This file is indexed.

/usr/share/doc/rdkit/html/Cartridge.html is in rdkit-doc 201503-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>The RDKit database cartridge &mdash; The RDKit 2015.03.1 documentation</title>
    
    <link rel="stylesheet" href="_static/sphinxdoc.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '2015.03.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <link rel="top" title="The RDKit 2015.03.1 documentation" href="index.html" />
    <link rel="prev" title="RDKit Cookbook" href="Cookbook.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="Cookbook.html" title="RDKit Cookbook"
             accesskey="P">previous</a> |</li>
        <li><a href="index.html">The RDKit 2015.03.1 documentation</a> &raquo;</li> 
      </ul>
    </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/logo.png" alt="Logo"/>
            </a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Overview.html">An overview of the RDKit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Install.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="GettingStartedInPython.html">Getting Started with the RDKit in Python</a></li>
<li class="toctree-l1"><a class="reference internal" href="RDKit_Book.html">The RDKit Book</a></li>
<li class="toctree-l1"><a class="reference internal" href="Cookbook.html">RDKit Cookbook</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="">The RDKit database cartridge</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#what-is-this">What is this?</a></li>
<li class="toctree-l2"><a class="reference internal" href="#tutorial">Tutorial</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#introduction">Introduction</a></li>
<li class="toctree-l3"><a class="reference internal" href="#creating-databases">Creating databases</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#configuration">Configuration</a></li>
<li class="toctree-l4"><a class="reference internal" href="#creating-a-database-from-a-file">Creating a database from a file</a></li>
<li class="toctree-l4"><a class="reference internal" href="#loading-chembl">Loading ChEMBL</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#substructure-searches">Substructure searches</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#smarts-based-queries">SMARTS-based queries</a></li>
<li class="toctree-l4"><a class="reference internal" href="#using-stereochemistry">Using Stereochemistry</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#similarity-searches">Similarity searches</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#adjusting-the-similarity-cutoff">Adjusting the similarity cutoff</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#using-the-mcs-code">Using the MCS code</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#reference-guide">Reference Guide</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#new-types">New Types</a></li>
<li class="toctree-l3"><a class="reference internal" href="#parameters">Parameters</a></li>
<li class="toctree-l3"><a class="reference internal" href="#operators">Operators</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#similarity-search">Similarity search</a></li>
<li class="toctree-l4"><a class="reference internal" href="#substructure-and-exact-structure-search">Substructure and exact structure search</a></li>
<li class="toctree-l4"><a class="reference internal" href="#molecule-comparison">Molecule comparison</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#functions">Functions</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#fingerprint-related">Fingerprint Related</a></li>
<li class="toctree-l4"><a class="reference internal" href="#molecule-related">Molecule Related</a></li>
<li class="toctree-l4"><a class="reference internal" href="#other">Other</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#using-the-cartridge-from-python">Using the Cartridge from Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="#license">License</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="Cookbook.html"
                        title="previous chapter">RDKit Cookbook</a></p>
  <h3>This Page</h3>
  <ul class="this-page-menu">
    <li><a href="_sources/Cartridge.txt"
           rel="nofollow">Show Source</a></li>
  </ul>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="the-rdkit-database-cartridge">
<h1>The RDKit database cartridge<a class="headerlink" href="#the-rdkit-database-cartridge" title="Permalink to this headline"></a></h1>
<div class="section" id="what-is-this">
<h2>What is this?<a class="headerlink" href="#what-is-this" title="Permalink to this headline"></a></h2>
<p>This document is a tutorial and reference guide for the RDKit PostgreSQL cartridge.</p>
<p>If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: <a class="reference external" href="mailto:rdkit-discuss&#37;&#52;&#48;lists&#46;sourceforge&#46;net">rdkit-discuss<span>&#64;</span>lists<span>&#46;</span>sourceforge<span>&#46;</span>net</a>
(you will need to subscribe first)</p>
</div>
<div class="section" id="tutorial">
<h2>Tutorial<a class="headerlink" href="#tutorial" title="Permalink to this headline"></a></h2>
<div class="section" id="introduction">
<h3>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h3>
</div>
<div class="section" id="creating-databases">
<h3>Creating databases<a class="headerlink" href="#creating-databases" title="Permalink to this headline"></a></h3>
<div class="section" id="configuration">
<h4>Configuration<a class="headerlink" href="#configuration" title="Permalink to this headline"></a></h4>
<p>The timing information below was collected on a
commodity desktop PC (Dell Studio XPS with a 2.9GHz i7 CPU and 8GB of
RAM) running Ubuntu 12.04 and using PostgreSQL v9.1.4. The database
was installed with default parameters.</p>
<p>To improve performance while loading the database and building the index,
I changed a couple of postgres configuration settings in <cite>postgresql.conf</cite></p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">fsync</span> <span class="o">=</span> <span class="n">off</span>                           <span class="c"># turns forced synchronization on or off</span>
<span class="n">synchronous_commit</span> <span class="o">=</span> <span class="n">off</span>              <span class="c"># immediate fsync at commit</span>
<span class="n">full_page_writes</span> <span class="o">=</span> <span class="n">off</span>                        <span class="c"># recover from partial page writes</span>
</pre></div>
</div>
<p>And to improve search performance, I allowed postgresql to use more memory than the
extremely conservative default settings:</p>
<div class="highlight-python"><div class="highlight"><pre>shared_buffers = 2048MB                       # min 128kB
                                      # (change requires restart)
work_mem = 128MB                              # min 64kB
</pre></div>
</div>
</div>
<div class="section" id="creating-a-database-from-a-file">
<h4>Creating a database from a file<a class="headerlink" href="#creating-a-database-from-a-file" title="Permalink to this headline"></a></h4>
<p>In this example I show how to load a database from the SMILES file of
commercially available compounds that is downloadable from
emolecules.com at URL
<a class="reference external" href="http://www.emolecules.com/doc/plus/download-database.php">http://www.emolecules.com/doc/plus/download-database.php</a></p>
<p>If you choose to repeat this exact example yourself, please note that
it takes several hours to load the 6 million row database and generate
all fingerprints.</p>
<p>First create the database and install the cartridge:</p>
<div class="highlight-python"><div class="highlight"><pre>~/RDKit_trunk/Data/emolecules &gt; createdb emolecules
~/RDKit_trunk/Data/emolecules &gt; psql -c &#39;create extension rdkit&#39; emolecules
</pre></div>
</div>
<p>Now create and populate a table holding the raw data:</p>
<div class="highlight-python"><div class="highlight"><pre>~/RDKit_trunk/Data/emolecules &gt; psql -c &#39;create table raw_data (id SERIAL, smiles text, emol_id integer, parent_id integer)&#39; emolecules
NOTICE:  CREATE TABLE will create implicit sequence &quot;raw_data_id_seq&quot; for serial column &quot;raw_data.id&quot;
CREATE TABLE
~/RDKit_trunk/Data/emolecules &gt; zcat emolecules-2013-02-01.smi.gz | sed &#39;1d; s/\\/\\\\/g&#39; | psql -c &quot;copy raw_data (smiles,emol_id,parent_id) from stdin with delimiter &#39; &#39;&quot; emolecules
</pre></div>
</div>
<p>Create the molecule table, but only for SMILES that the RDKit accepts:</p>
<div class="highlight-python"><div class="highlight"><pre>~/RDKit_trunk/Data/emolecules &gt; psql emolecules
psql (9.1.4)
Type &quot;help&quot; for help.
emolecules=# select * into mols from (select id,mol_from_smiles(smiles::cstring) m from raw_data) tmp where m is not null;
WARNING:  could not create molecule from SMILES &#39;CN(C)C(=[N+](C)C)Cl.F[P-](F)(F)(F)(F)F&#39;
... a lot of warnings deleted ...
SELECT 6008732
emolecules=# create index molidx on mols using gist(m);
CREATE INDEX
</pre></div>
</div>
<p>The last step is only required if you plan to do substructure searches.</p>
</div>
<div class="section" id="loading-chembl">
<h4>Loading ChEMBL<a class="headerlink" href="#loading-chembl" title="Permalink to this headline"></a></h4>
<p>Start by downloading and installing the postgresql dump from the ChEMBL website
<a class="reference external" href="ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest">ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest</a></p>
<p>Connect to the database, install the cartridge, and create the schema that we&#8217;ll use:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# create extension if not exists rdkit;
chembl_14=# create schema rdk;
</pre></div>
</div>
<p>Create the molecules and build the substructure search index:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select * into rdk.mols from (select molregno,mol_from_ctab(molfile::cstring) m  from compound_structures) tmp where m is not null;
SELECT 1210823
chembl_14=# create index molidx on rdk.mols using gist(m);
CREATE INDEX
chembl_14=# alter table rdk.mols add primary key (molregno);
NOTICE:  ALTER TABLE / ADD PRIMARY KEY will create implicit index &quot;mols_pkey&quot; for table &quot;mols&quot;
ALTER TABLE
</pre></div>
</div>
<p>Create some fingerprints and build the similarity search index:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select molregno,torsionbv_fp(m) as torsionbv,morganbv_fp(m) as mfp2,featmorganbv_fp(m) as ffp2 into rdk.fps from rdk.mols;
SELECT 1210823
chembl_14=# create index fps_ttbv_idx on rdk.fps using gist(torsionbv);
CREATE INDEX
chembl_14=# create index fps_mfp2_idx on rdk.fps using gist(mfp2);
CREATE INDEX
chembl_14=# create index fps_ffp2_idx on rdk.fps using gist(ffp2);
CREATE INDEX
chembl_14=# alter table rdk.fps add primary key (molregno);
NOTICE:  ALTER TABLE / ADD PRIMARY KEY will create implicit index &quot;fps_pkey&quot; for table &quot;fps&quot;
ALTER TABLE
</pre></div>
</div>
</div>
</div>
<div class="section" id="substructure-searches">
<h3>Substructure searches<a class="headerlink" href="#substructure-searches" title="Permalink to this headline"></a></h3>
<p>Example query molecules taken from the <a class="reference external" href="http://www.emolecules.com/">eMolecules home page</a>:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1cccc2c1nncc2&#39; ;
 count
-------
   281
(1 row)

Time: 184.043 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1ccnc2c1nccn2&#39; ;
 count
-------
   671
(1 row)

Time: 449.998 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1cncc2n1ccn2&#39; ;
 count
-------
   930
(1 row)

Time: 568.378 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;Nc1ncnc(N)n1&#39; ;
 count
-------
  4478
(1 row)

Time: 721.758 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1scnn1&#39; ;
 count
-------
 10908
(1 row)

Time: 701.036 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1cccc2c1ncs2&#39; ;
 count
-------
 12823
(1 row)

Time: 1585.473 ms
chembl_14=# select count(*) from rdk.mols where m@&gt;&#39;c1cccc2c1CNCCN2&#39; ;
 count
-------
  1155
(1 row)

Time: 4567.222 ms
</pre></div>
</div>
<p>Notice that the last two queries are starting to take a while to execute and count all the results.</p>
<p>Given we&#8217;re searching through 1.2 million compounds these search times aren&#8217;t incredibly slow,
but it would be nice to have them quicker.</p>
<p>One easy way to speed things up, particularly for queries that return a large number of results, is to only
retrieve a limited number of results:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select * from rdk.mols where m@&gt;&#39;c1cccc2c1CNCCN2&#39; limit 100;
 molregno |                                                                                      m
----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  1292129 | Cc1ccc2c(c1)C(=O)N(N(C)C)CC(=O)N2
  1013311 | CCCCC(=O)N1CC(=O)Nc2ccc(F)cc2C1c1ccccc1
  1294754 | COc1cc2c(cc1OCc1ccccc1)NC(=O)[C@@H]1CCCN1C2=O
  1012025 | O=C(c1cc2ccccc2oc1=O)N1CC(=O)Nc2ccc(Br)cc2C1c1ccc(F)cc1
   995226 | CC1Cc2ccccc2N1C(=O)CN1c2ccccc2C(=O)N(C)CC1=O
  1291875 | COC(=O)C1=NN2c3ccccc3CN([C@@H](C)c3ccccc3)C(=O)[C@@H]2[C@H]1c1ccccc1
  ...
  1116370 | COc1ccc(CC(=O)N2CC(=O)Nc3ccc(Br)cc3C2c2ccc(F)cc2)cc1OC
  1114872 | O=C1[C@@H]2[C@H](C(=O)N1Cc1ccccc1)[C@@H]1C(=O)Nc3ccccc3C(=O)N1[C@@H]2c1ccccc1
Time: 375.747 ms
</pre></div>
</div>
<div class="section" id="smarts-based-queries">
<h4>SMARTS-based queries<a class="headerlink" href="#smarts-based-queries" title="Permalink to this headline"></a></h4>
<p>Oxadiazole or thiadiazole:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select * from rdk.mols where m@&gt;&#39;c1[o,s]ncn1&#39;::qmol limit 500;
 molregno |                                                                      m
----------+----------------------------------------------------------------------------------------------------------------------------------------------
   534296 | Clc1ccccc1CNc1noc(-c2sccc2Br)n1
     1178 | CCCCc1oc2ccccc2c1Cc1cccc(/C(C)=C/Cn2oc(=O)[nH]c2=O)c1
   566382 | COC(=O)CCc1nc(C2CC(c3ccc(O)c(F)c3)=NO2)no1
   499261 | CS/C=C(/C)n1c(=O)onc1C(=O)c1ccc(Br)cc1
   450499 | CS(=O)(=O)c1ccc(Nc2ncnc(N3CCC(c4nc(-c5cccc(C(F)(F)F)c5)no4)CC3)c2[N+](=O)[O-])cc1
   600176 | Cc1nc(-c2c(Cl)cc(Cl)cc2-c2cnc([C@@H](C)NC(=O)N(C)O)c(F)c2)no1
     1213 | CC/C(=C\Cn1oc(=O)[nH]c1=O)c1cccc(OCc2nc(-c3ccc(C(F)(F)F)cc3)oc2C)c1
   659277 | Cn1c(N)c(CCCN)c[n+]1CC1=C(C(=O)O)N2C(=O)[C@@H](NC(=O)/C(=N\OC(C)(C)C(=O)O)c3nsc(N)n3)[C@H]2SC1
     1316 | CCCCCCCC/C(=C\Cn1oc(=O)[nH]c1=O)c1cccc(OCc2nc(-c3ccc(C(F)(F)F)cc3)oc2C)c1
   ...
     1206 | C/C(Cn1oc(=O)[nH]c1=O)=C(/C)c1cccc(OCc2nc(-c3ccc(C(F)(F)F)cc3)oc2C)c1
     1496 | Cc1oc(-c2ccccc2)nc1COc1cccc(C#CC(C)n2oc(=O)[nH]c2=O)c1
Time: 3365.309 ms
</pre></div>
</div>
<p>This is slower than the pure SMILES query, this is generally true of SMARTS-based queries.</p>
</div>
<div class="section" id="using-stereochemistry">
<h4>Using Stereochemistry<a class="headerlink" href="#using-stereochemistry" title="Permalink to this headline"></a></h4>
<p>Note that by default stereochemistry is not taken into account when doing substructure queries:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select * from rdk.mols where m@&gt;&#39;NC(=O)[C@@H]1CCCN1C=O&#39; limit 10;
 molregno |                                                                                        m
----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  1295889 | COc1ccc(C[C@@H](C(=O)NCC(N)=O)N(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](CC(C)C)NC(=O)C(C)NC(=O)OCc2ccccc2)cc1
  1293815 | CN1C(=O)C23CC4=CC=CC(O)C4N2C(=O)C1(CO)SS3
  1293919 | CNC(=O)CNC(=O)C(NC(=O)CNC(=O)C1CCCN1C(=O)C(C)NC(=O)C(NC(=O)OC(C)(C)C)C(C)C)C(C)C
  1011887 | COC(=O)C(C)NC(=O)C1CCCN1C(=O)CNC(=O)OCc1ccccc1
  1293021 | CCC(C)C1NC(=O)C(NC(=O)C(CC(C)C)N(C)C(=O)[C@@H]2CC(O)CN2C(=O)[C@H](C)O)C(C)OC(=O)[C@H](Cc2ccc(OC)cc2)N(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](CC(C)C)NC(=O)C(C)C(=O)[C@H](C(C)C)OC(=O)CC1O
  1287353 | CCC(C)C1NC(=O)C(NC(=O)C(CC(C)C)N(C)C(=O)C2CCCN2C(=O)C(C)O)C(C)OC(=O)C(Cc2ccc(OC)cc2)N(C)C(=O)C2CCCN2C(=O)C(CC(C)C)NC(=O)[C@H](C)C(=O)[C@H](C(C)C)OC(=O)CC1O
  1293647 | CCC(C)[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)C(CC(O)CCl)OC(=O)CCNC(=O)[C@H](C)N(C)C(=O)[C@H](C(C)C)N(C)C1=O
  1290320 | C=CCOC(=O)[C@@H]1C[C@@H](OC(C)(C)C)CN1C(=O)[C@@H]1[C@H]2OC(C)(C)O[C@H]2CN1C(=O)OCC1c2ccccc2-c2ccccc21
  1281392 | COC1=CC2C(=O)N(C)[C@@H](C)C(=O)N3NCCC[C@@H]3C(=O)N3[C@@H](C[C@@]4(O)c5ccc(Cl)cc5N[C@@H]34)C(=O)N[C@H](C(C)C)C(=O)N3NCCC[C@@H]3C(=O)N2N=C1
  1014237 | CC(C)COC(=O)N1CC(O)CC1C(=O)Nc1ccc2c(c1)OCO2
(10 rows)

Time: 9.447 ms
</pre></div>
</div>
<p>This can be changed using the <cite>rdkit.do_chiral_sss</cite> configuration variable:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# set rdkit.do_chiral_sss=true;
SET
Time: 0.241 ms
chembl_14=# select * from rdk.mols where m@&gt;&#39;NC(=O)[C@@H]1CCCN1C=O&#39; limit 10;
 molregno |                                                                                                                                                                                                                                                                                 m
----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  1295889 | COc1ccc(C[C@@H](C(=O)NCC(N)=O)N(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](CC(C)C)NC(=O)C(C)NC(=O)OCc2ccccc2)cc1
  1293021 | CCC(C)C1NC(=O)C(NC(=O)C(CC(C)C)N(C)C(=O)[C@@H]2CC(O)CN2C(=O)[C@H](C)O)C(C)OC(=O)[C@H](Cc2ccc(OC)cc2)N(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](CC(C)C)NC(=O)C(C)C(=O)[C@H](C(C)C)OC(=O)CC1O
  1293647 | CCC(C)[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)C(CC(O)CCl)OC(=O)CCNC(=O)[C@H](C)N(C)C(=O)[C@H](C(C)C)N(C)C1=O
  1290320 | C=CCOC(=O)[C@@H]1C[C@@H](OC(C)(C)C)CN1C(=O)[C@@H]1[C@H]2OC(C)(C)O[C@H]2CN1C(=O)OCC1c2ccccc2-c2ccccc21
  1281392 | COC1=CC2C(=O)N(C)[C@@H](C)C(=O)N3NCCC[C@@H]3C(=O)N3[C@@H](C[C@@]4(O)c5ccc(Cl)cc5N[C@@H]34)C(=O)N[C@H](C(C)C)C(=O)N3NCCC[C@@H]3C(=O)N2N=C1
  1007418 | C/C=C\C=C\C(=O)N1CC2(CC(c3cccc(NC(=O)/C=C\C=C/C)c3)=NO2)C[C@H]1C(N)=O
   785530 | C/C=C/C(=O)N1CC2(CC(c3cccc(NC(=O)CC)c3)=NO2)C[C@H]1C(N)=O
  1292152 | CCCCCCCC(=O)N[C@H](C(=O)N[C@H](C(=O)N(C)[C@H](C(=O)N1CCC[C@H]1C(=O)N(C)[C@H](C)C(=O)NCc1ccc(OC)cc1OC)C(C)C)C(C)C)C(C)C
  1281390 | CC(C)[C@@H]1NC(=O)[C@@H]2C[C@@]3(O)c4ccc(Cl)cc4N[C@H]3N2C(=O)[C@H]2CCCNN2C(=O)[C@@H](C)N(C)C(=O)[C@H]2CCCNN2C(=O)[C@@H]2CCCNN2C1=O
  1057962 | CC[C@H](C)[C@@H]1NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(=N)N)NC(=O)CNC(=O)[C@H](Cc2ccccc2)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H]2CCCN2C(=O)[C@@H](N)CO)C(C)C)CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc2cnc[nH]2)C(=O)O)C(C)C)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC1=O
(10 rows)

Time: 35.383 ms
</pre></div>
</div>
</div>
</div>
<div class="section" id="similarity-searches">
<h3>Similarity searches<a class="headerlink" href="#similarity-searches" title="Permalink to this headline"></a></h3>
<p>Basic similarity searching:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select count(*) from rdk.fps where mfp2%morganbv_fp(&#39;Cc1ccc2nc(-c3ccc(NC(C4N(C(c5cccs5)=O)CCC4)=O)cc3)sc2c1&#39;);
 count
-------
    66
(1 row)

Time: 826.886 ms
</pre></div>
</div>
<p>Usually we&#8217;d like to find a sorted listed of neighbors along with the accompanying SMILES.
This SQL function makes that pattern easy:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# create or replace function get_mfp2_neighbors(smiles text)
    returns table(molregno integer, m mol, similarity double precision) as
  $$
  select molregno,m,tanimoto_sml(morganbv_fp(mol_from_smiles($1::cstring)),mfp2) as similarity
  from rdk.fps join rdk.mols using (molregno)
  where morganbv_fp(mol_from_smiles($1::cstring))%mfp2
  order by morganbv_fp(mol_from_smiles($1::cstring))&lt;%&gt;mfp2;
  $$ language sql stable ;
CREATE FUNCTION
Time: 0.856 ms
chembl_14=#
chembl_14=# select * from get_mfp2_neighbors(&#39;Cc1ccc2nc(-c3ccc(NC(C4N(C(c5cccs5)=O)CCC4)=O)cc3)sc2c1&#39;) limit 10;
 molregno |                              m                              |    similarity
----------+-------------------------------------------------------------+-------------------
   472512 | Cc1ccc2nc(-c3ccc(NC(=O)C4CCN(C(=O)c5cccs5)CC4)cc3)sc2c1     | 0.772727272727273
   471317 | Cc1ccc2nc(-c3ccc(NC(=O)C4CCCN(S(=O)(=O)c5cccs5)C4)cc3)sc2c1 | 0.657534246575342
   471461 | Cc1ccc2nc(-c3ccc(NC(=O)C4CCN(S(=O)(=O)c5cccs5)CC4)cc3)sc2c1 | 0.647887323943662
   471319 | Cc1ccc2nc(-c3ccc(NC(=O)C4CCN(S(=O)(=O)c5cccs5)C4)cc3)sc2c1  | 0.638888888888889
  1032469 | O=C(Nc1nc2ccc(Cl)cc2s1)[C@@H]1CCCN1C(=O)c1cccs1             | 0.623188405797101
   751668 | COc1ccc2nc(NC(=O)[C@@H]3CCCN3C(=O)c3cccs3)sc2c1             | 0.619718309859155
   471318 | Cc1ccc2nc(-c3ccc(NC(=O)C4CN(S(=O)(=O)c5cccs5)C4)cc3)sc2c1   | 0.611111111111111
   740754 | Cc1ccc(NC(=O)C2CCCN2C(=O)c2cccs2)cc1C                       | 0.606060606060606
   732905 | O=C(Nc1ccc(S(=O)(=O)N2CCCC2)cc1)C1CCCN1C(=O)c1cccs1         | 0.602941176470588
  1087495 | Cc1ccc(NC(=O)C2CCCN2C(=O)c2cccs2)c(C)c1                     | 0.597014925373134
(10 rows)

Time: 5453.200 ms
chembl_14=# select * from get_mfp2_neighbors(&#39;Cc1ccc2nc(N(C)CC(=O)O)sc2c1&#39;) limit 10;
 molregno |                           m                           |    similarity
----------+-------------------------------------------------------+-------------------
   412312 | Cc1ccc2nc(N(C)CCN(C)c3nc4ccc(C)cc4s3)sc2c1            | 0.692307692307692
   470082 | CN(CC(=O)O)c1nc2cc([N+](=O)[O-])ccc2s1                | 0.583333333333333
  1040255 | CC(=O)N(CCCN(C)C)c1nc2ccc(C)cc2s1                     | 0.571428571428571
   773946 | Cl.CC(=O)N(CCCN(C)C)c1nc2ccc(C)cc2s1                  | 0.549019607843137
  1044892 | Cc1ccc2nc(N(CCN(C)C)C(=O)c3cc(Cl)sc3Cl)sc2c1          | 0.518518518518518
  1040496 | Cc1ccc2nc(N(CCCN(C)C)C(=O)CCc3ccccc3)sc2c1            | 0.517857142857143
  1049393 | Cc1ccc2nc(N(CCCN(C)C)C(=O)CS(=O)(=O)c3ccccc3)sc2c1    | 0.517857142857143
   441378 | Cc1ccc2nc(NC(=O)CCC(=O)O)sc2c1                        | 0.510204081632653
  1042958 | Cc1ccc2nc(N(CCN(C)C)C(=O)c3ccc4ccccc4c3)sc2c1         | 0.509090909090909
  1047691 | Cc1ccc(S(=O)(=O)CC(=O)N(CCCN(C)C)c2nc3ccc(C)cc3s2)cc1 | 0.509090909090909
(10 rows)

Time: 1797.656 ms
</pre></div>
</div>
<div class="section" id="adjusting-the-similarity-cutoff">
<h4>Adjusting the similarity cutoff<a class="headerlink" href="#adjusting-the-similarity-cutoff" title="Permalink to this headline"></a></h4>
<p>By default, the minimum similarity returned with a similarity search is 0.5. This can be adjusted with the <cite>rdkit.tanimoto_threshold</cite>
(and <cite>rdkit.dice_threshold</cite>) configuration variables:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_14=# select count(*) from get_mfp2_neighbors(&#39;Cc1ccc2nc(N(C)CC(=O)O)sc2c1&#39;);
 count
-------
    18
(1 row)

Time: 1199.751 ms
chembl_14=# set rdkit.tanimoto_threshold=0.7;
SET
Time: 0.191 ms
chembl_14=# select count(*) from get_mfp2_neighbors(&#39;Cc1ccc2nc(N(C)CC(=O)O)sc2c1&#39;);
 count
-------
     0
(1 row)

Time: 826.058 ms
chembl_14=# set rdkit.tanimoto_threshold=0.6;
SET
Time: 0.220 ms
chembl_14=# select count(*) from get_mfp2_neighbors(&#39;Cc1ccc2nc(N(C)CC(=O)O)sc2c1&#39;);
 count
-------
     1
(1 row)

Time: 1092.303 ms
chembl_14=# set rdkit.tanimoto_threshold=0.5
chembl_14-# ;
SET
Time: 0.257 ms
chembl_14=# select count(*) from get_mfp2_neighbors(&#39;Cc1ccc2nc(N(C)CC(=O)O)sc2c1&#39;);
 count
-------
    18
(1 row)

Time: 1081.721 ms
</pre></div>
</div>
</div>
</div>
<div class="section" id="using-the-mcs-code">
<h3>Using the MCS code<a class="headerlink" href="#using-the-mcs-code" title="Permalink to this headline"></a></h3>
<p>The most straightforward use of the MCS code is to find the maximum common substructure of a group of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_20=# select fmcs(m) from rdk.mols join compound_records using (molregno) where doc_id=3;                                                                                           fmcs
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 [#6]1(-[#7](-[#6](-[#6]2:[#6]:[#6]:[#6](:[#6]:[#6]:2)-[#7]-[#6](-[#6]2:[#6](-[#6]3:[#6]:[#6]:[#6]:[#6]:[#6]:3):[#6]:[#6]:[#6]:[#6]:2)=[#8])=[#8])-[#6]-[#6]-[#6]):[#6]:[#16]:[#6]:[#6]:1
(1 row)

chembl_20=# select fmcs(m) from rdk.mols join compound_records using (molregno) where doc_id=4;
                                  fmcs
------------------------------------------------------------------------
 [#6](-[#6]-,:[#6]-,:[#6]-,:[#6]-,:[#6])-[#7]-[#6]-[#6](-,:[#6])-,:[#6]
(1 row)
</pre></div>
</div>
<p>The same thing can be done with a SMILES column:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_20=# select fmcs(canonical_smiles) from compound_structures join compound_records using (molregno) where doc_id=4;
                                  fmcs
------------------------------------------------------------------------
 [#6](-[#7]-[#6]-[#6]-,:[#6]-,:[#6]-,:[#6]-,:[#6])-[#6](-,:[#6])-,:[#6]
(1 row)
</pre></div>
</div>
<p>It&#8217;s also possible to adjust some of the parameters to the FMCS algorithm, though this is somewhat more painful as of this writing (the 2015_03_1 release).
Here are a couple of examples:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_20=# select fmcs_smiles(str,&#39;{&quot;Threshold&quot;:0.8}&#39;) from
chembl_20-#   (select string_agg(m::text,&#39; &#39;) as str from rdk.mols
chembl_20(#   join compound_records using (molregno) where doc_id=4) as str ;
                                                                           fmcs_smiles
------------------------------------------------------------------------------------------------------------------------------------------------------------------
 [#6]-[#6]-[#8]-[#6](-[#6](=[#8])-[#7]-[#6](-[#6])-[#6](-,:[#6])-,:[#6])-[#6](-[#8])-[#6](-[#8])-[#6](-[#8]-[#6]-[#6])-[#6]-[#7]-[#6](-[#6])-[#6](-,:[#6])-,:[#6]
(1 row)

chembl_20=# select fmcs_smiles(str,&#39;{&quot;AtomCompare&quot;:&quot;Any&quot;}&#39;) from
chembl_20-# (select string_agg(m::text,&#39; &#39;) as str from rdk.mols
chembl_20(# join compound_records using (molregno) where doc_id=4) as str ;
                                                                              fmcs_smiles
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 [#6]-,:[#6,#7]-[#8,#6]-[#6,#7](-[#6,#8]-[#7,#6]-,:[#6,#7]-,:[#6,#7]-,:[#7,#6]-,:[#6])-[#6,#7]-[#6]-[#6](-[#8,#6]-[#6])-[#6,#7]-[#7,#6]-[#6]-,:[#6,#8]-,:[#7,#6]-,:[#6]
(1 row)
</pre></div>
</div>
<p><em>Note</em> The combination of <tt class="docutils literal"><span class="pre">&quot;AtomCompare&quot;:&quot;Any&quot;</span></tt> and a value of <tt class="docutils literal"><span class="pre">&quot;Threshold&quot;</span></tt> that is less than 1.0 does a quite generic search and can results in very long search times.
Using <tt class="docutils literal"><span class="pre">&quot;Timeout&quot;</span></tt> with this combination is recommended:</p>
<div class="highlight-python"><div class="highlight"><pre>chembl_20=# select fmcs_smiles(str,&#39;{&quot;AtomCompare&quot;:&quot;Any&quot;,&quot;CompleteRingsOnly&quot;:true,&quot;Threshold&quot;:0.8,&quot;Timeout&quot;:60}&#39;) from
chembl_20-#  (select string_agg(m::text,&#39; &#39;) as str from rdk.mols
chembl_20(#   join compound_records using (molregno) where doc_id=3) as str ;
WARNING:  findMCS timed out, result is not maximal
                                                                                          fmcs_smiles
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 [#8]=[#6](-[#7]-[#6]1:[#6]:[#6]:[#6](:[#6]:[#6]:1)-[#6](=[#8])-[#7]1-[#6]-[#6]-[#6]-[#6,#7]-[#6]2:[#6]-1:[#6]:[#6]:[#16]:2)-[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1-[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1
(1 row)
</pre></div>
</div>
<p>Available parameters and their default values are:</p>
<blockquote>
<div><ul class="simple">
<li>MaximizeBonds (true)</li>
<li>Threshold (1.0)</li>
<li>Timeout (-1, no timeout)</li>
<li>MatchValences (false)</li>
<li>MatchChiralTag (false) Applies to atoms</li>
<li>RingMatchesRingOnly (false)</li>
<li>CompleteRingsOnly (false)</li>
<li>MatchStereo (false)  Applies to bonds</li>
<li>AtomCompare (&#8220;Elements&#8221;) can be &#8220;Elements&#8221;, &#8220;Isotopes&#8221;, or &#8220;Any&#8221;</li>
<li>BondCompare (&#8220;Order&#8221;) can be &#8220;Order&#8221;, &#8220;OrderExact&#8221;, or &#8220;Any&#8221;</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="reference-guide">
<h2>Reference Guide<a class="headerlink" href="#reference-guide" title="Permalink to this headline"></a></h2>
<div class="section" id="new-types">
<h3>New Types<a class="headerlink" href="#new-types" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><cite>mol</cite> : an rdkit molecule. Can be created from a SMILES via direct type conversion, for example: <cite>&#8216;c1ccccc1&#8217;::mol</cite> creates a molecule from the SMILES <cite>&#8216;c1ccccc1&#8217;</cite></li>
<li><cite>qmol</cite> : an rdkit molecule containing query features (i.e. constructed from SMARTS). Can be created from a SMARTS via direct type conversion, for example: <cite>&#8216;c1cccc[c,n]1&#8217;::qmol</cite> creates a query molecule from the SMARTS <cite>&#8216;c1cccc[c,n]1&#8217;</cite></li>
<li><cite>sfp</cite> : a sparse count vector fingerprint (<cite>SparseIntVect</cite> in C++ and Python)</li>
<li><cite>bfp</cite> : a bit vector fingerprint (<cite>ExplicitBitVect</cite> in C++ and Python)</li>
</ul>
</div>
<div class="section" id="parameters">
<h3>Parameters<a class="headerlink" href="#parameters" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><cite>rdkit.tanimoto_threshold</cite> : threshold value for the Tanimoto similarity operator. Searches done using Tanimoto similarity will only return results with a similarity of at least this value.</li>
<li><cite>rdkit.dice_threshold</cite> : threshold value for the Dice similiarty operator. Searches done using Dice similarity will only return results with a similarity of at least this value.</li>
<li><cite>rdkit.do_chiral_sss</cite> : toggles whether or not stereochemistry is used in substructure matching. (<em>available from 2013_03 release</em>).</li>
<li><cite>rdkit.sss_fp_size</cite> : the size (in bits) of the fingerprint used for substructure screening.</li>
<li><cite>rdkit.morgan_fp_size</cite> : the size (in bits) of morgan fingerprints</li>
<li><cite>rdkit.featmorgan_fp_size</cite> : the size (in bits) of featmorgan fingerprints</li>
<li><cite>rdkit.layered_fp_size</cite> : the size (in bits) of layered fingerprints</li>
<li><cite>rdkit.rdkit_fp_size</cite> : the size (in bits) of RDKit fingerprints</li>
<li><cite>rdkit.torsion_fp_size</cite> : the size (in bits) of topological torsion bit vector fingerprints</li>
<li><cite>rdkit.atompair_fp_size</cite> : the size (in bits) of atom pair bit vector fingerprints</li>
<li><cite>rdkit.avalon_fp_size</cite> : the size (in bits) of avalon fingerprints</li>
</ul>
</div>
<div class="section" id="operators">
<h3>Operators<a class="headerlink" href="#operators" title="Permalink to this headline"></a></h3>
<div class="section" id="similarity-search">
<h4>Similarity search<a class="headerlink" href="#similarity-search" title="Permalink to this headline"></a></h4>
<ul class="simple">
<li><cite>%</cite> : operator used for similarity searches using Tanimoto similarity. Returns whether or not the Tanimoto similarity between two fingerprints (either two <cite>sfp</cite> or two <cite>bfp</cite> values) exceeds <cite>rdkit.tanimoto_threshold</cite>.</li>
<li><cite>#</cite> : operator used for similarity searches using Dice similarity. Returns whether or not the Dice similarity between two fingerprints (either two <cite>sfp</cite> or two <cite>bfp</cite> values) exceeds <cite>rdkit.dice_threshold</cite>.</li>
<li><cite>&lt;%&gt;</cite> : used for Tanimoto KNN searches (to return ordered lists of neighbors).</li>
<li><cite>&lt;#&gt;</cite> : used for Dice KNN searches (to return ordered lists of neighbors).</li>
</ul>
</div>
<div class="section" id="substructure-and-exact-structure-search">
<h4>Substructure and exact structure search<a class="headerlink" href="#substructure-and-exact-structure-search" title="Permalink to this headline"></a></h4>
<ul class="simple">
<li><cite>&#64;&gt;</cite> : substructure search operator. Returns whether or not the <cite>mol</cite> or <cite>qmol</cite> on the right is a substructure of the <cite>mol</cite> on the left.</li>
<li><cite>&lt;&#64;</cite> : substructure search operator. Returns whether or not the <cite>mol</cite> or <cite>qmol</cite> on the left is a substructure of the <cite>mol</cite> on the right.</li>
<li><cite>&#64;=</cite> : returns whether or not two molecules are the same.</li>
</ul>
</div>
<div class="section" id="molecule-comparison">
<h4>Molecule comparison<a class="headerlink" href="#molecule-comparison" title="Permalink to this headline"></a></h4>
<ul class="simple">
<li><cite>&lt;</cite> : returns whether or not the left <cite>mol</cite> is less than the right <cite>mol</cite></li>
<li><cite>&gt;</cite> : returns whether or not the left <cite>mol</cite> is greater than the right <cite>mol</cite></li>
<li><cite>=</cite> : returns whether or not the left <cite>mol</cite> is equal to the right <cite>mol</cite></li>
<li><cite>&lt;=</cite> : returns whether or not the left <cite>mol</cite> is less than or equal to the right <cite>mol</cite></li>
<li><cite>&gt;=</cite> : returns whether or not the left <cite>mol</cite> is greater than or equal to the right <cite>mol</cite></li>
</ul>
<p><em>Note</em> Two molecules are compared by making the following comparisons in order. Later comparisons are only made if the preceding values are equal:</p>
<p># Number of atoms
# Number of bonds
# Molecular weight
# Number of rings</p>
<p>If all of the above are the same and the second molecule is a substructure of the first, the molecules are declared equal, Otherwise (should not happen) the first molecule is arbitrarily defined to be less than the second.</p>
<p>There are additional operators defined in the cartridge, but these are used for internal purposes.</p>
</div>
</div>
<div class="section" id="functions">
<h3>Functions<a class="headerlink" href="#functions" title="Permalink to this headline"></a></h3>
<div class="section" id="fingerprint-related">
<h4>Fingerprint Related<a class="headerlink" href="#fingerprint-related" title="Permalink to this headline"></a></h4>
<div class="section" id="generating-fingerprints">
<h5>Generating fingerprints<a class="headerlink" href="#generating-fingerprints" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>morgan_fp(mol,int default 2)</cite> : returns an <cite>sfp</cite> which is the count-based Morgan fingerprint for a molecule using connectivity invariants. The second argument provides the radius. This is an ECFP-like fingerprint.</li>
<li><cite>morganbv_fp(mol,int default 2)</cite> : returns a <cite>bfp</cite> which is the bit vector Morgan fingerprint for a molecule using connectivity invariants. The second argument provides the radius. This is an ECFP-like fingerprint.</li>
<li><cite>featmorgan_fp(mol,int default 2)</cite> : returns an <cite>sfp</cite> which is the count-based Morgan fingerprint for a molecule using chemical-feature invariants. The second argument provides the radius. This is an FCFP-like fingerprint.</li>
<li><cite>featmorganbv_fp(mol,int default 2)</cite> : returns a <cite>bfp</cite> which is the bit vector Morgan fingerprint for a molecule using chemical-feature invariants. The second argument provides the radius. This is an FCFP-like fingerprint.</li>
<li><cite>rdkit_fp(mol)</cite> : returns a <cite>bfp</cite> which is the RDKit fingerprint for a molecule. This is a daylight-fingerprint using hashed molecular subgraphs.</li>
<li><cite>atompair_fp(mol)</cite> : returns an <cite>sfp</cite> which is the count-based atom-pair fingerprint for a molecule.</li>
<li><cite>atompairbv_fp(mol)</cite> : returns a <cite>bfp</cite> which is the bit vector atom-pair fingerprint for a molecule.</li>
<li><cite>torsion_fp(mol)</cite> : returns an <cite>sfp</cite> which is the count-based topological-torsion fingerprint for a molecule.</li>
<li><cite>torsionbv_fp(mol)</cite> : returns a <cite>bfp</cite> which is the bit vector topological-torsion fingerprint for a molecule.</li>
<li><cite>layered_fp(mol)</cite> : returns a <cite>bfp</cite> which is the layered fingerprint for a molecule. This is an experimental substructure fingerprint using hashed molecular subgraphs.</li>
<li><cite>maccs_fp(mol)</cite> : returns a <cite>bfp</cite> which is the MACCS fingerprint for a molecule (<em>available from 2013_01 release</em>).</li>
</ul>
</div>
<div class="section" id="working-with-fingerprints">
<h5>Working with fingerprints<a class="headerlink" href="#working-with-fingerprints" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>tanimoto_sml(fp,fp)</cite> : returns the Tanimoto similarity between two fingerprints of the same type (either two <cite>sfp</cite> or two <cite>bfp</cite> values).</li>
<li><cite>dice_sml(fp,fp)</cite> : returns the Dice similarity between two fingerprints of the same type (either two <cite>sfp</cite> or two <cite>bfp</cite> values).</li>
<li><cite>size(bfp)</cite> : returns the length of (number of bits in) a <cite>bfp</cite>.</li>
<li><cite>add(sfp,sfp)</cite> : returns an <cite>sfp</cite> formed by the element-wise addition of the two <cite>sfp</cite> arguments.</li>
<li><cite>subtract(sfp,sfp)</cite> : returns an <cite>sfp</cite> formed by the element-wise subtraction of the two <cite>sfp</cite> arguments.</li>
<li><cite>all_values_lt(sfp,int)</cite> : returns a boolean indicating whether or not all elements of the <cite>sfp</cite> argument are less than the <cite>int</cite> argument.</li>
<li><cite>all_values_gt(sfp,int)</cite> : returns a boolean indicating whether or not all elements of the <cite>sfp</cite> argument are greater than the <cite>int</cite> argument.</li>
</ul>
</div>
<div class="section" id="fingerprint-i-o">
<h5>Fingerprint I/O<a class="headerlink" href="#fingerprint-i-o" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>bfp_to_binary_text(bfp)</cite> : returns a bytea with the binary string representation of the fingerprint that can be converted back into an RDKit fingerprint in other software. (<em>available from Q3 2012 (2012_09) release</em>)</li>
<li><cite>bfp_from_binary_text(bytea)</cite> : constructs a bfp from a binary string representation of the fingerprint. (<em>available from Q3 2012 (2012_09) release</em>)</li>
</ul>
</div>
</div>
<div class="section" id="molecule-related">
<h4>Molecule Related<a class="headerlink" href="#molecule-related" title="Permalink to this headline"></a></h4>
<div class="section" id="molecule-i-o-and-validation">
<h5>Molecule I/O and Validation<a class="headerlink" href="#molecule-i-o-and-validation" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>is_valid_smiles(smiles)</cite> : returns whether or not a SMILES string produces a valid RDKit molecule.</li>
<li><cite>is_valid_ctab(ctab)</cite> : returns whether or not a CTAB (mol block) string produces a valid RDKit molecule.</li>
<li><cite>is_valid_smarts(smarts)</cite> : returns whether or not a SMARTS string produces a valid RDKit molecule.</li>
<li><cite>is_valid_mol_pkl(bytea)</cite> : returns whether or not a binary string (bytea) can be converted into an RDKit molecule. (<em>available from Q3 2012 (2012_09) release</em>)</li>
<li><cite>mol_from_smiles(smiles)</cite> : returns a molecule for a SMILES string, NULL if the molecule construction fails.</li>
<li><cite>mol_from_smarts(smarts)</cite> : returns a molecule for a SMARTS string, NULL if the molecule construction fails.</li>
<li><cite>mol_from_ctab(ctab, bool default false)</cite> : returns a molecule for a CTAB (mol block) string, NULL if the molecule construction fails. The optional second argument controls whether or not the molecule&#8217;s coordinates are saved.</li>
<li><cite>mol_from_pkl(bytea)</cite> : returns a molecule for a binary string (bytea), NULL if the molecule construction fails. (<em>available from Q3 2012 (2012_09) release</em>)</li>
<li><cite>qmol_from_smiles(smiles)</cite> : returns a query molecule for a SMILES string, NULL if the molecule construction fails. Explicit Hs in the SMILES are converted into query features on the attached atom.</li>
<li><cite>qmol_from_ctab(ctab, bool default false)</cite> : returns a query molecule for a CTAB (mol block) string, NULL if the molecule construction fails. Explicit Hs in the SMILES are converted into query features on the attached atom. The optional second argument controls whether or not the molecule&#8217;s coordinates are saved.</li>
<li><cite>mol_to_smiles(mol)</cite> : returns the canonical SMILES for a molecule.</li>
<li><cite>mol_to_smarts(mol)</cite> : returns SMARTS string for a molecule.</li>
<li><cite>mol_to_pkl(mol)</cite> : returns binary string (bytea) for a molecule. (<em>available from Q3 2012 (2012_09) release</em>)</li>
<li><cite>mol_to_ctab(mol,bool default true)</cite> : returns a CTAB (mol block) string for a molecule. The optional second argument controls whether or not 2D coordinates will be generated for molecules that don&#8217;t have coordinates. (<em>available from the 2014_03 release</em>)</li>
</ul>
</div>
<div class="section" id="substructure-operations">
<h5>Substructure operations<a class="headerlink" href="#substructure-operations" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>substruct(mol,mol)</cite> : returns whether or not the second mol is a substructure of the first.</li>
<li><cite>substruct_count(mol,mol,bool default true)</cite> : returns the number of substructure matches between the second molecule and the first. The third argument toggles whether or not the matches are uniquified. (<em>available from 2013_03 release</em>)</li>
</ul>
</div>
<div class="section" id="descriptors">
<h5>Descriptors<a class="headerlink" href="#descriptors" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>mol_amw(mol)</cite> : returns the AMW for a molecule.</li>
<li><cite>mol_logp(mol)</cite> : returns the MolLogP for a molecule.</li>
<li><cite>mol_tpsa(mol)</cite> : returns the topological polar surface area for a molecule (<em>available from Q1 2011 (2011_03) release</em>).</li>
<li><cite>mol_fractioncsp3(mol)</cite> : returns the fraction of carbons that are sp3 hybridized (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_hba(mol)</cite> : returns the number of Lipinski H-bond acceptors (i.e. number of Os and Ns) for a molecule.</li>
<li><cite>mol_hbd(mol)</cite> : returns the number of Lipinski H-bond donors (i.e. number of Os and Ns that have at least one H) for a molecule.</li>
<li><cite>mol_numatoms(mol)</cite> : returns the total number of atoms in a molecule.</li>
<li><cite>mol_numheavyatoms(mol)</cite> : returns the number of heavy atoms in a molecule.</li>
<li><cite>mol_numrotatablebonds(mol)</cite> : returns the number of rotatable bonds in a molecule (<em>available from Q1 2011 (2011_03) release</em>).</li>
<li><cite>mol_numheteroatoms(mol)</cite> : returns the number of heteroatoms in a molecule (<em>available from Q1 2011 (2011_03) release</em>).</li>
<li><cite>mol_numrings(mol)</cite> : returns the number of rings in a molecule (<em>available from Q1 2011 (2011_03) release</em>).</li>
<li><cite>mol_numaromaticrings(mol)</cite> : returns the number of aromatic rings in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numaliphaticrings(mol)</cite> : returns the number of aliphatic (at least one non-aromatic bond) rings in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numsaturatedrings(mol)</cite> : returns the number of saturated rings in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numaromaticheterocycles(mol)</cite> : returns the number of aromatic heterocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numaliphaticheterocycles(mol)</cite> : returns the number of aliphatic (at least one non-aromatic bond) heterocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numsaturatedheterocycles(mol)</cite> : returns the number of saturated heterocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numaromaticcarbocycles(mol)</cite> : returns the number of aromatic carbocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numaliphaticcarbocycles(mol)</cite> : returns the number of aliphatic (at least one non-aromatic bond) carbocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_numsaturatedcarbocycles(mol)</cite> : returns the number of saturated carbocycles in a molecule (<em>available from 2013_03 release</em>).</li>
<li><cite>mol_inchi(mol)</cite> : returns an InChI for the molecule. (<em>available from the 2011_06 release, requires that the RDKit be built with InChI support</em>).</li>
<li><cite>mol_inchikey(mol)</cite> : returns an InChI key for the molecule. (<em>available from the 2011_06 release, requires that the RDKit be built with InChI support</em>).</li>
<li><cite>mol_formula(mol,bool default false, bool default true)</cite> : returns a string with the molecular formula. The second argument controls whether isotope information is included in the formula; the third argument controls whether &#8220;D&#8221; and &#8220;T&#8221; are used instead of [2H] and [3H].</li>
</ul>
<p>(<em>available from the 2014_03 release</em>)</p>
</div>
<div class="section" id="connectivity-descriptors">
<h5>Connectivity Descriptors<a class="headerlink" href="#connectivity-descriptors" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>mol_chi0v(mol)</cite> - <cite>mol_chi4v(mol)</cite> :  returns the ChiXv value for a molecule for X=0-4 (<em>available from 2012_01 release</em>).</li>
<li><cite>mol_chi0n(mol)</cite> - <cite>mol_chi4n(mol)</cite> :  returns the ChiXn value for a molecule for X=0-4 (<em>available from 2012_01 release</em>).</li>
<li><cite>mol_kappa1(mol)</cite> - <cite>mol_kappa3(mol)</cite> :  returns the kappaX value for a molecule for X=1-3 (<em>available from 2012_01 release</em>).</li>
</ul>
</div>
<div class="section" id="mcs">
<h5>MCS<a class="headerlink" href="#mcs" title="Permalink to this headline"></a></h5>
<ul class="simple">
<li><cite>fmcs(mols)</cite> : an aggregation function that calculates the MCS for a set of molecules</li>
<li><cite>fmcs_smiles(text, json default &#8216;&#8217;)</cite> : calculates the MCS for a space-separated set of SMILES. The optional json argument is used to provide parameters to the MCS code.</li>
</ul>
</div>
</div>
<div class="section" id="other">
<h4>Other<a class="headerlink" href="#other" title="Permalink to this headline"></a></h4>
<ul class="simple">
<li><cite>rdkit_version()</cite> : returns a string with the cartridge version number.</li>
</ul>
<p>There are additional functions defined in the cartridge, but these are used for internal purposes.</p>
</div>
</div>
</div>
<div class="section" id="using-the-cartridge-from-python">
<h2>Using the Cartridge from Python<a class="headerlink" href="#using-the-cartridge-from-python" title="Permalink to this headline"></a></h2>
<p>The recommended adapter for connecting to postgresql is pyscopg2
(<a class="reference external" href="https://pypi.python.org/pypi/psycopg2">https://pypi.python.org/pypi/psycopg2</a>).</p>
<p>Here&#8217;s an example of connecting to our local copy of ChEMBL and doing
a basic substructure search:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">psycopg2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">conn</span> <span class="o">=</span> <span class="n">psycopg2</span><span class="o">.</span><span class="n">connect</span><span class="p">(</span><span class="n">database</span><span class="o">=</span><span class="s">&#39;chembl_16&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">curs</span> <span class="o">=</span> <span class="n">conn</span><span class="o">.</span><span class="n">cursor</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">curs</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">&#39;select * from rdk.mols where m@&gt;</span><span class="si">%s</span><span class="s">&#39;</span><span class="p">,(</span><span class="s">&#39;c1cccc2c1nncc2&#39;</span><span class="p">,))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">curs</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
<span class="go">(9830, &#39;CC(C)Sc1ccc(CC2CCN(C3CCN(C(=O)c4cnnc5ccccc54)CC3)CC2)cc1&#39;)</span>
</pre></div>
</div>
<p>That returns a SMILES for each molecule. If you plan to do more work
with the molecules after retrieving them, it is much more efficient to
ask postgresql to give you the molecules in pickled form:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">curs</span><span class="o">.</span><span class="n">execute</span><span class="p">(</span><span class="s">&#39;select molregno,mol_send(m) from rdk.mols where m@&gt;</span><span class="si">%s</span><span class="s">&#39;</span><span class="p">,(</span><span class="s">&#39;c1cccc2c1nncc2&#39;</span><span class="p">,))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">row</span> <span class="o">=</span> <span class="n">curs</span><span class="o">.</span><span class="n">fetchone</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">row</span>
<span class="go">(9830, &lt;read-only buffer for 0x...&gt;)</span>
</pre></div>
</div>
<p>These pickles can then be converted into molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">Mol</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">row</span><span class="p">[</span><span class="mi">1</span><span class="p">]))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;CC(C)Sc1ccc(CC2CCN(C3CCN(C(=O)c4cnnc5ccccc54)CC3)CC2)cc1&#39;</span>
</pre></div>
</div>
</div>
<div class="section" id="license">
<h2>License<a class="headerlink" href="#license" title="Permalink to this headline"></a></h2>
<p>This document is copyright (C) 2013 by Greg Landrum</p>
<p>This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit <a class="reference external" href="http://creativecommons.org/licenses/by-sa/3.0/">http://creativecommons.org/licenses/by-sa/3.0/</a> or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.</p>
<p>The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”</p>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="Cookbook.html" title="RDKit Cookbook"
             >previous</a> |</li>
        <li><a href="index.html">The RDKit 2015.03.1 documentation</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2014, Greg Landrum.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.2.3.
    </div>
  </body>
</html>