        :param collapse_order: an optional ordering :doc:`facet </facets>`
            to control which documents are kept when collapsing. The default
            (``collapse_order=None``) uses the results order (e.g. the highest
            scoring documents in a scored search).
        :rtype: :class:`Results`
        """

        # Call the collector() method to build a collector based on the
        # parameters passed to this method
        c = self.collector(**kwargs)
        # Call the lower-level method to run the collector
        self.search_with_collector(q, c)
        # Return the results object from the collector
        return c.results()

    def search_with_collector(self, q, collector, context=None):
        """Low-level method: runs a :class:`whoosh.query.Query` object on this
        searcher using the given :class:`whoosh.collectors.Collector` object
        to collect the results::

            myquery = query.Term("content", "cabbage")

            uc = collectors.UnlimitedCollector()
            tc = TermsCollector(uc)

            mysearcher.search_with_collector(myquery, tc)
            print(tc.docterms)
            print(tc.results())

        Note that this method does not return a :class:`Results` object. You
        need to access the collector to get a results object or other
        information the collector might hold after the search.

        :param q: a :class:`whoosh.query.Query` object to use to match
            documents.
        :param collector: a :class:`whoosh.collectors.Collector` object to feed
            the results into.
        """

        # Get the search context object from the searcher
        context = context or self.context()
        # Allow collector to set up based on the top-level information
        collector.prepare(self, q, context)

        collector.run()

    def correct_query(self, q, qstring, correctors=None, terms=None, maxdist=2,
                      prefix=0, aliases=None):
        """
        Returns a corrected version of the given user query using a default
        :class:`whoosh.spelling.ReaderCorrector`.

        The default:

        * Corrects any words that don't appear in the index.

        * Takes suggestions from the words in the index. To make certain fields
          use custom correctors, use the ``correctors`` argument to pass a
          dictionary mapping field names to :class:`whoosh.spelling.Corrector`
          objects.

        * ONLY CORRECTS FIELDS THAT HAVE THE ``spelling`` ATTRIBUTE in the
          schema (or for which you pass a custom corrector). To automatically
          check all fields, use ``allfields=True``. Spell checking fields
          without ``spelling`` is slower.

        Expert users who want more sophisticated correction behavior can create
        a custom :class:`whoosh.spelling.QueryCorrector` and use that instead
        of this method.

        Returns a :class:`whoosh.spelling.Correction` object with a ``query``
        attribute containing the corrected :class:`whoosh.query.Query` object
        and a ``string`` attributes containing the corrected query string.

        >>> from whoosh import qparser, highlight
        >>> qtext = 'mary "litle lamb"'
        >>> q = qparser.QueryParser("text", myindex.schema)
        >>> mysearcher = myindex.searcher()
        >>> correction = mysearcher().correct_query(q, qtext)
        >>> correction.query
        <query.And ...>
        >>> correction.string
        'mary "little lamb"'
        >>> mysearcher.close()

        You can use the ``Correction`` object's ``format_string`` method to
        format the corrected query string using a
        :class:`whoosh.highlight.Formatter` object. For example, you can format
        the corrected string as HTML, emphasizing the changed words.

        >>> hf = highlight.HtmlFormatter(classname="change")
        >>> correction.format_string(hf)
        'mary "<strong class="change term0">little</strong> lamb"'

        :param q: the :class:`whoosh.query.Query` object to correct.
        :param qstring: the original user query from which the query object was
            created. You can pass None instead of a string, in which the
            second item in the returned tuple will also be None.
        :param correctors: an optional dictionary mapping fieldnames to
            :class:`whoosh.spelling.Corrector` objects. By default, this method
            uses the contents of the index to spell check the terms in the
            query. You can use this argument to "override" some fields with a
            different correct, for example a
            :class:`whoosh.spelling.GraphCorrector`.
        :param terms: a sequence of ``("fieldname", "text")`` tuples to correct
            in the query. By default, this method corrects terms that don't
            appear in the index. You can use this argument to override that
            behavior and explicitly specify the terms that should be corrected.
        :param maxdist: the maximum number of "edits" (insertions, deletions,
            subsitutions, or transpositions of letters) allowed between the
            original word and any suggestion. Values higher than ``2`` may be
            slow.
        :param prefix: suggested replacement words must share this number of
            initial characters with the original word. Increasing this even to
            just ``1`` can dramatically speed up suggestions, and may be
            justifiable since spellling mistakes rarely involve the first
            letter of a word.
        :param aliases: an optional dictionary mapping field names in the query
            to different field names to use as the source of spelling
            suggestions. The mappings in ``correctors`` are applied after this.
        :rtype: :class:`whoosh.spelling.Correction`
        """

        reader = self.reader()

        # Dictionary of field name alias mappings
        if aliases is None:
            aliases = {}
        # Dictionary of custom per-field correctors
        if correctors is None:
            correctors = {}

        # Remap correctors dict according to aliases
        d = {}
        for fieldname, corr in iteritems(correctors):
            fieldname = aliases.get(fieldname, fieldname)
            d[fieldname] = corr
        correctors = d

        # Fill in default corrector objects for fields that don't have a custom
        # one in the "correctors" dictionary
        fieldnames = self.schema.names()
        for fieldname in fieldnames:
            fieldname = aliases.get(fieldname, fieldname)
            if fieldname not in correctors:
                correctors[fieldname] = self.reader().corrector(fieldname)

        # Get any missing terms in the query in the fields we're correcting
        if terms is None:
            terms = []
            for token in q.all_tokens():
                aname = aliases.get(token.fieldname, token.fieldname)
                text = token.text
                if aname in correctors and (aname, text) not in reader:
                    # Note that we use the original, not aliases fieldname here
                    # so if we correct the query we know what it was
                    terms.append((token.fieldname, token.text))

        # Make q query corrector
        from whoosh import spelling
        sqc = spelling.SimpleQueryCorrector(correctors, terms, aliases)
        return sqc.correct_query(q, qstring)


class Results(object):
    """This object is returned by a Searcher. This object represents the
    results of a search query. You can mostly use it as if it was a list of
    dictionaries, where each dictionary is the stored fields of the document at
    that position in the results.

    Note that a Results object keeps a reference to the Searcher that created
    it, so keeping a reference to a Results object keeps the Searcher alive and
    so keeps all files used by it open.
    """

    def __init__(self, searcher, q, top_n, docset=None, facetmaps=None,
                 runtime=0, highlighter=None):
        """
        :param searcher: the :class:`Searcher` object that produced these
            results.
        :param query: the original query that created these results.
        :param top_n: a list of (score, docnum) tuples representing the top
            N search results.
        """

        self.searcher = searcher
        self.q = q
        self.top_n = top_n
        self.docset = docset
        self._facetmaps = facetmaps or {}
        self.runtime = runtime
        self.highlighter = highlighter or highlight.Highlighter()
        self.collector = None
        self._total = None
        self._char_cache = {}

    def __repr__(self):
        return "<Top %s Results for %r runtime=%s>" % (len(self.top_n),
                                                       self.q,
                                                       self.runtime)

    def __len__(self):
        """Returns the total number of documents that matched the query. Note
        this may be more than the number of scored documents, given the value
        of the ``limit`` keyword argument to :meth:`Searcher.search`.

        If this Results object was created by searching with a ``limit``
        keyword, then computing the exact length of the result set may be
        expensive for large indexes or large result sets. You may consider
        using :meth:`Results.has_exact_length`,
        :meth:`Results.estimated_length`, and
        :meth:`Results.estimated_min_length` to display an estimated size of
        the result set instead of an exact number.
        """

        if self._total is None:
            self._total = self.collector.count()
        return self._total

    def __getitem__(self, n):
        if isinstance(n, slice):
            start, stop, step = n.indices(len(self.top_n))
            return [Hit(self, self.top_n[i][1], i, self.top_n[i][0])
                    for i in xrange(start, stop, step)]
        else:
            if n >= len(self.top_n):
                raise IndexError("results[%r]: Results only has %s hits"
                                 % (n, len(self.top_n)))
            return Hit(self, self.top_n[n][1], n, self.top_n[n][0])

    def __iter__(self):
        """Yields a :class:`Hit` object for each result in ranked order.
        """

        for i in xrange(len(self.top_n)):
            yield Hit(self, self.top_n[i][1], i, self.top_n[i][0])

    def __contains__(self, docnum):
        """Returns True if the given document number matched the query.
        """

        return docnum in self.docs()

    def __nonzero__(self):
        return not self.is_empty()

    __bool__ = __nonzero__

    def is_empty(self):
        """Returns True if not documents matched the query.
        """

        return self.scored_length() == 0

    def items(self):
        """Returns an iterator of (docnum, score) pairs for the scored
        documents in the results.
        """

        return ((docnum, score) for score, docnum in self.top_n)

    def fields(self, n):
        """Returns the stored fields for the document at the ``n`` th position
        in the results. Use :meth:`Results.docnum` if you want the raw
        document number instead of the stored fields.
        """

        return self.searcher.stored_fields(self.top_n[n][1])

    def facet_names(self):
        """Returns the available facet names, for use with the ``groups()``
        method.
        """

        return self._facetmaps.keys()

    def groups(self, name=None):
        """If you generated facet groupings for the results using the
        `groupedby` keyword argument to the ``search()`` method, you can use
        this method to retrieve the groups. You can use the ``facet_names()``
        method to get the list of available facet names.

        >>> results = searcher.search(my_query, groupedby=["tag", "price"])
        >>> results.facet_names()
        ["tag", "price"]
        >>> results.groups("tag")
        {"new": [12, 1, 4], "apple": [3, 10, 5], "search": [11]}

        If you only used one facet, you can call the method without a facet
        name to get the groups for the facet.

        >>> results = searcher.search(my_query, groupedby="tag")
        >>> results.groups()
        {"new": [12, 1, 4], "apple": [3, 10, 5, 0], "search": [11]}

        By default, this returns a dictionary mapping category names to a list
        of document numbers, in the same relative order as they appear in the
        results.

        >>> results = mysearcher.search(myquery, groupedby="tag")
        >>> docnums = results.groups()
        >>> docnums['new']
        [12, 1, 4]

        You can then use :meth:`Searcher.stored_fields` to get the stored
        fields associated with a document ID.

        If you specified a different ``maptype`` for the facet when you
        searched, the values in the dictionary depend on the
        :class:`whoosh.sorting.FacetMap`.

        >>> myfacet = sorting.FieldFacet("tag", maptype=sorting.Count)
        >>> results = mysearcher.search(myquery, groupedby=myfacet)
        >>> counts = results.groups()
        {"new": 3, "apple": 4, "search": 1}
        """

        if (name is None or name == "facet") and len(self._facetmaps) == 1:
            # If there's only one facet, just use it; convert keys() to list
            # for Python 3
            name = list(self._facetmaps.keys())[0]
        elif name not in self._facetmaps:
            raise KeyError("%r not in facet names %r"
                           % (name, self.facet_names()))
        return self._facetmaps[name].as_dict()

    def has_exact_length(self):
        """Returns True if this results object already knows the exact number
        of matching documents.
        """

        if self.collector:
            return self.collector.computes_count()
        else:
            return self._total is not None

    def estimated_length(self):
        """The estimated maximum number of matching documents, or the
        exact number of matching documents if it's known.
        """

        if self.has_exact_length():
            return len(self)
        else:
            return self.q.estimate_size(self.searcher.reader())

    def estimated_min_length(self):
        """The estimated minimum number of matching documents, or the
        exact number of matching documents if it's known.
        """

        if self.has_exact_length():
            return len(self)
        else:
            return self.q.estimate_min_size(self.searcher.reader())

    def scored_length(self):
        """Returns the number of scored documents in the results, equal to or
        less than the ``limit`` keyword argument to the search.

        >>> r = mysearcher.search(myquery, limit=20)
        >>> len(r)
        1246
        >>> r.scored_length()
        20

        This may be fewer than the total number of documents that match the
        query, which is what ``len(Results)`` returns.
        """

        return len(self.top_n)

    def docs(self):
        """Returns a set-like object containing the document numbers that
        matched the query.
        """

        if self.docset is None:
            self.docset = set(self.collector.all_ids())
        return self.docset

    def copy(self):
        """Returns a deep copy of this results object.
        """

        # Shallow copy self to get attributes
        r = copy.copy(self)
        # Deep copies of docset and top_n in case they're modified
        r.docset = copy.deepcopy(self.docset)
        r.top_n = copy.deepcopy(self.top_n)
        return r

    def score(self, n):
        """Returns the score for the document at the Nth position in the list
        of ranked documents. If the search was not scored, this may return
        None.
        """

        return self.top_n[n][0]

    def docnum(self, n):
        """Returns the document number of the result at position n in the list
        of ranked documents.
        """
        return self.top_n[n][1]

    def query_terms(self, expand=False, fieldname=None):
        return self.q.existing_terms(self.searcher.reader(),
                                     fieldname=fieldname, expand=expand)

    def has_matched_terms(self):
        """Returns True if the search recorded which terms matched in which
        documents.

        >>> r = searcher.search(myquery)
        >>> r.has_matched_terms()
        False
        >>>
        """

        return hasattr(self, "docterms") and hasattr(self, "termdocs")

    def matched_terms(self):
        """Returns the set of ``("fieldname", "text")`` tuples representing
        terms from the query that matched one or more of the TOP N documents
        (this does not report terms for documents that match the query but did
        not score high enough to make the top N results). You can compare this
        set to the terms from the original query to find terms which didn't
        occur in any matching documents.

        This is only valid if you used ``terms=True`` in the search call to
        record matching terms. Otherwise it will raise an exception.

        >>> q = myparser.parse("alfa OR bravo OR charlie")
        >>> results = searcher.search(q, terms=True)
        >>> results.terms()
        set([("content", "alfa"), ("content", "charlie")])
        >>> q.all_terms() - results.terms()
        set([("content", "bravo")])
        """

        if not self.has_matched_terms():
            raise NoTermsException
        return set(self.termdocs.keys())

    def _get_fragmenter(self):
        return self.highlighter.fragmenter

    def _set_fragmenter(self, f):
        self.highlighter.fragmenter = f

    fragmenter = property(_get_fragmenter, _set_fragmenter)

    def _get_formatter(self):
        return self.highlighter.formatter

    def _set_formatter(self, f):
        self.highlighter.formatter = f

    formatter = property(_get_formatter, _set_formatter)

    def _get_scorer(self):
        return self.highlighter.scorer

    def _set_scorer(self, s):
        self.highlighter.scorer = s

    scorer = property(_get_scorer, _set_scorer)

    def _get_order(self):
        return self.highlighter.order

    def _set_order(self, o):
        self.highlighter.order = o

    order = property(_get_order, _set_order)

    def key_terms(self, fieldname, docs=10, numterms=5,
                  model=classify.Bo1Model, normalize=True):
        """Returns the 'numterms' most important terms from the top 'docs'
        documents in these results. "Most important" is generally defined as
        terms that occur frequently in the top hits but relatively infrequently
        in the collection as a whole.

        :param fieldname: Look at the terms in this field. This field must
            store vectors.
        :param docs: Look at this many of the top documents of the results.
        :param numterms: Return this number of important terms.
        :param model: The classify.ExpansionModel to use. See the classify
            module.
        :returns: list of unicode strings.
        """

        if not len(self):
            return []
        docs = min(docs, len(self))

        reader = self.searcher.reader()

        expander = classify.Expander(reader, fieldname, model=model)
        for _, docnum in self.top_n[:docs]:
            expander.add_document(docnum)

        return expander.expanded_terms(numterms, normalize=normalize)

    def extend(self, results):
        """Appends hits from 'results' (that are not already in this
        results object) to the end of these results.

        :param results: another results object.
        """

        docs = self.docs()
        for item in results.top_n:
            if item[1] not in docs:
                self.top_n.append(item)
        self.docset = docs | results.docs()

    def filter(self, results):
        """Removes any hits that are not also in the other results object.
        """

        if not len(results):
            return

        otherdocs = results.docs()
        items = [item for item in self.top_n if item[1] in otherdocs]
        self.docset = self.docs() & otherdocs
        self.top_n = items

    def upgrade(self, results, reverse=False):
        """Re-sorts the results so any hits that are also in 'results' appear
        before hits not in 'results', otherwise keeping their current relative
        positions. This does not add the documents in the other results object
        to this one.

        :param results: another results object.
        :param reverse: if True, lower the position of hits in the other
            results object instead of raising them.
        """

        if not len(results):
            return

        otherdocs = results.docs()
        arein = [item for item in self.top_n if item[1] in otherdocs]
        notin = [item for item in self.top_n if item[1] not in otherdocs]

        if reverse:
            items = notin + arein
        else:
            items = arein + notin

        self.top_n = items

    def upgrade_and_extend(self, results):
        """Combines the effects of extend() and upgrade(): hits that are also
        in 'results' are raised. Then any hits from the other results object
        that are not in this results object are appended to the end.

        :param results: another results object.
        """

        if not len(results):
            return

        docs = self.docs()
        otherdocs = results.docs()

        arein = [item for item in self.top_n if item[1] in otherdocs]
        notin = [item for item in self.top_n if item[1] not in otherdocs]
        other = [item for item in results.top_n if item[1] not in docs]

        self.docset = docs | otherdocs
        self.top_n = arein + notin + other


class Hit(object):
    """Represents a single search result ("hit") in a Results object.

    This object acts like a dictionary of the matching document's stored
    fields. If for some reason you need an actual ``dict`` object, use
    ``Hit.fields()`` to get one.

    >>> r = searcher.search(query.Term("content", "render"))
    >>> r[0]
    < Hit {title = u"Rendering the scene"} >
    >>> r[0].rank
    0
    >>> r[0].docnum == 4592
    True
    >>> r[0].score
    2.52045682
    >>> r[0]["title"]
    "Rendering the scene"
    >>> r[0].keys()
    ["title"]
    """

    def __init__(self, results, docnum, pos=None, score=None):
        """
        :param results: the Results object this hit belongs to.
        :param pos: the position in the results list of this hit, for example
            pos = 0 means this is the first (highest scoring) hit.
        :param docnum: the document number of this hit.
        :param score: the score of this hit.
        """

        self.results = results
        self.searcher = results.searcher
        self.reader = self.searcher.reader()
        self.pos = self.rank = pos
        self.docnum = docnum
        self.score = score
        self._fields = None

    def fields(self):
        """Returns a dictionary of the stored fields of the document this
        object represents.
        """

        if self._fields is None:
            self._fields = self.searcher.stored_fields(self.docnum)
        return self._fields

    def matched_terms(self):
        """Returns the set of ``("fieldname", "text")`` tuples representing
        terms from the query that matched in this document. You can
        compare this set to the terms from the original query to find terms
        which didn't occur in this document.

        This is only valid if you used ``terms=True`` in the search call to
        record matching terms. Otherwise it will raise an exception.

        >>> q = myparser.parse("alfa OR bravo OR charlie")
        >>> results = searcher.search(q, terms=True)
        >>> for hit in results:
        ...   print(hit["title"])
        ...   print("Contains:", hit.matched_terms())
        ...   print("Doesn't contain:", q.all_terms() - hit.matched_terms())
        """

        if not self.results.has_matched_terms():
            raise NoTermsException
        return self.results.docterms.get(self.docnum, [])

    def highlights(self, fieldname, text=None, top=3, minscore=1):
        """Returns highlighted snippets from the given field::

            r = searcher.search(myquery)
            for hit in r:
                print(hit["title"])
                print(hit.highlights("content"))

        See :doc:`/highlight`.

        To change the fragmeter, formatter, order, or scorer used in
        highlighting, you can set attributes on the results object::

            from whoosh import highlight

            results = searcher.search(myquery, terms=True)
            results.fragmenter = highlight.SentenceFragmenter()

        ...or use a custom :class:`whoosh.highlight.Highlighter` object::

            hl = highlight.Highlighter(fragmenter=sf)
            results.highlighter = hl

        :param fieldname: the name of the field you want to highlight.
        :param text: by default, the method will attempt to load the contents
            of the field from the stored fields for the document. If the field
            you want to highlight isn't stored in the index, but you have
            access to the text another way (for example, loading from a file or
            a database), you can supply it using the ``text`` parameter.
        :param top: the maximum number of fragments to return.
        :param minscore: the minimum score for fragments to appear in the
            highlights.
        """

        hliter = self.results.highlighter
        return hliter.highlight_hit(self, fieldname, text=text, top=top,
                                    minscore=minscore)

    def more_like_this(self, fieldname, text=None, top=10, numterms=5,
                       model=classify.Bo1Model, normalize=True, filter=None):
        """Returns a new Results object containing documents similar to this
        hit, based on "key terms" in the given field::

            r = searcher.search(myquery)
            for hit in r:
                print(hit["title"])
                print("Top 3 similar documents:")
                for subhit in hit.more_like_this("content", top=3):
                  print("  ", subhit["title"])

        :param fieldname: the name of the field to use to test similarity.
        :param text: by default, the method will attempt to load the contents
            of the field from the stored fields for the document, or from a
            term vector. If the field isn't stored or vectored in the index,
            but you have access to the text another way (for example, loading
            from a file or a database), you can supply it using the ``text``
            parameter.
        :param top: the number of results to return.
        :param numterms: the number of "key terms" to extract from the hit and
            search for. Using more terms is slower but gives potentially more
            and more accurate results.
        :param model: (expert) a :class:`whoosh.classify.ExpansionModel` to use
            to compute "key terms".
        :param normalize: whether to normalize term weights.
        """

        return self.searcher.more_like(self.docnum, fieldname, text=text,
                                       top=top, numterms=numterms, model=model,
                                       normalize=normalize, filter=filter)

    def __repr__(self):
        return "<%s %r>" % (self.__class__.__name__, self.fields())

    def __eq__(self, other):
        if isinstance(other, Hit):
            return self.fields() == other.fields()
        elif isinstance(other, dict):
            return self.fields() == other
        else:
            return False

    def __len__(self):
        return len(self.fields())

    def __iter__(self):
        return iterkeys(self.fields())

    def __getitem__(self, fieldname):
        if fieldname in self.fields():
            return self._fields[fieldname]

        reader = self.reader
        if reader.has_column(fieldname):
            cr = reader.column_reader(fieldname)
            return cr[self.docnum]

        raise KeyError(fieldname)

    def __contains__(self, key):
        return (key in self.fields()
                or self.reader.has_column(key))

    def items(self):
        return list(self.fields().items())

    def keys(self):
        return list(self.fields().keys())

    def values(self):
        return list(self.fields().values())

    def iteritems(self):
        return iteritems(self.fields())

    def iterkeys(self):
        return iterkeys(self.fields())

    def itervalues(self):
        return itervalues(self.fields())

    def get(self, key, default=None):
        return self.fields().get(key, default)

    def __setitem__(self, key, value):
        raise NotImplementedError("You cannot modify a search result")

    def __delitem__(self, key, value):
        raise NotImplementedError("You cannot modify a search result")

    def clear(self):
        raise NotImplementedError("You cannot modify a search result")

    def update(self, dict=None, **kwargs):
        raise NotImplementedError("You cannot modify a search result")


class ResultsPage(object):
    """Represents a single page out of a longer list of results, as returned
    by :func:`whoosh.searching.Searcher.search_page`. Supports a subset of the
    interface of the :class:`~whoosh.searching.Results` object, namely getting
    stored fields with __getitem__ (square brackets), iterating, and the
    ``score()`` and ``docnum()`` methods.

    The ``offset`` attribute contains the results number this page starts at
    (numbered from 0). For example, if the page length is 10, the ``offset``
    attribute on the second page will be ``10``.

    The ``pagecount`` attribute contains the number of pages available.

    The ``pagenum`` attribute contains the page number. This may be less than
    the page you requested if the results had too few pages. For example, if
    you do::

        ResultsPage(results, 5)

    but the results object only contains 3 pages worth of hits, ``pagenum``
    will be 3.

    The ``pagelen`` attribute contains the number of results on this page
    (which may be less than the page length you requested if this is the last
    page of the results).

    The ``total`` attribute contains the total number of hits in the results.

    >>> mysearcher = myindex.searcher()
    >>> pagenum = 2
    >>> page = mysearcher.find_page(pagenum, myquery)
    >>> print("Page %s of %s, results %s to %s of %s" %
    ...       (pagenum, page.pagecount, page.offset+1,
    ...        page.offset+page.pagelen, page.total))
    >>> for i, fields in enumerate(page):
    ...   print("%s. %r" % (page.offset + i + 1, fields))
    >>> mysearcher.close()

    To set highlighter attributes (for example ``formatter``), access the
    underlying :class:`Results` object::

        page.results.formatter = highlight.UppercaseFormatter()

    """

    def __init__(self, results, pagenum, pagelen=10):
        """
        :param results: a :class:`~whoosh.searching.Results` object.
        :param pagenum: which page of the results to use, numbered from ``1``.
        :param pagelen: the number of hits per page.
        """

        self.results = results
        self.total = len(results)

        if pagenum < 1:
            raise ValueError("pagenum must be >= 1")

        self.pagecount = int(ceil(self.total / pagelen))
        self.pagenum = min(self.pagecount, pagenum)

        offset = (self.pagenum - 1) * pagelen
        if (offset + pagelen) > self.total:
            pagelen = self.total - offset
        self.offset = offset
        self.pagelen = pagelen

    def __getitem__(self, n):
        offset = self.offset
        if isinstance(n, slice):
            start, stop, step = n.indices(self.pagelen)
            return self.results.__getitem__(slice(start + offset,
                                                  stop + offset, step))
        else:
            return self.results.__getitem__(n + offset)

    def __iter__(self):
        return iter(self.results[self.offset:self.offset + self.pagelen])

    def __len__(self):
        return self.total

    def scored_length(self):
        return self.results.scored_length()

    def score(self, n):
        """Returns the score of the hit at the nth position on this page.
        """
        return self.results.score(n + self.offset)

    def docnum(self, n):
        """Returns the document number of the hit at the nth position on this
        page.
        """
        return self.results.docnum(n + self.offset)

    def is_last_page(self):
        """Returns True if this object represents the last page of results.
        """

        return self.pagecount == 0 or self.pagenum == self.pagecount