This file is indexed.

/usr/lib/R/site-library/multcomp/MCMT/multcomp.sas is in r-cran-multcomp 1.4-4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*************/
/* Chapter 1 */
/*************/

/* Thuesen example - Data */
data thuesen;
	input num glucose velocity;
	datalines;
1           15.3           1.76
2           10.8           1.34
3            8.1           1.27
4           19.5           1.47
5            7.2           1.27
6            5.3           1.49
7            9.3           1.31
8           11.1           1.09
9            7.5           1.18
10          12.2           1.22
11           6.7           1.25
12           5.2           1.19
13          19.0           1.95
14          15.1           1.28
15           6.7           1.52
16           8.6              .
17           4.2           1.12
18          10.3           1.37
19          12.5           1.19
20          16.1           1.05
21          13.3           1.32
22           4.9           1.03
23           8.8           1.12
24           9.5           1.70
;
run;

/* Thuesen example - Bonferroni adjustment */
proc glimmix data = thuesen;
	model velocity = glucose/s;
	estimate "Intercept" intercept 1,
             "Beta1"     glucose   1 / adjust = bon;
run;

/* Thuesen example - Westfall adjustment */
proc glimmix data = thuesen;
	model velocity = glucose/s;
	estimate "Intercept" intercept 1,
 	         "Beta1"     glucose   1 / adjust = simulate (nsamp = 1000000) stepdown (type = logical);
run;



/*************/
/* Chapter 3 */
/*************/

/* Warpbreaks example - Data */
data warpbreaks;
	input recnum breaks wool $ tension $;
	datalines;
1      26    A       L
2      30    A       L
3      54    A       L
4      25    A       L
5      70    A       L
6      52    A       L
7      51    A       L
8      26    A       L
9      67    A       L
10     18    A       M
11     21    A       M
12     29    A       M
13     17    A       M
14     12    A       M
15     18    A       M
16     35    A       M
17     30    A       M
18     36    A       M
19     36    A       H
20     21    A       H
21     24    A       H
22     18    A       H
23     10    A       H
24     43    A       H
25     28    A       H
26     15    A       H
27     26    A       H
28     27    B       L
29     14    B       L
30     29    B       L
31     19    B       L
32     29    B       L
33     31    B       L
34     41    B       L
35     20    B       L
36     44    B       L
37     42    B       M
38     26    B       M
39     19    B       M
40     16    B       M
41     39    B       M
42     28    B       M
43     21    B       M
44     39    B       M
45     29    B       M
46     20    B       H
47     21    B       H
48     24    B       H
49     17    B       H
50     13    B       H
51     15    B       H
52     15    B       H
53     16    B       H
54     28    B       H
;
run;

proc sort data = warpbreaks;
	by tension;
run;

/* Warpbreaks example - Tukey adjustment */
proc glimmix data = warpbreaks;
	class tension;
	model breaks = tension;
	lsmeans tension/adjust = tukey;
run;

/* Warpbreaks example - Bonferroni adjustment */
proc glimmix data = warpbreaks;
	class tension;
	model breaks = tension;
	estimate 'M - L' tension 0 -1  1,
    	     'H - L' tension 1 -1  0,
        	 'H - M' tension 1  0 -1 / adjust = bon;
run;

/* Warpbreaks example - Tukey CI */
proc glimmix data = warpbreaks;
	class tension;
	model breaks = tension;
	lsmeans tension / adjust = tukey cl;
run;



/*************/
/* Chapter 4 */
/*************/

/* Section 4.1 */
/* Recovery example - Data */
data recovery;
	input recnum blanket$ minutes;
	datalines;
1       b0      15
2       b0      13
3       b0      12
4       b0      16
5       b0      16
6       b0      17
7       b0      13
8       b0      13
9       b0      16
10      b0      17
11      b0      17
12      b0      19
13      b0      17
14      b0      15
15      b0      13
16      b0      12
17      b0      16
18      b0      10
19      b0      17
20      b0      12
21      b1      13
22      b1      16
23      b1       9
24      b2       5
25      b2       8
26      b2       9
27      b3      14
28      b3      16
29      b3      16
30      b3      12
31      b3       7
32      b3      12
33      b3      13
34      b3      13
35      b3       9
36      b3      16
37      b3      13
38      b3      18
39      b3      13
40      b3      12
41      b3      13
;
run;

/* Warpbreaks example - Dunnett adjustment */
proc glimmix data = recovery;
	class blanket;
	model minutes = blanket;
	lsmeans blanket / diff = controll('b0') adjust = dunnett;
run;

/* Warpbreaks example - Dunnett CI */
proc glimmix data = recovery;
	class blanket;
	model minutes = blanket;
	lsmeans blanket / adjust = dunnett pdiff = controll('b0') cl;
run;

/* Warpbreaks example - Bonferroni adjustment */
proc glimmix data = recovery;
	class blanket;
	model minutes = blanket;
	estimate 'b1 - b0' blanket -1 1 0 0,
    	     'b2 - b0' blanket -1 0 1 0,
        	 'b3 - b0' blanket -1 0 0 1 / adjust = bon lower;
run;

/* Warpbreaks example - step-down Dunnett */
proc glimmix data = recovery;
	class blanket;
	model minutes = blanket;
	estimate 'b1 - b0' blanket -1 1 0 0,
    	     'b2 - b0' blanket -1 0 1 0,
        	 'b3 - b0' blanket -1 0 0 1 / adjust = bon lower stepdown (type = free);
run;


/* Section 4.2 */
/* Immer example - Data */
data immer;
	input loc $ var $ Y1 Y2;
	avg_yield = (y1 + y2)/2;
	datalines;
UF  M  81.0  80.7
UF  S 105.4  82.3
UF  V 119.7  80.4
UF  T 109.7  87.2
UF  P  98.3  84.2
W   M 146.6 100.4
W   S 142.0 115.5
W   V 150.7 112.2
W   T 191.5 147.7
W   P 145.7 108.1
M   M  82.3 103.1
M   S  77.3 105.1
M   V  78.4 116.5
M   T 131.3 139.9
M   P  89.6 129.6
C   M 119.8  98.9
C   S 121.4  61.9
C   V 124.0  96.2
C   T 140.8 125.5
C   P 124.8  75.7
GR  M  98.9  66.4
GR  S  89.0  49.9
GR  V  69.1  96.7
GR  T  89.3  61.9
GR  P 104.1  80.3
D   M  86.9  67.7
D   S  77.1  66.7
D   V  78.9  67.4
D   T 101.8  91.8
D   P  96.0  94.1
;
run;

/* Warpbreaks example - Tukey adjustment */
proc glimmix data = immer;
	class loc var;
	model avg_yield = loc var;
	lsmeans var / adjust = tukey;
run;

/* Warpbreaks example - Tukey CI */
proc glimmix data = immer;
	class loc var;
	model avg_yield = loc var;
	lsmeans var / adjust = tukey cl;
run;

/* Warpbreaks example - Closed Tukey test */
proc glimmix data = immer;
	class loc var;
	model avg_yield = loc var;
	lsmeans var / adjust = simulate(nsamp=40000000 report) stepdown (type = logical report);
run;

/* Warpbreaks example - Shaffer adjustment */
proc glimmix data = immer;
	class loc var;
	model avg_yield = loc var;
	lsmeans var / adjust = bon stepdown (type = logical);
run;


/* Section 4.3 */
/* Litter example - Data */
data litter;
	input dose $ weight gesttime number;
	datalines;
    0  28.05     22.5     15
    0  33.33     22.5     14
    0  36.37     22.0     14
    0  35.52     22.0     13
    0  36.77     21.5     15
    0  29.60     23.0      5
    0  27.72     21.5     16
    0  33.67     22.5     15
    0  32.55     22.5     14
    0  32.78     21.5     15
    0  31.05     22.0     12
    0  33.40     22.5     15
    0  30.20     22.0     16
    0  28.63     21.5      7
    0  33.38     22.0     15
    0  33.43     22.0     13
    0  29.63     21.5     14
    0  33.08     22.0     15
    0  31.53     22.5     16
    0  35.48     22.0      9
    5  34.83     22.5     15
    5  26.33     22.5      7
    5  24.28     22.5     15
    5  38.63     23.0      9
    5  27.92     22.0     13
    5  33.85     22.5     13
    5  24.95     22.5     17
    5  33.20     22.5     15
    5  36.03     22.5     12
    5  26.80     22.0     13
    5  31.67     22.0     14
    5  30.33     21.5     12
    5  26.83     22.5     14
    5  32.18     22.0     13
    5  33.77     22.5     16
    5  21.30     21.5      9
    5  25.78     21.5     14
    5  19.90     21.5     12
    5  28.28     22.5     16
   50  31.28     22.0     16
   50  35.80     21.5     16
   50  27.97     21.5     14
   50  33.13     22.5     15
   50  30.60     22.5     15
   50  30.17     21.5     15
   50  27.07     21.5     14
   50  32.02     22.0     17
   50  36.72     22.5     13
   50  28.50     21.5     14
   50  21.58     21.5     16
   50  30.82     22.5     17
   50  30.55     22.0     14
   50  27.63     22.0     14
   50  22.97     22.0     12
   50  29.55     21.5     12
   50  31.93     22.0     14
   50  29.30     21.5     16
  500  24.55     22.0      7
  500  33.78     22.5     13
  500  32.98     22.0     10
  500  25.38     21.5     11
  500  30.32     22.0     15
  500  19.22     22.5     11
  500  26.37     21.5     14
  500  28.60     22.5      9
  500  19.70     22.0     11
  500  32.88     22.5     15
  500  26.12     22.5     13
  500  33.20     22.0     12
  500  32.97     22.5     14
  500  38.75     23.0     16
  500  33.15     22.5     12
  500  30.70     21.5     13
  500  35.32     22.0     17
;
run;

/* Litter example - Dunnett contrasts */
proc glimmix data = litter;
	class dose;
	model weight = dose gesttime number;
	lsmeans dose/ diff = controll('0') adjust = dunnett;
run;

/* Litter example - Williams contrasts */
proc glimmix data = litter;
	class dose;
	model weight = dose gesttime number;
	estimate 'Control Vs. H'   dose 1  0       0      -1     ,
    	     'Control Vs. HM'  dose 1  0      -0.5143 -0.4857,
        	 'Control Vs. HML' dose 1 -0.3519 -0.3333 -0.3148 / adjust=simulate(nsamp=10000000) upper; 
run;

/* Litter example - Williams contrasts with Westfall adjusment */
proc glimmix data = litter;
	class dose;
	model weight = dose gesttime number;
	estimate 'Control Vs. H'   dose 1  0       0      -1     ,
    	     'Control Vs. HM'  dose 1  0      -0.5143 -0.4857,
        	 'Control Vs. HML' dose 1 -0.3519 -0.3333 -0.3148 / upper adjust = simulate (nsamp = 1000000) stepdown(type = logical);
run;


/* Section 4.4 */
/* Bodyfat example - Data */
data bodyfat;
input age DEXfat waistcirc hipcirc elbowbreadth kneebreadth anthro3a anthro3b anthro3c anthro4;
	datalines;
57  41.68   100.00  112.00  7.10    9.40    4.42    4.95    4.50    6.13
65  43.29   99.50   116.50  6.50    8.90    4.63    5.01    4.48    6.37
59  35.41   96.00   108.50  6.20    8.90    4.12    4.74    4.60    5.82
58  22.79   72.00   96.50   6.10    9.20    4.03    4.48    3.91    5.66
60  36.42   89.50   100.50  7.10    10.00   4.24    4.68    4.15    5.91
61  24.13   83.50   97.00   6.50    8.80    3.55    4.06    3.64    5.14
56  29.83   81.00   103.00  6.90    8.90    4.14    4.52    4.31    5.69
60  35.96   89.00   105.00  6.20    8.50    4.04    4.70    4.47    5.70
58  23.69   80.00   97.00   6.40    8.80    3.91    4.32    3.47    5.49
62  22.71   79.00   93.00   7.00    8.80    3.66    4.21    3.60    5.25
63  23.42   79.00   99.00   6.20    8.60    3.70    4.28    3.67    5.28
62  23.24   72.00   94.00   6.70    8.70    4.14    4.48    3.85    5.69
64  26.25   81.50   95.00   6.20    8.20    4.00    4.50    3.85    5.58
60  21.94   65.00   90.00   5.70    8.20    3.72    4.11    3.48    5.29
61  30.13   79.00   107.50  5.80    8.60    4.01    4.34    3.89    5.51
66  36.31   98.50   109.00  6.90    9.60    4.42    4.80    4.33    6.14
63  27.72   79.50   101.50  7.00    9.40    3.78    4.05    3.97    5.16
57  46.99   117.00  116.00  7.10    10.70   4.14    4.44    4.04    5.64
49  42.01   100.50  112.00  6.90    9.40    4.25    4.64    4.28    5.98
65  18.63   82.00   91.00   6.60    8.80    3.90    4.00    3.28    5.20
58  38.65   101.00  107.50  6.40    8.60    4.15    4.71    4.05    5.88
63  21.20   80.00   96.00   6.90    8.60    3.70    4.06    3.26    5.18
60  35.40   89.00   101.00  6.20    9.20    3.73    4.47    4.27    5.37
59  29.63   89.50   99.50   6.00    8.10    3.89    4.29    4.27    5.57
32  25.16   73.00   99.00   7.20    8.60    3.16    4.02    3.45    4.80
42  31.75   87.00   102.00  6.90    10.80   4.16    4.63    4.40    5.78
49  40.58   90.20   110.30  7.10    9.50    3.95    4.12    3.60    5.42
63  21.69   80.50   97.00   5.80    8.80    3.51    4.03    3.54    4.99
57  46.60   102.00  124.00  6.60    11.20   4.30    4.73    4.51    5.99
44  27.62   86.00   102.00  6.30    8.30    3.88    4.29    4.21    5.37
61  41.30   102.00  122.50  6.30    10.80   4.24    4.71    4.35    5.88
62  42.76   103.00  125.00  7.30    11.10   4.24    4.63    4.34    5.91
24  28.84   81.00   100.00  6.60    9.70    3.97    4.47    4.18    5.47
54  36.88   85.50   113.00  6.20    9.60    4.33    4.65    4.32    5.86
65  25.09   75.30   101.20  5.20    9.30    3.12    3.80    3.47    4.58
67  29.73   81.00   104.30  5.70    8.10    3.77    4.49    4.43    5.39
45  28.92   85.00   106.00  6.70    10.00   3.53    3.80    3.48    4.88
51  43.80   102.20  118.50  6.80    10.60   3.99    4.45    4.05    5.53
49  26.74   78.00   99.00   6.20    9.80    3.82    4.16    3.77    5.27
52  33.79   93.30   109.00  6.80    9.80    4.14    4.52    4.37    5.80
66  62.02   106.50  126.00  6.40    11.40   4.64    4.92    4.61    6.26
63  40.01   102.00  117.00  6.60    10.60   4.12    4.65    4.35    5.83
42  42.72   111.00  109.00  6.70    9.90    4.42    4.84    4.57    6.17
50  32.49   102.00  108.00  6.20    9.80    4.01    4.54    4.38    5.65
63  45.92   116.80  132.00  6.10    9.80    4.45    4.78    4.41    6.22
62  42.23   112.00  127.00  7.20    11.00   4.34    4.70    4.19    6.01
42  47.48   115.00  128.50  6.60    10.00   4.44    4.74    4.62    6.00
41  60.72   115.00  125.00  7.30    11.80   4.68    4.97    4.45    6.33
67  32.74   89.80   109.00  6.30    9.60    4.08    4.18    3.71    5.51
67  27.04   82.20   103.60  7.20    9.20    3.58    4.08    3.96    5.04
43  21.07   75.00   99.30   6.00    8.40    3.53    4.06    3.17    5.01
54  37.49   98.00   109.50  7.00    10.00   4.46    4.67    4.46    6.08
49  38.08   105.00  116.30  7.00    9.50    3.92    4.39    4.15    5.62
25  40.83   89.50   122.00  6.50    10.00   4.11    4.68    3.99    5.79
26  18.51   87.80   94.00   6.60    9.00    3.26    3.69    3.48    4.69
33  26.36   79.20   107.70  6.50    9.00    4.04    4.34    3.78    5.55
36  20.08   80.00   95.00   6.40    9.00    3.36    3.55    3.28    4.51
38  43.71   105.50  122.50  6.60    10.00   4.19    4.67    4.51    5.85
26  31.61   95.00   109.00  6.70    9.50    4.13    4.43    4.20    5.63
52  28.98   81.50   102.30  6.40    9.20    3.92    4.38    4.10    5.56
29  18.62   71.00   92.00   6.40    8.50    3.35    3.90    3.34    4.75
31  18.64   68.00   93.00   5.70    7.20    3.42    3.90    3.39    4.94
19  13.70   68.00   88.00   6.50    8.20    3.39    3.73    3.16    4.69
35  14.88   68.50   94.50   6.50    8.80    3.29    3.56    2.87    4.46
27  16.46   75.00   95.00   6.40    9.10    2.99    3.44    3.38    4.35
40  11.21   66.60   92.20   6.10    8.50    2.40    2.58    2.05    3.18
53  11.21   66.60   92.20   6.10    8.50    2.40    2.58    2.05    3.18
31  14.18   69.70   93.20   6.20    8.10    3.10    3.36    2.76    4.14
27  20.84   66.50   100.00  6.50    8.50    3.50    4.14    3.76    5.04
52  19.00   76.50   103.00  7.40    8.50    3.33    3.73    3.21    4.64
59  18.07   71.00   88.30   5.70    8.90    3.48    4.13    3.45    5.03
;
run;

/* Bodyfat example - Linear model output */
proc glimmix data = bodyfat;
	model Dexfat = age waistcirc hipcirc elbowbreadth kneebreadth anthro3a anthro3b anthro3c anthro4/solution;
run;

/* Bodyfat example - Global and adjusted individual F-tests */
proc glimmix data = bodyfat;
	model Dexfat = age waistcirc hipcirc elbowbreadth kneebreadth anthro3a anthro3b anthro3c anthro4/s;
   	estimate "age"   age          1,
    	     "wai"   waistcirc    1,
             "hip"   hipcirc      1,
             "elb"   elbowbreadth 1,
             "knee"  kneebreadth  1,
             "antha" anthro3a     1,
             "anthb" anthro3b     1,
             "anthc"  anthro3c    1,
             "anth4" anthro4      1 / adjust=simulate(nsamp=10000000 report) cl; 
run;


/* Section 4.6 */
/* Alpha example - Data */
data alpha;
	length alength $12;
	input recno  alength $ elevel;
datalines;

1         short   1.43
2  intermediate  -1.90
3  intermediate   1.55
4  intermediate   3.27
5  intermediate   0.30
6  intermediate   1.90
7  intermediate   2.53
8  intermediate   2.83
9  intermediate   3.10
10 intermediate   2.07
11 intermediate   1.63
12 intermediate   2.53
13 intermediate   0.10
14 intermediate   2.53
15        short  -2.83
16         long   1.60
17 intermediate   2.27
18        short   1.23
19 intermediate   0.70
20 intermediate   3.80
21        short  -1.47
22 intermediate  -2.37
23 intermediate   0.67
24 intermediate  -0.37
25         long   3.60
26 intermediate   3.20
27 intermediate   3.05
28 intermediate   1.97
29 intermediate   3.33
30 intermediate   2.90
31         long   1.45
32         long   4.10
33 intermediate   2.77
34 intermediate   4.05
35 intermediate   2.13
36        short   2.57
37 intermediate   3.53
38         long   3.37
39 intermediate   3.67
40 intermediate   2.13
41 intermediate   1.40
42 intermediate   3.50
43 intermediate   3.53
44 intermediate   2.20
45         long   3.20
46 intermediate   4.23
47 intermediate   2.87
48 intermediate   3.20
49 intermediate   3.40
50         long   3.20
51 intermediate   4.17
52 intermediate   4.30
53         long   4.23
54         long   3.43
55         long   4.40
56         long   3.27
57 intermediate   3.07
58 intermediate   4.03
59 intermediate   3.07
60 intermediate   4.43
61         long   1.75
62         long   1.77
63 intermediate   1.33
64         long   3.43
65 intermediate   1.03
66 intermediate   3.13
67 intermediate   4.17
68 intermediate   2.70
69 intermediate   3.93
70         long   3.50
71 intermediate   3.90
72 intermediate   2.17
73 intermediate   3.13
74 intermediate  -2.40
75 intermediate   1.90
76        short   3.00
77        short   5.63
78        short   2.80
79        short   3.17
80        short   2.00
81        short   2.93
82        short   2.87
83        short   1.83
84        short   1.05
85        short   1.00
86        short   2.77
87        short   1.43
88        short   5.80
89        short   2.80
90        short   1.17
91 intermediate   1.60
92        short   0.47
93        short   2.33
94 intermediate   0.67
95 intermediate   0.73
96        short   1.47
97        short   0.10
;run;

/* Alpha example - Tukex test under Heteroscedasticity */
proc glimmix data = alpha empirical;
	class alength;
	model elevel = alength;
	lsmeans alength / adjust = tukey;
run;


/* Section 4.7 */
/* Alzheimer example - Data */
data smoke;
   input g$ cig$ c n;
   dg = (g='M');
   d1 = (cig = '<10');
   d2 = (cig = '10-20');
   d3 = (cig = '>20');
   dg1 = dg*d1;
   dg2 = dg*d2;
   dg3 = dg*d3;
cards;
F None  91  226
F <10    7   17
F 10-20 15   56
F >20   21   39
M None  35   83
M <10    8   11
M 10-20 15   54
M >20    6   52
;

/* Alzheimer example - Logistic regression */
proc glimmix data=smoke;
	model c/n = dg d1-d3 dg1-dg3/s ddfm=none;
   	estimate "f0" intercept 1,
             "f1" intercept 1 d1 1,
             "f2" intercept 1 d2 1,
             "f3" intercept 1 d3 1,
             "m0" intercept 1 dg 1,
             "m1" intercept 1 dg 1 d1 1 dg1 1,
             "m2" intercept 1 dg 1 d2 1 dg2 1,
             "m3" intercept 1 dg 1 d3 1 dg3 1 / adjust = simulate  (nsamp=1000000 report) ilink cl;
run;