/usr/share/doc/rdkit/html/GettingStartedInPython.html is in rdkit-doc 201503-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Getting Started with the RDKit in Python — The RDKit 2015.03.1 documentation</title>
<link rel="stylesheet" href="_static/sphinxdoc.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '2015.03.1',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<link rel="top" title="The RDKit 2015.03.1 documentation" href="index.html" />
<link rel="next" title="The RDKit Book" href="RDKit_Book.html" />
<link rel="prev" title="Installation" href="Install.html" />
</head>
<body>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="RDKit_Book.html" title="The RDKit Book"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="Install.html" title="Installation"
accesskey="P">previous</a> |</li>
<li><a href="index.html">The RDKit 2015.03.1 documentation</a> »</li>
</ul>
</div>
<div class="sphinxsidebar">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/logo.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Overview.html">An overview of the RDKit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Install.html">Installation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="">Getting Started with the RDKit in Python</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#what-is-this">What is this?</a></li>
<li class="toctree-l2"><a class="reference internal" href="#reading-and-writing-molecules">Reading and Writing Molecules</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#reading-single-molecules">Reading single molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reading-sets-of-molecules">Reading sets of molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#writing-molecules">Writing molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#writing-sets-of-molecules">Writing sets of molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#working-with-molecules">Working with Molecules</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#looping-over-atoms-and-bonds">Looping over Atoms and Bonds</a></li>
<li class="toctree-l3"><a class="reference internal" href="#ring-information">Ring Information</a></li>
<li class="toctree-l3"><a class="reference internal" href="#modifying-molecules">Modifying molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#working-with-2d-molecules-generating-depictions">Working with 2D molecules: Generating Depictions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#working-with-3d-molecules">Working with 3D Molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#preserving-molecules">Preserving Molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#drawing-molecules">Drawing Molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#substructure-searching">Substructure Searching</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#stereochemistry-in-substructure-matches">Stereochemistry in substructure matches</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-transformations">Chemical Transformations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#substructure-based-transformations">Substructure-based transformations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#murcko-decomposition">Murcko Decomposition</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#maximum-common-substructure">Maximum Common Substructure</a></li>
<li class="toctree-l2"><a class="reference internal" href="#fingerprinting-and-molecular-similarity">Fingerprinting and Molecular Similarity</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#topological-fingerprints">Topological Fingerprints</a></li>
<li class="toctree-l3"><a class="reference internal" href="#maccs-keys">MACCS Keys</a></li>
<li class="toctree-l3"><a class="reference internal" href="#atom-pairs-and-topological-torsions">Atom Pairs and Topological Torsions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#morgan-fingerprints-circular-fingerprints">Morgan Fingerprints (Circular Fingerprints)</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#explaining-bits-from-morgan-fingerprints">Explaining bits from Morgan Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#picking-diverse-molecules-using-fingerprints">Picking Diverse Molecules Using Fingerprints</a></li>
<li class="toctree-l3"><a class="reference internal" href="#generating-similarity-maps-using-fingerprints">Generating Similarity Maps Using Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#descriptor-calculation">Descriptor Calculation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#visualization-of-descriptors">Visualization of Descriptors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-reactions">Chemical Reactions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#advanced-reaction-functionality">Advanced Reaction Functionality</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#protecting-atoms">Protecting Atoms</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#recap-implementation">Recap Implementation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#brics-implementation">BRICS Implementation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#other-fragmentation-approaches">Other fragmentation approaches</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-features-and-pharmacophores">Chemical Features and Pharmacophores</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#chemical-features">Chemical Features</a></li>
<li class="toctree-l3"><a class="reference internal" href="#d-pharmacophore-fingerprints">2D Pharmacophore Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#molecular-fragments">Molecular Fragments</a></li>
<li class="toctree-l2"><a class="reference internal" href="#non-chemical-functionality">Non-Chemical Functionality</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#bit-vectors">Bit vectors</a></li>
<li class="toctree-l3"><a class="reference internal" href="#discrete-value-vectors">Discrete value vectors</a></li>
<li class="toctree-l3"><a class="reference internal" href="#d-grids">3D grids</a></li>
<li class="toctree-l3"><a class="reference internal" href="#points">Points</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#getting-help">Getting Help</a></li>
<li class="toctree-l2"><a class="reference internal" href="#advanced-topics-warnings">Advanced Topics/Warnings</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#editing-molecules">Editing Molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#miscellaneous-tips-and-hints">Miscellaneous Tips and Hints</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#chem-vs-allchem">Chem vs AllChem</a></li>
<li class="toctree-l3"><a class="reference internal" href="#the-sssr-problem">The SSSR Problem</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#list-of-available-descriptors">List of Available Descriptors</a></li>
<li class="toctree-l2"><a class="reference internal" href="#list-of-available-fingerprints">List of Available Fingerprints</a></li>
<li class="toctree-l2"><a class="reference internal" href="#feature-definitions-used-in-the-morgan-fingerprints">Feature Definitions Used in the Morgan Fingerprints</a></li>
<li class="toctree-l2"><a class="reference internal" href="#license">License</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="RDKit_Book.html">The RDKit Book</a></li>
<li class="toctree-l1"><a class="reference internal" href="Cookbook.html">RDKit Cookbook</a></li>
<li class="toctree-l1"><a class="reference internal" href="Cartridge.html">The RDKit database cartridge</a></li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="Install.html"
title="previous chapter">Installation</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="RDKit_Book.html"
title="next chapter">The RDKit Book</a></p>
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/GettingStartedInPython.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body">
<div class="section" id="getting-started-with-the-rdkit-in-python">
<h1>Getting Started with the RDKit in Python<a class="headerlink" href="#getting-started-with-the-rdkit-in-python" title="Permalink to this headline">¶</a></h1>
<div class="section" id="what-is-this">
<h2>What is this?<a class="headerlink" href="#what-is-this" title="Permalink to this headline">¶</a></h2>
<p>This document is intended to provide an overview of how one can use
the RDKit functionality from Python. It’s not comprehensive and it’s
not a manual.</p>
<p>If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: <a class="reference external" href="mailto:rdkit-devel%40lists.sourceforge.net">rdkit-devel<span>@</span>lists<span>.</span>sourceforge<span>.</span>net</a></p>
</div>
<div class="section" id="reading-and-writing-molecules">
<h2>Reading and Writing Molecules<a class="headerlink" href="#reading-and-writing-molecules" title="Permalink to this headline">¶</a></h2>
<div class="section" id="reading-single-molecules">
<h3>Reading single molecules<a class="headerlink" href="#reading-single-molecules" title="Permalink to this headline">¶</a></h3>
<p>The majority of the basic molecular functionality is found in module <a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a>:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
</pre></div>
</div>
<p>Individual molecules can be constructed using a variety of approaches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">'data/input.mol'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">stringWithMolData</span><span class="o">=</span><span class="nb">file</span><span class="p">(</span><span class="s">'data/input.mol'</span><span class="p">,</span><span class="s">'r'</span><span class="p">)</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolBlock</span><span class="p">(</span><span class="n">stringWithMolData</span><span class="p">)</span>
</pre></div>
</div>
<p>All of these functions return a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.Mol</span></tt> object on success:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span>
<span class="go"><rdkit.Chem.rdchem.Mol object at 0x...></span>
</pre></div>
</div>
<p>or None on failure:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">'data/invalid.mol'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
</pre></div>
</div>
<p>An attempt is made to provide sensible error messages:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CO(C)C'</span><span class="p">)</span>
</pre></div>
</div>
<p>displays a message like: <tt class="docutils literal"><span class="pre">[12:18:01]</span> <span class="pre">Explicit</span> <span class="pre">valence</span> <span class="pre">for</span> <span class="pre">atom</span> <span class="pre">#</span> <span class="pre">1</span> <span class="pre">O</span> <span class="pre">greater</span> <span class="pre">than</span> <span class="pre">permitted</span></tt> and</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1cc1'</span><span class="p">)</span>
</pre></div>
</div>
<p>displays something like: <tt class="docutils literal"><span class="pre">[12:20:41]</span> <span class="pre">Can't</span> <span class="pre">kekulize</span> <span class="pre">mol</span></tt>. In each case the value <tt class="docutils literal"><span class="pre">None</span></tt> is returned:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
</pre></div>
</div>
</div>
<div class="section" id="reading-sets-of-molecules">
<h3>Reading sets of molecules<a class="headerlink" href="#reading-sets-of-molecules" title="Permalink to this headline">¶</a></h3>
<p>Groups of molecules are read using a Supplier (for example, an <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SDMolSupplier</span></tt> or a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SmilesMolSupplier</span></tt>):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/5ht3ligs.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>You can easily produce lists of molecules from a Supplier:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span>
<span class="go">4</span>
</pre></div>
</div>
<p>or just treat the Supplier itself as a random-access object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">20</span>
</pre></div>
</div>
<p>A good practice is to test each molecule to see if it was correctly read before working with it:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/5ht3ligs.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">if</span> <span class="n">mol</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="k">continue</span>
<span class="gp">... </span> <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>An alternate type of Supplier, the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.ForwardSDMolSupplier</span></tt> can be used to read from file-like objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">inf</span> <span class="o">=</span> <span class="nb">file</span><span class="p">(</span><span class="s">'data/5ht3ligs.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fsuppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ForwardSDMolSupplier</span><span class="p">(</span><span class="n">inf</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">fsuppl</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">if</span> <span class="n">mol</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="k">continue</span>
<span class="gp">... </span> <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>This means that they can be used to read from compressed files:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">gzip</span>
<span class="gp">>>> </span><span class="n">inf</span> <span class="o">=</span> <span class="n">gzip</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s">'data/actives_5ht3.sdf.gz'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">gzsuppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ForwardSDMolSupplier</span><span class="p">(</span><span class="n">inf</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">gzsuppl</span> <span class="k">if</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ms</span><span class="p">)</span>
<span class="go">180</span>
</pre></div>
</div>
<p>Note that ForwardSDMolSuppliers cannot be used as random-access objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fsuppl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gt">Traceback (most recent call last):</span>
<span class="c">...</span>
<span class="gr">TypeError</span>: <span class="n">'ForwardSDMolSupplier' object does not support indexing</span>
<span class="gt">Traceback (most recent call last):</span>
<span class="c">...</span>
<span class="gr">TypeError</span>: <span class="n">'ForwardSDMolSupplier' object does not support indexing</span>
</pre></div>
</div>
</div>
<div class="section" id="writing-molecules">
<h3>Writing molecules<a class="headerlink" href="#writing-molecules" title="Permalink to this headline">¶</a></h3>
<p>Single molecules can be converted to text using several functions present in the <a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a> module.</p>
<p>For example, for SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">'data/chiral.mol'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">'CC(O)c1ccccc1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">isomericSmiles</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'C[C@H](O)c1ccccc1'</span>
</pre></div>
</div>
<p>Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is input:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1=CC=CN=C1'</span><span class="p">))</span>
<span class="go">'c1ccncc1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1cccnc1'</span><span class="p">))</span>
<span class="go">'c1ccncc1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'n1ccccc1'</span><span class="p">))</span>
<span class="go">'c1ccncc1'</span>
</pre></div>
</div>
<p>If you’d like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">Kekulize</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">kekuleSmiles</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'CC(O)C1=CC=CC=C1'</span>
</pre></div>
</div>
<p>Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical.
The limitation is not in the SMILES generation, but in the kekulization itself.</p>
<p>MDL Mol blocks are also available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCC1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go"> RDKit</span>
<span class="go"> 4 4 0 0 0 0 0 0 0 0999 V2000</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1 2 1 0</span>
<span class="go"> 2 3 1 0</span>
<span class="go"> 3 4 1 0</span>
<span class="go"> 4 1 1 0</span>
<span class="go">M END</span>
</pre></div>
</div>
<p>To include names in the mol blocks, set the molecule’s “_Name” property:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m2</span><span class="o">.</span><span class="n">SetProp</span><span class="p">(</span><span class="s">"_Name"</span><span class="p">,</span><span class="s">"cyclobutane"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">cyclobutane</span>
<span class="go"> RDKit</span>
<span class="go"> 4 4 0 0 0 0 0 0 0 0999 V2000</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1 2 1 0</span>
<span class="go"> 2 3 1 0</span>
<span class="go"> 3 4 1 0</span>
<span class="go"> 4 1 1 0</span>
<span class="go">M END</span>
</pre></div>
</div>
<p>It’s usually preferable to have a depiction in the Mol block, this can
be generated using functionality in the <a class="reference external" href="api/rdkit.Chem.AllChem-module.html">rdkit.Chem.AllChem</a>
module (see the <a class="reference internal" href="#chem-vs-allchem">Chem vs AllChem</a> section for more information).</p>
<p>You can either include 2D coordinates (i.e. a depiction):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">cyclobutane</span>
<span class="go"> RDKit 2D</span>
<span class="go"> 4 4 0 0 0 0 0 0 0 0999 V2000</span>
<span class="go"> 1.0607 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> -0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> -1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1 2 1 0</span>
<span class="go"> 2 3 1 0</span>
<span class="go"> 3 4 1 0</span>
<span class="go"> 4 1 1 0</span>
<span class="go">M END</span>
</pre></div>
</div>
<p>Or you can add 3D coordinates by embedding the molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">cyclobutane</span>
<span class="go"> RDKit 3D</span>
<span class="go"> 4 4 0 0 0 0 0 0 0 0999 V2000</span>
<span class="go"> -0.7883 0.5560 -0.2718 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> -0.4153 -0.9091 -0.1911 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.7883 -0.5560 0.6568 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 0.4153 0.9091 0.5762 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1 2 1 0</span>
<span class="go"> 2 3 1 0</span>
<span class="go"> 3 4 1 0</span>
<span class="go"> 4 1 1 0</span>
<span class="go">M END</span>
</pre></div>
</div>
<p>The optimization step isn’t necessary, but it substantially improves the quality of the conformation.</p>
<p>To get good conformations, it’s almost always a good idea to add hydrogens to the molecule first:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>These can then be removed:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RemoveHs</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="go">cyclobutane</span>
<span class="go"> RDKit 3D</span>
<span class="go"> 4 4 0 0 0 0 0 0 0 0999 V2000</span>
<span class="go"> 0.2851 1.0372 -0.0171 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1.0352 -0.2833 0.0743 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> -0.2851 -1.0372 0.0171 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> -1.0352 0.2833 -0.0743 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1 2 1 0</span>
<span class="go"> 2 3 1 0</span>
<span class="go"> 3 4 1 0</span>
<span class="go"> 4 1 1 0</span>
<span class="go">M END</span>
</pre></div>
</div>
<p>If you’d like to write the molecules to a file, use Python file objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">print</span> <span class="o">>></span><span class="nb">file</span><span class="p">(</span><span class="s">'data/foo.mol'</span><span class="p">,</span><span class="s">'w+'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">>>></span>
</pre></div>
</div>
</div>
<div class="section" id="writing-sets-of-molecules">
<h3>Writing sets of molecules<a class="headerlink" href="#writing-sets-of-molecules" title="Permalink to this headline">¶</a></h3>
<p>Multiple molecules can be written to a file using an <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SDWriter</span></tt> object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">w</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDWriter</span><span class="p">(</span><span class="s">'data/foo.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">mols</span><span class="p">:</span> <span class="n">w</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">...</span>
<span class="go">>>></span>
</pre></div>
</div>
<p>An SDWriter can also be initialized using a file-like object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">StringIO</span> <span class="kn">import</span> <span class="n">StringIO</span>
<span class="gp">>>> </span><span class="n">sio</span> <span class="o">=</span> <span class="n">StringIO</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">w</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDWriter</span><span class="p">(</span><span class="n">sio</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">mols</span><span class="p">:</span> <span class="n">w</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">w</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">sio</span><span class="o">.</span><span class="n">getvalue</span><span class="p">()</span>
<span class="go">mol-295</span>
<span class="go"> RDKit 3D</span>
<span class="go"> 20 22 0 0 1 0 0 0 0 0999 V2000</span>
<span class="go"> 2.3200 0.0800 -0.1000 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="go"> 1.8400 -1.2200 0.1200 C 0 0 0 0 0 0 0 0 0 0 0 0</span>
<span class="gp">...</span>
<span class="go"> 1 3 1 0</span>
<span class="go"> 1 4 1 0</span>
<span class="go"> 2 5 1 0</span>
<span class="go">M END</span>
<span class="go">$$$$</span>
</pre></div>
</div>
<p>Other available Writers include the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SmilesWriter</span></tt> and the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.TDTWriter</span></tt>.</p>
</div>
</div>
<div class="section" id="working-with-molecules">
<h2>Working with Molecules<a class="headerlink" href="#working-with-molecules" title="Permalink to this headline">¶</a></h2>
<div class="section" id="looping-over-atoms-and-bonds">
<h3>Looping over Atoms and Bonds<a class="headerlink" href="#looping-over-atoms-and-bonds" title="Permalink to this headline">¶</a></h3>
<p>Once you have a molecule, it’s easy to loop over its atoms and bonds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1OC1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">atom</span> <span class="ow">in</span> <span class="n">m</span><span class="o">.</span><span class="n">GetAtoms</span><span class="p">():</span>
<span class="gp">... </span> <span class="k">print</span> <span class="n">atom</span><span class="o">.</span><span class="n">GetAtomicNum</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">6</span>
<span class="go">8</span>
<span class="go">6</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="n">m</span><span class="o">.</span><span class="n">GetBonds</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">SINGLE</span>
</pre></div>
</div>
<p>You can also request individual bonds or atoms:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetSymbol</span><span class="p">()</span>
<span class="go">'C'</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetExplicitValence</span><span class="p">()</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">()</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetEndAtomIdx</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.SINGLE</span>
</pre></div>
</div>
<p>Atoms keep track of their neighbors:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">atom</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetAtomicNum</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">atom</span><span class="o">.</span><span class="n">GetNeighbors</span><span class="p">()]</span>
<span class="go">[8, 6]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">GetBonds</span><span class="p">())</span>
<span class="go">2</span>
</pre></div>
</div>
</div>
<div class="section" id="ring-information">
<h3>Ring Information<a class="headerlink" href="#ring-information" title="Permalink to this headline">¶</a></h3>
<p>Atoms and bonds both carry information about the molecule’s rings:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OC1C2C1CC2'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But note that the information is only about the smallest rings:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">False</span>
</pre></div>
</div>
<p>More detail about the smallest set of smallest rings (SSSR) is available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">ssr</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">GetSymmSSSR</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ssr</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">ssr</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">[1, 2, 3]</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">ssr</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">[4, 5, 2, 3]</span>
</pre></div>
</div>
<p>As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the GetSSSR function.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">GetSSSR</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">2</span>
</pre></div>
</div>
<p>The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section <a class="reference internal" href="#the-sssr-problem">The SSSR Problem</a>.</p>
<p>For more efficient queries about a molecule’s ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.RingInfo</span></tt> class:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OC1C2C1CC2'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ri</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetRingInfo</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">ri</span><span class="o">.</span><span class="n">IsAtomInRingOfSize</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">ri</span><span class="o">.</span><span class="n">IsBondInRingOfSize</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
</pre></div>
</div>
</div>
<div class="section" id="modifying-molecules">
<h3>Modifying molecules<a class="headerlink" href="#modifying-molecules" title="Permalink to this headline">¶</a></h3>
<p>Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the molecular graph.
When it is useful to have the hydrogens explicitly present, for example when generating or optimizing the 3D geometry, the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.AddHs</span></tt> function can be used:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCO'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">3</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">9</span>
</pre></div>
</div>
<p>The Hs can be removed again using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.RemoveHs</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RemoveHs</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">3</span>
</pre></div>
</div>
<p>RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types.
This can be changed with the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.Kekulize</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.AROMATIC</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">Kekulize</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.DOUBLE</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.SINGLE</span>
</pre></div>
</div>
<p>The bonds are still marked as being aromatic:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetIsAromatic</span><span class="p">()</span>
<span class="go">True</span>
</pre></div>
</div>
<p>and can be restored to the aromatic bond type using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.SanitizeMol</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.AROMATIC</span>
</pre></div>
</div>
<p>The value returned by <cite>SanitizeMol()</cite> indicates that no problems were encountered.</p>
</div>
<div class="section" id="working-with-2d-molecules-generating-depictions">
<h3>Working with 2D molecules: Generating Depictions<a class="headerlink" href="#working-with-2d-molecules-generating-depictions" title="Permalink to this headline">¶</a></h3>
<p>The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules.
This library, which is part of the AllChem module, is accessed using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdDepictor.Compute2DCoords</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1nccc2n1ccc2'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>The 2D conformation is constructed in a canonical orientation and is
built to minimize intramolecular clashes, i.e. to maximize the clarity
of the drawing.</p>
<p>If you have a set of molecules that share a common template and you’d
like to align them to that template, you can do so as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">template</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1nccc2n1ccc2'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">template</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">GenerateDepictionMatching2DStructure</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">template</span><span class="p">)</span>
</pre></div>
</div>
<p>Running this process for a couple of other molecules gives the
following depictions:</p>
<table border="1" class="docutils">
<colgroup>
<col width="33%" />
<col width="33%" />
<col width="33%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="_images/picture_1.png"><img alt="picture_1" src="_images/picture_1.png" style="width: 225.0px; height: 225.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_0.png"><img alt="picture_0" src="_images/picture_0.png" style="width: 225.0px; height: 225.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_3.png"><img alt="picture_3" src="_images/picture_3.png" style="width: 225.0px; height: 225.0px;" /></a></td>
</tr>
</tbody>
</table>
<p>Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D conformations.
This is available using the function <a class="reference external" href="api/rdkit.Chem.AllChem-module.html#GenerateDepictionMatching3DStructure">GenerateDepictionMatching3DStructure</a>.</p>
<p>Here is an illustration of the results using the ligand from PDB structure 1XP0:</p>
<table border="1" class="docutils">
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="_images/picture_2.png"><img alt="picture_2" src="_images/picture_2.png" style="width: 320.0px; height: 240.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_4.png"><img alt="picture_4" src="_images/picture_4.png" style="width: 225.0px; height: 225.0px;" /></a></td>
</tr>
</tbody>
</table>
<p>More fine-grained control can be obtained using the core function
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdDepictor.Compute2DCoordsMimicDistmat</span></tt>, but that is
beyond the scope of this document. See the implementation of
GenerateDepictionMatching3DStructure in AllChem.py for an example of
how it is used.</p>
</div>
<div class="section" id="working-with-3d-molecules">
<h3>Working with 3D Molecules<a class="headerlink" href="#working-with-3d-molecules" title="Permalink to this headline">¶</a></h3>
<p>The RDKit can generate conformations for molecules using distance geometry. <a class="footnote-reference" href="#blaney" id="id1">[1]</a>
The algorithm followed is:</p>
<ol class="arabic simple">
<li>The molecule’s distance bounds matrix is calculated based on the connection table and a set of rules.</li>
<li>The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.</li>
<li>A random distance matrix that satisfies the bounds matrix is generated.</li>
<li>This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).</li>
<li>The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.</li>
</ol>
<p>Multiple conformations can be generated by repeating steps 4 and 5 several times, using a different random distance matrix each time.</p>
<p>Note that the conformations that result from this procedure tend to be fairly ugly.
They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the Universal Force Field (UFF). <a class="footnote-reference" href="#rappe" id="id2">[2]</a></p>
<p>The full process of embedding and optimizing a molecule is easier than all the above verbiage makes it sound:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCC1OC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>The RDKit also has an implementation of the MMFF94 force field available. <a class="footnote-reference" href="#mmff1" id="id3">[12]</a>, <a class="footnote-reference" href="#mmff2" id="id4">[13]</a>, <a class="footnote-reference" href="#mmff3" id="id5">[14]</a>, <a class="footnote-reference" href="#mmff4" id="id6">[15]</a>, <a class="footnote-reference" href="#mmffs" id="id7">[16]</a>
Please note that the MMFF atom typing code uses its own aromaticity model,
so the aromaticity flags of the molecule will be modified after calling
MMFF-related methods.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCC1OC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">MMFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>Note the calls to <cite>Chem.AddHs()</cite> in the examples above. By default RDKit molecules do not have H atoms explicity present in the graph, but they are important for getting realistic geometries, so they generally should be added.</p>
<p>With the RDKit, also multiple conformers can be generated. The option numConfs allows the user to set the number of conformers that should be generated.
These conformers can be aligned to each other and the RMS values calculated.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCC1OC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cids</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMultipleConfs</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">numConfs</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">cids</span><span class="p">)</span>
<span class="go">10</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">cid</span> <span class="ow">in</span> <span class="n">cids</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">_</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">MMFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">confId</span><span class="o">=</span><span class="n">cid</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rmslist</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">AlignMolConformers</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">RMSlist</span><span class="o">=</span><span class="n">rmslist</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">rmslist</span><span class="p">)</span>
<span class="go">9</span>
</pre></div>
</div>
<p>rmslist contains the RMS values between the first conformer and all others.
The RMS between two specific conformers (e.g. 1 and 9) can also be calculated. The flag prealigned lets the user specify if the conformers are already aligned (by default, the function aligns them).</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rms</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetConformerRMS</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="n">prealigned</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
<p>More 3D functionality of the RDKit is described in the Cookbook.</p>
<p><em>Disclaimer/Warning</em>: Conformation generation is a difficult and subtle task.
The 2D->3D conversion provided within the RDKit is not intended to be a replacement for a “real” conformational analysis tool; it merely provides quick 3D structures for cases when they are required.</p>
</div>
<div class="section" id="preserving-molecules">
<h3>Preserving Molecules<a class="headerlink" href="#preserving-molecules" title="Permalink to this headline">¶</a></h3>
<p>Molecules can be converted to and from text using Python’s pickling machinery:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccncc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="kn">import</span> <span class="nn">cPickle</span>
<span class="gp">>>> </span><span class="n">pkl</span> <span class="o">=</span> <span class="n">cPickle</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">type</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go"><type 'str'></span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">=</span><span class="n">cPickle</span><span class="o">.</span><span class="n">loads</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">'c1ccncc1'</span>
</pre></div>
</div>
<p>The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.</p>
<p>The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">binStr</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">ToBinary</span><span class="p">()</span>
</pre></div>
</div>
<p>This can be used to reconstruct molecules using the Chem.Mol constructor:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">Mol</span><span class="p">(</span><span class="n">binStr</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">'c1ccncc1'</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">binStr</span><span class="p">)</span>
<span class="go">123</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go">475</span>
</pre></div>
</div>
<p>Note that this huge difference in text length is because we didn’t tell python to use its most efficient representation of the pickle:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">pkl</span> <span class="o">=</span> <span class="n">cPickle</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go">157</span>
</pre></div>
</div>
<p>The small overhead associated with python’s pickling machinery normally doesn’t end up making much of a difference for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule, while the binary string increases in length as the molecule gets larger).</p>
<p><em>Tip</em>: The performance difference associated with storing molecules in a pickled form on disk instead of constantly reparsing an SD file or SMILES table is difficult to overstate.
In a test I just ran on my laptop, loading a set of 699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7 seconds.
The pickle file is also smaller – 1/3 the size of the SD file – but this difference is not always so dramatic (it’s a particularly fat SD file).</p>
</div>
<div class="section" id="drawing-molecules">
<h3>Drawing Molecules<a class="headerlink" href="#drawing-molecules" title="Permalink to this headline">¶</a></h3>
<p>The RDKit has some built-in functionality for creating images from
molecules found in the <a class="reference external" href="api/rdkit.Chem.Draw-module.html">rdkit.Chem.Draw</a> package:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/cdk2.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span> <span class="k">if</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">]</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">:</span> <span class="n">tmp</span><span class="o">=</span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Draw</span>
<span class="gp">>>> </span><span class="n">Draw</span><span class="o">.</span><span class="n">MolToFile</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="s">'images/cdk2_mol1.png'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Draw</span><span class="o">.</span><span class="n">MolToFile</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="s">'images/cdk2_mol2.png'</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing these images:</p>
<table border="1" class="docutils">
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><img alt="_images/cdk2_mol1.png" class="first last" src="_images/cdk2_mol1.png" />
</td>
<td><img alt="_images/cdk2_mol2.png" class="first last" src="_images/cdk2_mol2.png" />
</td>
</tr>
</tbody>
</table>
<p>It’s also possible to produce an image grid out of a set of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">img</span><span class="o">=</span><span class="n">Draw</span><span class="o">.</span><span class="n">MolsToGridImage</span><span class="p">(</span><span class="n">ms</span><span class="p">[:</span><span class="mi">8</span><span class="p">],</span><span class="n">molsPerRow</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span><span class="n">subImgSize</span><span class="o">=</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">),</span><span class="n">legends</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">"_Name"</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">[:</span><span class="mi">8</span><span class="p">]])</span>
</pre></div>
</div>
<p>This returns a PIL image, which can then be saved to a file:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s">'images/cdk2_molgrid.png'</span><span class="p">)</span>
</pre></div>
</div>
<p>The result looks like this:</p>
<img alt="_images/cdk2_molgrid.png" src="_images/cdk2_molgrid.png" />
<p>These would of course look better if the common core were
aligned. This is easy enough to do:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'[nH]1cnc2cncnc21'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">subms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">p</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">subms</span><span class="p">)</span>
<span class="go">14</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">subms</span><span class="p">:</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GenerateDepictionMatching2DStructure</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">p</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">img</span><span class="o">=</span><span class="n">Draw</span><span class="o">.</span><span class="n">MolsToGridImage</span><span class="p">(</span><span class="n">subms</span><span class="p">,</span><span class="n">molsPerRow</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span><span class="n">subImgSize</span><span class="o">=</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">),</span><span class="n">legends</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">"_Name"</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">subms</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s">'images/cdk2_molgrid.aligned.png'</span><span class="p">)</span>
</pre></div>
</div>
<p>The result looks like this:</p>
<img alt="_images/cdk2_molgrid_aligned.png" src="_images/cdk2_molgrid_aligned.png" />
</div>
</div>
<div class="section" id="substructure-searching">
<h2>Substructure Searching<a class="headerlink" href="#substructure-searching" title="Permalink to this headline">¶</a></h2>
<p>Substructure matching can be done using query molecules built from SMARTS:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'ccO'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">(0, 5, 6)</span>
</pre></div>
</div>
<p>Those are the atom indices in <tt class="docutils literal"><span class="pre">m</span></tt>, ordered as <tt class="docutils literal"><span class="pre">patt</span></tt>‘s atoms. To get all of the matches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">((0, 5, 6), (4, 5, 6))</span>
</pre></div>
</div>
<p>This can be used to easily filter lists of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/actives_5ht3.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'c[NH1]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">matches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">if</span> <span class="n">mol</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">matches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">matches</span><span class="p">)</span>
<span class="go">22</span>
</pre></div>
</div>
<p>We can write the same thing more compactly using Python’s list comprehension syntax:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">matches</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">matches</span><span class="p">)</span>
<span class="go">22</span>
</pre></div>
</div>
<p>Substructure matching can also be done using molecules built from SMILES instead of SMARTS:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1=CC=CC=C1OC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'CO'</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CO'</span><span class="p">))</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But don’t forget that the semantics of the two languages are not exactly equivalent:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'COC'</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'COC'</span><span class="p">))</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'COc'</span><span class="p">))</span> <span class="c">#<- need an aromatic C</span>
<span class="go">True</span>
</pre></div>
</div>
<div class="section" id="stereochemistry-in-substructure-matches">
<h3>Stereochemistry in substructure matches<a class="headerlink" href="#stereochemistry-in-substructure-matches" title="Permalink to this headline">¶</a></h3>
<p>By default information about stereochemistry is not used in
substructure searches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC[C@H](F)Cl'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C[C@H](F)Cl'</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C[C@@H](F)Cl'</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(F)Cl'</span><span class="p">))</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But this can be changed via the <cite>useChirality</cite> argument:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C[C@H](F)Cl'</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C[C@@H](F)Cl'</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">False</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(F)Cl'</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">True</span>
</pre></div>
</div>
<p>Notice that when <cite>useChirality</cite> is set a non-chiral query <strong>does</strong> match a chiral
molecule. The same is not true for a chiral query and a non-chiral molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(F)Cl'</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCC(F)Cl'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C[C@H](F)Cl'</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">False</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="chemical-transformations">
<h2>Chemical Transformations<a class="headerlink" href="#chemical-transformations" title="Permalink to this headline">¶</a></h2>
<p>The RDKit contains a number of functions for modifying molecules. Note
that these transformation functions are intended to provide an easy
way to make simple modifications to molecules.
For more complex transformations, use the <a class="reference internal" href="#chemical-reactions">Chemical Reactions</a> functionality.</p>
<div class="section" id="substructure-based-transformations">
<h3>Substructure-based transformations<a class="headerlink" href="#substructure-based-transformations" title="Permalink to this headline">¶</a></h3>
<p>There’s a variety of functionality for using the RDKit’s
substructure-matching machinery for doing quick molecular transformations.
These transformations include deleting substructures:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'C(=O)[OH]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rm</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">DeleteSubstructs</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">patt</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rm</span><span class="p">)</span>
<span class="go">'C'</span>
</pre></div>
</div>
<p>replacing substructures:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">repl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'[$(NC(=O))]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)N'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rms</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReplaceSubstructs</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">patt</span><span class="p">,</span><span class="n">repl</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rms</span>
<span class="go">(<rdkit.Chem.rdchem.Mol object at 0x...>,)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rms</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'COC(C)=O'</span>
</pre></div>
</div>
<p>as well as simple SAR-table transformations like removing side chains:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'BrCCc1cncnc1C(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">core</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1cncnc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">tmp</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceSidechains</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="go">'[*]c1cncnc1[*]'</span>
</pre></div>
</div>
<p>and removing cores:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">tmp</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceCore</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="go">'[*]C(=O)O.[*]CCBr'</span>
</pre></div>
</div>
<p>To get more detail about the sidechains (e.g. sidechain labels), use isomeric smiles:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[1*]CCBr.[2*]C(=O)O'</span>
</pre></div>
</div>
<p>By default the sidechains are labeled based on the order they are found.
They can also be labeled according by the number of that core-atom they’re attached to:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1c(CCO)ncnc1C(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">tmp</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceCore</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">,</span><span class="n">labelByIndex</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[1*]CCO.[5*]C(=O)O'</span>
</pre></div>
</div>
<p><tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.ReplaceCore</span></tt> returns the sidechains in a single molecule.
This can be split into separate molecules using <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.GetMolFrags</span></tt> :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rs</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">GetMolFrags</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="n">asMols</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">rs</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[1*]CCO'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rs</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[5*]C(=O)O'</span>
</pre></div>
</div>
</div>
<div class="section" id="murcko-decomposition">
<h3>Murcko Decomposition<a class="headerlink" href="#murcko-decomposition" title="Permalink to this headline">¶</a></h3>
<p>The RDKit provides standard Murcko-type decomposition <a class="footnote-reference" href="#bemis1" id="id8">[7]</a> of molecules
into scaffolds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Scaffolds</span> <span class="kn">import</span> <span class="n">MurckoScaffold</span>
<span class="gp">>>> </span><span class="n">cdk2mols</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/cdk2.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">core</span> <span class="o">=</span> <span class="n">MurckoScaffold</span><span class="o">.</span><span class="n">GetScaffoldForMol</span><span class="p">(</span><span class="n">m1</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">core</span><span class="p">)</span>
<span class="go">'c1ncc2nc[nH]c2n1'</span>
</pre></div>
</div>
<p>or into a generic framework:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fw</span> <span class="o">=</span> <span class="n">MurckoScaffold</span><span class="o">.</span><span class="n">MakeScaffoldGeneric</span><span class="p">(</span><span class="n">core</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">fw</span><span class="p">)</span>
<span class="go">'C1CCC2CCCC2C1'</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="maximum-common-substructure">
<h2>Maximum Common Substructure<a class="headerlink" href="#maximum-common-substructure" title="Permalink to this headline">¶</a></h2>
<p>The FindMCS function find a maximum common substructure (MCS) of two
or more molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">rdFMCS</span>
<span class="gp">>>> </span><span class="n">mol1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mol2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"CC(C)CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mol3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"c1(C=O)cc(OC)c(O)cc1"</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">mol1</span><span class="p">,</span><span class="n">mol2</span><span class="p">,</span><span class="n">mol3</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">res</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">res</span>
<span class="go"><rdkit.Chem.rdFMCS.MCSResult object at 0x...></span>
<span class="gp">>>> </span><span class="n">res</span><span class="o">.</span><span class="n">numAtoms</span>
<span class="go">10</span>
<span class="gp">>>> </span><span class="n">res</span><span class="o">.</span><span class="n">numBonds</span>
<span class="go">10</span>
<span class="gp">>>> </span><span class="n">res</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6]1(-[#6]):[#6]:[#6](-[#8]-[#6]):[#6](:[#6]:[#6]:1)-[#8]'</span>
<span class="gp">>>> </span><span class="n">res</span><span class="o">.</span><span class="n">canceled</span>
<span class="go">False</span>
</pre></div>
</div>
<p>It returns an MCSResult instance with information about the number of
atoms and bonds in the MCS, the SMARTS string which matches the
identified MCS, and a flag saying if the algorithm timed out. If no
MCS is found then the number of atoms and bonds is set to 0 and the
SMARTS to <tt class="docutils literal"><span class="pre">''</span></tt>.</p>
<p>By default, two atoms match if they are the same element and two bonds
match if they have the same bond type. Specify <tt class="docutils literal"><span class="pre">atomCompare</span></tt> and
<tt class="docutils literal"><span class="pre">bondCompare</span></tt> to use different comparison functions, as in:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'NCC'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OC=C'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">''</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">atomCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">AtomCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#7,#8]-[#6]'</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6]-,=[#6]'</span>
</pre></div>
</div>
<p>The options for the atomCompare argument are: CompareAny says that any
atom matches any other atom, CompareElements compares by element type,
and CompareIsotopes matches based on the isotope label. Isotope labels
can be used to implement user-defined atom types. A bondCompare of
CompareAny says that any bond matches any other bond, CompareOrderExact says
bonds are equivalent if and only if they have the same bond type, and
CompareOrder allows single and aromatic bonds to match each other, but
requires an exact order match otherwise:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCCC=C1'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6]1:,-[#6]:,-[#6]:,-[#6]:,-[#6]:,=[#6]:,-1'</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareOrderExact</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">''</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareOrder</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6](:,-[#6]:,-[#6]:,-[#6]):,-[#6]:,-[#6]'</span>
</pre></div>
</div>
<p>A substructure has both atoms and bonds. By default, the algorithm
attempts to maximize the number of bonds found. You can change this by
setting the <tt class="docutils literal"><span class="pre">maximizeBonds</span></tt> argument to False.
Maximizing the number of bonds tends to maximize the number of rings,
although two small rings may have fewer bonds than one large ring.</p>
<p>You might not want a 3-valent nitrogen to match one which is 5-valent.
The default <tt class="docutils literal"><span class="pre">matchValences</span></tt> value of False ignores valence
information. When True, the atomCompare setting is modified to also
require that the two atoms have the same valency.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'NC1OC1'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1OC1[N+](=O)[O-]'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">numAtoms</span>
<span class="go">4</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">matchValences</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">numBonds</span>
<span class="go">3</span>
</pre></div>
</div>
<p>It can be strange to see a linear carbon chain match a carbon ring,
which is what the <tt class="docutils literal"><span class="pre">ringMatchesRingOnly</span></tt> default of False does. If
you set it to True then ring bonds will only match ring bonds.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"C1CCC1CCC"</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"C1CCCCCC1"</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6](-[#6]-[#6])-[#6]-[#6]-[#6]-[#6]'</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">ringMatchesRingOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6](-[#6]-[#6])-[#6]'</span>
</pre></div>
</div>
<p>You can further restrict things and require that partial rings (as in
this case) are not allowed. That is, if an atom is part of the MCS and
the atom is in a ring of the entire molecule then that atom is also in
a ring of the MCS. Set <tt class="docutils literal"><span class="pre">completeRingsOnly</span></tt> to True to toggle this
requirement and also sets ringMatchesRingOnly to True.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"CCC1CC2C1CN2"</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"C1CC2C1CC2"</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6]1-[#6]-[#6](-[#6]-1-[#6])-[#6]'</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">ringMatchesRingOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6](-[#6]-[#6]-[#6]-[#6])-[#6]'</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">completeRingsOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">'[#6]1-[#6]-[#6]-[#6]-1'</span>
</pre></div>
</div>
<p>The MCS algorithm will exhaustively search for a maximum common substructure.
Typically this takes a fraction of a second, but for some comparisons this
can take minutes or longer. Use the <tt class="docutils literal"><span class="pre">timeout</span></tt> parameter to stop the search
after the given number of seconds (wall-clock seconds, not CPU seconds) and
return the best match found in that time. If timeout is reached then the
<tt class="docutils literal"><span class="pre">canceled</span></tt> property of the MCSResult will be True instead of False.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"Nc1ccccc1"</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">"Nc1ccccccccc1"</span><span class="o">*</span><span class="mi">100</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">timeout</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">canceled</span>
<span class="go">True</span>
</pre></div>
</div>
<p>(The MCS after 50 seconds contained 511 atoms.)</p>
</div>
<div class="section" id="fingerprinting-and-molecular-similarity">
<h2>Fingerprinting and Molecular Similarity<a class="headerlink" href="#fingerprinting-and-molecular-similarity" title="Permalink to this headline">¶</a></h2>
<p>The RDKit has a variety of built-in functionality for generating molecular fingerprints and using them to calculate molecular similarity.</p>
<div class="section" id="topological-fingerprints">
<h3>Topological Fingerprints<a class="headerlink" href="#topological-fingerprints" title="Permalink to this headline">¶</a></h3>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Fingerprints</span> <span class="kn">import</span> <span class="n">FingerprintMols</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCOC'</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCO'</span><span class="p">),</span>
<span class="gp">... </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'COC'</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">FingerprintMols</span><span class="o">.</span><span class="n">FingerprintMol</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.6...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.4...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.25</span>
</pre></div>
</div>
<p>The fingerprinting algorithm used is similar to that used in the
Daylight fingerprinter: it identifies and hashes topological paths
(e.g. along bonds) in the molecule and then uses them to set bits in a
fingerprint of user-specified lengths. After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is obtained.</p>
<p>The default set of parameters used by the fingerprinter is:
- minimum path size: 1 bond
- maximum path size: 7 bonds
- fingerprint size: 2048 bits
- number of bits set per hash: 2
- minimum fingerprint size: 64 bits
- target on-bit density 0.3</p>
<p>You can control these by calling
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.RDKFingerprint</span></tt> directly; this will return
an unfolded fingerprint that you can then fold to the desired density.
The function
<a class="reference external" href="api/rdkit.Chem.Fingerprints.FingerprintMols-module.html#FingerprintMol">FingerprintMol</a> (written
in python) shows how this is done.</p>
<p>The default similarity metric used by
<a class="reference external" href="api/rdkit.DataStructs-module.html#FingerprintSimilarity">FingerprintSimilarity</a> is the Tanimoto
similarity. One can use different similarity metrics:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">metric</span><span class="o">=</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">)</span>
<span class="go">0.75</span>
</pre></div>
</div>
<p>Available similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.</p>
</div>
<div class="section" id="maccs-keys">
<h3>MACCS Keys<a class="headerlink" href="#maccs-keys" title="Permalink to this headline">¶</a></h3>
<p>There is a SMARTS-based implementation of the 166 public MACCS keys.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">MACCSkeys</span>
<span class="gp">>>> </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">MACCSkeys</span><span class="o">.</span><span class="n">GenMACCSKeys</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.5</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.538...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.214...</span>
</pre></div>
</div>
<p>The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases where the public keys are fully defined, things looked pretty good.</p>
</div>
<div class="section" id="atom-pairs-and-topological-torsions">
<h3>Atom Pairs and Topological Torsions<a class="headerlink" href="#atom-pairs-and-topological-torsions" title="Permalink to this headline">¶</a></h3>
<p>Atom-pair descriptors <a class="footnote-reference" href="#carhart" id="id9">[3]</a> are available in several different forms.
The standard form is as fingerprint including counts for each bit instead of just zeros and ones:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.AtomPairs</span> <span class="kn">import</span> <span class="n">Pairs</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C1CCC1OCC'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(C)OCC'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCOCC'</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">pairFps</span> <span class="o">=</span> <span class="p">[</span><span class="n">Pairs</span><span class="o">.</span><span class="n">GetAtomPairFingerprint</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
</pre></div>
</div>
<p>Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner.
We can get the list of bits and their counts for each fingerprint as a dictionary:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">d</span> <span class="o">=</span> <span class="n">pairFps</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">GetNonzeroElements</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">d</span><span class="p">[</span><span class="mi">541732</span><span class="p">]</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">d</span><span class="p">[</span><span class="mi">1606690</span><span class="p">]</span>
<span class="go">2</span>
</pre></div>
</div>
<p>Descriptions of the bits are also available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Pairs</span><span class="o">.</span><span class="n">ExplainPairScore</span><span class="p">(</span><span class="mi">558115</span><span class="p">)</span>
<span class="go">(('C', 1, 0), 3, ('C', 2, 0))</span>
</pre></div>
</div>
<p>The above means: C with 1 neighbor and 0 pi electrons which is 3 bonds
from a C with 2 neighbors and 0 pi electrons</p>
<p>The usual metric for similarity between atom-pair fingerprints is Dice similarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.333...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.258...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.56</span>
</pre></div>
</div>
<p>It’s also possible to get atom-pair descriptors encoded as a standard
bit vector fingerprint (ignoring the count information):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">pairFps</span> <span class="o">=</span> <span class="p">[</span><span class="n">Pairs</span><span class="o">.</span><span class="n">GetAtomPairFingerprintAsBitVect</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
</pre></div>
</div>
<p>Since these are standard bit vectors, the <a class="reference external" href="api/rdkit.DataStructs-module.html">rdkit.DataStructs</a>
module can be used for similarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.48</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.380...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.625</span>
</pre></div>
</div>
<p>Topological torsion descriptors <a class="footnote-reference" href="#nilakantan" id="id10">[4]</a> are calculated in
essentially the same way:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.AtomPairs</span> <span class="kn">import</span> <span class="n">Torsions</span>
<span class="gp">>>> </span><span class="n">tts</span> <span class="o">=</span> <span class="p">[</span><span class="n">Torsions</span><span class="o">.</span><span class="n">GetTopologicalTorsionFingerprintAsIntVect</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">tts</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">tts</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.166...</span>
</pre></div>
</div>
<p>At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.</p>
</div>
<div class="section" id="morgan-fingerprints-circular-fingerprints">
<h3>Morgan Fingerprints (Circular Fingerprints)<a class="headerlink" href="#morgan-fingerprints-circular-fingerprints" title="Permalink to this headline">¶</a></h3>
<p>This family of fingerprints, better known as circular fingerprints
<a class="footnote-reference" href="#rogers" id="id11">[5]</a>, is built by applying the Morgan algorithm to a set of
user-supplied atom invariants. When generating Morgan fingerprints,
the radius of the fingerprint must also be provided :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span>
<span class="go"><rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at 0x...></span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ncccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.55...</span>
</pre></div>
</div>
<p>Morgan fingerprints, like atom pairs and topological torsions, use
counts by default, but it’s also possible to calculate them as bit
vectors:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprintAsBitVect</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">nBits</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span>
<span class="go"><rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...></span>
<span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprintAsBitVect</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">nBits</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.51...</span>
</pre></div>
</div>
<p>The default atom invariants use connectivity information similar to
those used for the well known ECFP family of fingerprints.
Feature-based invariants, similar to those used for the FCFP
fingerprints, can also be used. The feature definitions used are
defined in the section <a class="reference internal" href="#feature-definitions-used-in-the-morgan-fingerprints">Feature Definitions Used in the Morgan
Fingerprints</a>. At times this can lead to quite different similarity
scores:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccn1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccco1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ffp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">useFeatures</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ffp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">useFeatures</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.36...</span>
<span class="gp">>>> </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">ffp1</span><span class="p">,</span><span class="n">ffp2</span><span class="p">)</span>
<span class="go">0.90...</span>
</pre></div>
</div>
<p>When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints
generated by the RDKit, remember that the 4 in ECFP4 corresponds to
the diameter of the atom environments considered, while the Morgan
fingerprints take a radius parameter. So the examples above, with
radius=2, are roughly equivalent to ECFP4 and FCFP4.</p>
<p>The user can also provide their own atom invariants using the optional
invariants argument to
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdMolDescriptors.GetMorganFingerprint</span></tt>. Here’s a
simple example that uses a constant for the invariant; the resulting
fingerprints compare the topology of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ncncn1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m1</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m2</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp2</span>
<span class="go">True</span>
</pre></div>
</div>
<p>Note that bond order is by default still considered:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC1CCCCC1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp3</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp3</span>
<span class="go">False</span>
</pre></div>
</div>
<p>But this can also be turned off:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m1</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(),</span>
<span class="gp">... </span><span class="n">useBondTypes</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp3</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(),</span>
<span class="gp">... </span><span class="n">useBondTypes</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp3</span>
<span class="go">True</span>
</pre></div>
</div>
<div class="section" id="explaining-bits-from-morgan-fingerprints">
<h4>Explaining bits from Morgan Fingerprints<a class="headerlink" href="#explaining-bits-from-morgan-fingerprints" title="Permalink to this headline">¶</a></h4>
<p>Information is available about the atoms that contribute to particular
bits in the Morgan fingerprint via the bitInfo argument. The
dictionary provided is populated with one entry per bit set in the
fingerprint, the keys are the bit ids, the values are lists of (atom
index, radius) tuples.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1cccnc1C'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">info</span><span class="o">=</span><span class="p">{}</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">bitInfo</span><span class="o">=</span><span class="n">info</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetNonzeroElements</span><span class="p">())</span>
<span class="go">16</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">info</span><span class="p">)</span>
<span class="go">16</span>
<span class="gp">>>> </span><span class="n">info</span><span class="p">[</span><span class="mi">98513984</span><span class="p">]</span>
<span class="go">((1, 1), (2, 1))</span>
<span class="gp">>>> </span><span class="n">info</span><span class="p">[</span><span class="mi">4048591891</span><span class="p">]</span>
<span class="go">((5, 2),)</span>
</pre></div>
</div>
<p>Interpreting the above: bit 98513984 is set twice: once by atom 1 and
once by atom 2, each at radius 1. Bit 4048591891 is set once by atom 5
at radius 2.</p>
<p>Focusing on bit 4048591891, we can extract the submolecule consisting
of all atoms within a radius of 2 of atom 5:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">env</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FindAtomEnvironmentOfRadiusN</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">amap</span><span class="o">=</span><span class="p">{}</span>
<span class="gp">>>> </span><span class="n">submol</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">PathToSubmol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">env</span><span class="p">,</span><span class="n">atomMap</span><span class="o">=</span><span class="n">amap</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">submol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">6</span>
<span class="gp">>>> </span><span class="n">amap</span>
<span class="go">{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2}</span>
</pre></div>
</div>
<p>And then “explain” the bit by generating SMILES for that submolecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">submol</span><span class="p">)</span>
<span class="go">'ccc(C)nc'</span>
</pre></div>
</div>
<p>This is more useful when the SMILES is rooted at the central atom:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">submol</span><span class="p">,</span><span class="n">rootedAtAtom</span><span class="o">=</span><span class="n">amap</span><span class="p">[</span><span class="mi">5</span><span class="p">],</span><span class="n">canonical</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="go">'c(nc)(C)cc'</span>
</pre></div>
</div>
<p>An alternate (and faster, particularly for large numbers of molecules)
approach to do the same thing, using the function <a class="reference external" href="api/rdkit.Chem-module.html#MolFragmentToSmiles">MolFragmentToSmiles</a> :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">atoms</span><span class="o">=</span><span class="nb">set</span><span class="p">()</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">bidx</span> <span class="ow">in</span> <span class="n">env</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">atoms</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="n">bidx</span><span class="p">)</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">())</span>
<span class="gp">... </span> <span class="n">atoms</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="n">bidx</span><span class="p">)</span><span class="o">.</span><span class="n">GetEndAtomIdx</span><span class="p">())</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFragmentToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">atomsToUse</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">atoms</span><span class="p">),</span><span class="n">bondsToUse</span><span class="o">=</span><span class="n">env</span><span class="p">,</span><span class="n">rootedAtAtom</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="go">'c(C)(cc)nc'</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="picking-diverse-molecules-using-fingerprints">
<h3>Picking Diverse Molecules Using Fingerprints<a class="headerlink" href="#picking-diverse-molecules-using-fingerprints" title="Permalink to this headline">¶</a></h3>
<p>A common task is to pick a small subset of diverse molecules from a
larger set. The RDKit provides a number of approaches for doing this
in the <a class="reference external" href="api/rdkit.SimDivFilters-module.html">rdkit.SimDivFilters</a> module. The most efficient of these uses the
MaxMin algorithm. <a class="footnote-reference" href="#ashton" id="id12">[6]</a> Here’s an example:</p>
<p>Start by reading in a set of molecules and generating Morgan fingerprints:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.rdMolDescriptors</span> <span class="kn">import</span> <span class="n">GetMorganFingerprint</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.SimDivFilters.rdSimDivPickers</span> <span class="kn">import</span> <span class="n">MaxMinPicker</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/actives_5ht3.sdf'</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="k">while</span> <span class="n">ms</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="bp">None</span><span class="p">):</span> <span class="n">ms</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="bp">None</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">nfps</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">fps</span><span class="p">)</span>
</pre></div>
</div>
<p>The algorithm requires a function to calculate distances between
objects, we’ll do that using DiceSimilarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">def</span> <span class="nf">distij</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="n">j</span><span class="p">,</span><span class="n">fps</span><span class="o">=</span><span class="n">fps</span><span class="p">):</span>
<span class="gp">... </span> <span class="k">return</span> <span class="mi">1</span><span class="o">-</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="n">j</span><span class="p">])</span>
</pre></div>
</div>
<p>Now create a picker and grab a set of 10 diverse molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">picker</span> <span class="o">=</span> <span class="n">MaxMinPicker</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">pickIndices</span> <span class="o">=</span> <span class="n">picker</span><span class="o">.</span><span class="n">LazyPick</span><span class="p">(</span><span class="n">distij</span><span class="p">,</span><span class="n">nfps</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="n">seed</span><span class="o">=</span><span class="mi">23</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">pickIndices</span><span class="p">)</span>
<span class="go">[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]</span>
</pre></div>
</div>
<p>Note that the picker just returns indices of the fingerprints; we can
get the molecules themselves as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">picks</span> <span class="o">=</span> <span class="p">[</span><span class="n">ms</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">pickIndices</span><span class="p">]</span>
</pre></div>
</div>
</div>
<div class="section" id="generating-similarity-maps-using-fingerprints">
<h3>Generating Similarity Maps Using Fingerprints<a class="headerlink" href="#generating-similarity-maps-using-fingerprints" title="Permalink to this headline">¶</a></h3>
<p>Similarity maps are a way to visualize the atomic contributions to
the similarity between a molecule and a reference molecule. The
methodology is described in Ref. <a class="footnote-reference" href="#riniker" id="id13">[17]</a> .
They are in the <a class="reference external" href="api/rdkit.Chem.Draw.SimilarityMaps-module.html">rdkit.Chem.Draw.SimilarityMaps</a> module :</p>
<p>Start by creating two molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">refmol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCCN(CCCCN1CCN(c2ccccc2OC)CC1)Cc1ccc2ccccc2c1'</span><span class="p">)</span>
</pre></div>
</div>
<p>The SimilarityMaps module supports three kind of fingerprints:
atom pairs, topological torsions and Morgan fingerprints.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Draw</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Draw</span> <span class="kn">import</span> <span class="n">SimilarityMaps</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetAPFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">'normal'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetTTFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">'normal'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">'bv'</span><span class="p">)</span>
</pre></div>
</div>
<p>The types of atom pairs and torsions are normal (default), hashed and bit vector (bv).
The types of the Morgan fingerprint are bit vector (bv, default) and count vector (count).</p>
<p>The function generating a similarity map for two fingerprints requires the
specification of the fingerprint function and optionally the similarity metric.
The default for the latter is the Dice similarity. Using all the default arguments
of the Morgan fingerprint function, the similarity map can be generated like this:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fig</span><span class="p">,</span> <span class="n">maxweight</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp1.png" src="_images/similarity_map_fp1.png" />
<p>For a different type of Morgan (e.g. count) and radius = 1 instead of 2, as well as a different
similarity metric (e.g. Tanimoto), the call becomes:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">>>> </span><span class="n">fig</span><span class="p">,</span> <span class="n">maxweight</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">m</span><span class="p">,</span><span class="n">idx</span><span class="p">:</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">atomId</span><span class="o">=</span><span class="n">idx</span><span class="p">,</span> <span class="n">radius</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">'count'</span><span class="p">),</span> <span class="n">metric</span><span class="o">=</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">TanimotoSimilarity</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp2.png" src="_images/similarity_map_fp2.png" />
<p>The convenience function GetSimilarityMapForFingerprint involves the normalisation
of the atomic weights such that the maximum absolute weight is 1. Therefore, the
function outputs the maximum weight that was found when creating the map.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">print</span> <span class="n">maxweight</span>
<span class="go">0.0574712643678</span>
</pre></div>
</div>
<p>If one does not want the normalisation step, the map can be created like:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">weights</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetAtomicWeightsForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">print</span> <span class="p">[</span><span class="s">"</span><span class="si">%.2f</span><span class="s"> "</span> <span class="o">%</span> <span class="n">w</span> <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">]</span>
<span class="go">['0.05 ', ...</span>
<span class="gp">>>> </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">weights</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp3.png" src="_images/similarity_map_fp3.png" />
</div>
</div>
<div class="section" id="descriptor-calculation">
<h2>Descriptor Calculation<a class="headerlink" href="#descriptor-calculation" title="Permalink to this headline">¶</a></h2>
<p>A variety of descriptors are available within the RDKit.
The complete list is provided in <a class="reference internal" href="#list-of-available-descriptors">List of Available Descriptors</a>.</p>
<p>Most of the descriptors are straightforward to use from Python via the
centralized <a class="reference external" href="api/rdkit.Chem.Descriptors-module.html">rdkit.Chem.Descriptors</a> module :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Descriptors</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1C(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Descriptors</span><span class="o">.</span><span class="n">TPSA</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">37.3</span>
<span class="gp">>>> </span><span class="n">Descriptors</span><span class="o">.</span><span class="n">MolLogP</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">1.3848</span>
</pre></div>
</div>
<p>Partial charges are handled a bit differently:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1C(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">ComputeGasteigerCharges</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">float</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">'_GasteigerCharge'</span><span class="p">))</span>
<span class="go">-0.047...</span>
</pre></div>
</div>
<div class="section" id="visualization-of-descriptors">
<h3>Visualization of Descriptors<a class="headerlink" href="#visualization-of-descriptors" title="Permalink to this headline">¶</a></h3>
<p>Similarity maps can be used to visualize descriptors that can be divided into
atomic contributions.</p>
<p>The Gasteiger partial charges can be visualized as (using a different color scheme):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Draw</span> <span class="kn">import</span> <span class="n">SimilarityMaps</span>
<span class="gp">>>> </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">ComputeGasteigerCharges</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">contribs</span> <span class="o">=</span> <span class="p">[</span><span class="nb">float</span><span class="p">(</span><span class="n">mol</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="n">i</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">'_GasteigerCharge'</span><span class="p">))</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())]</span>
<span class="gp">>>> </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">contribs</span><span class="p">,</span> <span class="n">colorMap</span><span class="o">=</span><span class="s">'jet'</span><span class="p">,</span> <span class="n">contourLines</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_charges.png" src="_images/similarity_map_charges.png" />
<p>Or for the Crippen contributions to logP:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">rdMolDescriptors</span>
<span class="gp">>>> </span><span class="n">contribs</span> <span class="o">=</span> <span class="n">rdMolDescriptors</span><span class="o">.</span><span class="n">_CalcCrippenContribs</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="n">contribs</span><span class="p">],</span> <span class="n">colorMap</span><span class="o">=</span><span class="s">'jet'</span><span class="p">,</span> <span class="n">contourLines</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_crippen.png" src="_images/similarity_map_crippen.png" />
</div>
</div>
<div class="section" id="chemical-reactions">
<h2>Chemical Reactions<a class="headerlink" href="#chemical-reactions" title="Permalink to this headline">¶</a></h2>
<p>The RDKit also supports applying chemical reactions to sets of
molecules. One way of constructing chemical reactions is to use a
SMARTS-based language similar to Daylight’s Reaction SMILES
<a class="footnote-reference" href="#rxnsmarts" id="id14">[11]</a>:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">'[C:1](=[O:2])-[OD1].[N!H0:3]>>[C:1](=[O:2])[N:3]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rxn</span>
<span class="go"><rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...></span>
<span class="gp">>>> </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumProductTemplates</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)O'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'NC'</span><span class="p">)))</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span> <span class="c"># one entry for each possible set of products</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c"># each entry contains one molecule for each product</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CNC(C)=O'</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C(COC(=O)O)C(=O)O'</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'NC'</span><span class="p">)))</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CNC(=O)OCCC(=O)O'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CNC(=O)CCOC(=O)O'</span>
</pre></div>
</div>
<p>Reactions can also be built from MDL rxn files:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromRxnFile</span><span class="p">(</span><span class="s">'data/AmideBond.rxn'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumReactantTemplates</span><span class="p">()</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumProductTemplates</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)O'</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'NC'</span><span class="p">)))</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CNC(C)=O'</span>
</pre></div>
</div>
<p>It is, of course, possible to do reactions more complex than amide
bond formation:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">'[C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]>>[C:1]1[C:2][C:3][*:4]=[*:5][C:6]1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OC=C'</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C=CC(N)=C'</span><span class="p">)))</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'NC1=CCCC(O)C1'</span>
</pre></div>
</div>
<p>Note in this case that there are multiple mappings of the reactants
onto the templates, so we have multiple product sets:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">4</span>
</pre></div>
</div>
<p>You can use canonical smiles and a python dictionary to get the unique products:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">uniqps</span> <span class="o">=</span> <span class="p">{}</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">ps</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">smi</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="gp">... </span> <span class="n">uniqps</span><span class="p">[</span><span class="n">smi</span><span class="p">]</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">uniqps</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="go">['NC1=CCC(O)CC1', 'NC1=CCCC(O)C1']</span>
</pre></div>
</div>
<p>Note that the molecules that are produced by the chemical reaction
processing code are not sanitized, as this artificial reaction
demonstrates:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">'[C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]>>[C:1]1=[C:2][C:3]=[C:4][C:5]=[C:6]1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C=CC=C'</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'C=C'</span><span class="p">)))</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'C1=CC=CC=C1'</span>
<span class="gp">>>> </span><span class="n">p0</span> <span class="o">=</span> <span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">p0</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">p0</span><span class="p">)</span>
<span class="go">'c1ccccc1'</span>
</pre></div>
</div>
<div class="section" id="advanced-reaction-functionality">
<h3>Advanced Reaction Functionality<a class="headerlink" href="#advanced-reaction-functionality" title="Permalink to this headline">¶</a></h3>
<div class="section" id="protecting-atoms">
<h4>Protecting Atoms<a class="headerlink" href="#protecting-atoms" title="Permalink to this headline">¶</a></h4>
<p>Sometimes, particularly when working with rxn files, it is difficult
to express a reaction exactly enough to not end up with extraneous
products. The RDKit provides a method of “protecting” atoms to
disallow them from taking part in reactions.</p>
<p>This can be demonstrated re-using the amide-bond formation reaction used
above. The query for amines isn’t specific enough, so it matches any
nitrogen that has at least one H attached. So if we apply the reaction
to a molecule that already has an amide bond, the amide N is also
treated as a reaction site:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromRxnFile</span><span class="p">(</span><span class="s">'data/AmideBond.rxn'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">acid</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">base</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)NCCN'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">acid</span><span class="p">,</span><span class="n">base</span><span class="p">))</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CC(=O)N(CCN)C(C)=O'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CC(=O)NCCNC(C)=O'</span>
</pre></div>
</div>
<p>The first product corresponds to the reaction at the amide N.</p>
<p>We can prevent this from happening by protecting all amide Ns. Here we
do it with a substructure query that matches amides and thioamides and
then set the “_protected” property on matching atoms:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">amidep</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'[N;$(NC=[O,S])]'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">match</span> <span class="ow">in</span> <span class="n">base</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">amidep</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">base</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="n">match</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">.</span><span class="n">SetProp</span><span class="p">(</span><span class="s">'_protected'</span><span class="p">,</span><span class="s">'1'</span><span class="p">)</span>
</pre></div>
</div>
<p>Now the reaction only generates a single product:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">acid</span><span class="p">,</span><span class="n">base</span><span class="p">))</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">'CC(=O)NCCNC(C)=O'</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="recap-implementation">
<h3>Recap Implementation<a class="headerlink" href="#recap-implementation" title="Permalink to this headline">¶</a></h3>
<p>Associated with the chemical reaction functionality is an
implementation of the Recap algorithm. <a class="footnote-reference" href="#lewell" id="id15">[8]</a> Recap uses a set of
chemical transformations mimicking common reactions carried out in the
lab in order to decompose a molecule into a series of reasonable
fragments.</p>
<p>The RDKit <a class="reference external" href="api/rdkit.Chem.Recap-module.html">rdkit.Chem.Recap</a> implementation keeps track of the hierarchy of
transformations that were applied:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Recap</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1OCCOC(=O)CC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">hierarch</span> <span class="o">=</span> <span class="n">Recap</span><span class="o">.</span><span class="n">RecapDecompose</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">type</span><span class="p">(</span><span class="n">hierarch</span><span class="p">)</span>
<span class="go"><class 'rdkit.Chem.Recap.RecapHierarchyNode'></span>
</pre></div>
</div>
<p>The hierarchy is rooted at the original molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">hierarch</span><span class="o">.</span><span class="n">smiles</span>
<span class="go">'CCC(=O)OCCOc1ccccc1'</span>
</pre></div>
</div>
<p>and each node tracks its children using a dictionary keyed by SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">ks</span><span class="o">=</span><span class="n">hierarch</span><span class="o">.</span><span class="n">children</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">ks</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">ks</span>
<span class="go">['[*]C(=O)CC', '[*]CCOC(=O)CC', '[*]CCOc1ccccc1', '[*]OCCOc1ccccc1', '[*]c1ccccc1']</span>
</pre></div>
</div>
<p>The nodes at the bottom of the hierarchy (the leaf nodes) are easily
accessible, also as a dictionary keyed by SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">ks</span><span class="o">=</span><span class="n">hierarch</span><span class="o">.</span><span class="n">GetLeaves</span><span class="p">()</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">ks</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">ks</span>
<span class="go">['[*]C(=O)CC', '[*]CCO[*]', '[*]CCOc1ccccc1', '[*]c1ccccc1']</span>
</pre></div>
</div>
<p>Notice that dummy atoms are used to mark points where the molecule was fragmented.</p>
<p>The nodes themselves have associated molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">leaf</span> <span class="o">=</span> <span class="n">hierarch</span><span class="o">.</span><span class="n">GetLeaves</span><span class="p">()[</span><span class="n">ks</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">leaf</span><span class="o">.</span><span class="n">mol</span><span class="p">)</span>
<span class="go">'[*]C(=O)CC'</span>
</pre></div>
</div>
</div>
<div class="section" id="brics-implementation">
<h3>BRICS Implementation<a class="headerlink" href="#brics-implementation" title="Permalink to this headline">¶</a></h3>
<p>The RDKit also provides an implementation of the BRICS
algorithm. <a class="footnote-reference" href="#degen" id="id16">[9]</a> BRICS provides another
method for fragmenting molecules along synthetically accessible bonds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">BRICS</span>
<span class="gp">>>> </span><span class="n">cdk2mols</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/cdk2.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m1</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m1</span><span class="p">))</span>
<span class="go">['[4*]CC(=O)C(C)C', '[14*]c1nc(N)nc2[nH]cnc12', '[3*]O[3*]']</span>
<span class="gp">>>> </span><span class="n">m2</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">20</span><span class="p">]</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m2</span><span class="p">))</span>
<span class="go">['[3*]OC', '[1*]C(=O)NN(C)C', '[14*]c1[nH]nc2c1C(=O)c1c([16*])cccc1-2', '[5*]N[5*]', '[16*]c1ccc([16*])cc1']</span>
</pre></div>
</div>
<p>Notice that RDKit BRICS implementation returns the unique fragments
generated from a molecule and that the dummy atoms are tagged to
indicate which type of reaction applies.</p>
<p>It’s quite easy to generate the list of all fragments for a
group of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">allfrags</span><span class="o">=</span><span class="nb">set</span><span class="p">()</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">cdk2mols</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">pieces</span> <span class="o">=</span> <span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">... </span> <span class="n">allfrags</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">pieces</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">allfrags</span><span class="p">)</span>
<span class="go">90</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">allfrags</span><span class="p">)[:</span><span class="mi">5</span><span class="p">]</span>
<span class="go">['[4*]CC[NH3+]', '[14*]c1cnc[nH]1', '[16*]c1ccc([16*])c(Cl)c1', '[15*]C1CCCC1', '[7*]C1C(=O)Nc2ccc(S([12*])(=O)=O)cc21']</span>
</pre></div>
</div>
<p>The BRICS module also provides an option to apply the BRICS rules to a
set of fragments to create new molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">random</span>
<span class="gp">>>> </span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">127</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fragms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">allfrags</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSBuild</span><span class="p">(</span><span class="n">fragms</span><span class="p">)</span>
</pre></div>
</div>
<p>The result is a generator object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">ms</span>
<span class="go"><generator object BRICSBuild at 0x...></span>
</pre></div>
</div>
<p>That returns molecules on request:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">prods</span> <span class="o">=</span> <span class="p">[</span><span class="n">ms</span><span class="o">.</span><span class="n">next</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">prods</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go"><rdkit.Chem.rdchem.Mol object at 0x...></span>
</pre></div>
</div>
<p>The molecules have not been sanitized, so it’s a good idea to at least update the valences before continuing:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="k">for</span> <span class="n">prod</span> <span class="ow">in</span> <span class="n">prods</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">prod</span><span class="o">.</span><span class="n">UpdatePropertyCache</span><span class="p">(</span><span class="n">strict</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'O=[N+]([O-])c1ccc(C2CCCO2)cc1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'c1ccc(C2CCCO2)cc1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'NS(=O)(=O)c1ccc(C2CCCO2)cc1'</span>
</pre></div>
</div>
</div>
<div class="section" id="other-fragmentation-approaches">
<h3>Other fragmentation approaches<a class="headerlink" href="#other-fragmentation-approaches" title="Permalink to this headline">¶</a></h3>
<p>In addition to the methods described above, the RDKit provide a very
flexible generic function for fragmenting molecules along
user-specified bonds.</p>
<p>Here’s a quick demonstration of using that to break all bonds between
atoms in rings and atoms not in rings. We start by finding all the
atom pairs:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC1CC(O)C1CCC1CC1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">bis</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'[!R][R]'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">bis</span>
<span class="go">((0, 1), (4, 3), (6, 5), (7, 8))</span>
</pre></div>
</div>
<p>then we get the corresponding bond indices:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">bs</span> <span class="o">=</span> <span class="p">[</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">GetIdx</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="n">bis</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">bs</span>
<span class="go">[0, 3, 5, 7]</span>
</pre></div>
</div>
<p>then we use those bond indices as input to the fragmentation function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">nm</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FragmentOnBonds</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">bs</span><span class="p">)</span>
</pre></div>
</div>
<p>the output is a molecule that has dummy atoms marking the places where
bonds were broken:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">nm</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[*]C1CC([4*])C1[6*].[1*]C.[3*]O.[5*]CC[8*].[7*]C1CC1'</span>
</pre></div>
</div>
<p>By default the attachment points are labelled (using isotopes) with
the index of the atom that was removed. We can also provide our own set of
atom labels in the form of pairs of unsigned integers. The first value
in each pair is used as the label for the dummy that replaces the
bond’s begin atom, the second value in each pair is for the dummy that
replaces the bond’s end atom. Here’s an example, repeating the
analysis above and marking the positions where the non-ring atoms were
with the label 10 and marking the positions where the ring atoms were
with label 1:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">bis</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">'[!R][R]'</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">bs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">>>> </span><span class="n">labels</span><span class="o">=</span><span class="p">[]</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">bi</span> <span class="ow">in</span> <span class="n">bis</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">b</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="n">bi</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">bi</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="gp">... </span> <span class="k">if</span> <span class="n">b</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">()</span><span class="o">==</span><span class="n">bi</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span>
<span class="gp">... </span> <span class="k">else</span><span class="p">:</span>
<span class="gp">... </span> <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">10</span><span class="p">))</span>
<span class="gp">... </span> <span class="n">bs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">b</span><span class="o">.</span><span class="n">GetIdx</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">nm</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FragmentOnBonds</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">bs</span><span class="p">,</span><span class="n">dummyLabels</span><span class="o">=</span><span class="n">labels</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">nm</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">'[1*]C.[1*]CC[1*].[1*]O.[10*]C1CC([10*])C1[10*].[10*]C1CC1'</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="chemical-features-and-pharmacophores">
<h2>Chemical Features and Pharmacophores<a class="headerlink" href="#chemical-features-and-pharmacophores" title="Permalink to this headline">¶</a></h2>
<div class="section" id="chemical-features">
<h3>Chemical Features<a class="headerlink" href="#chemical-features" title="Permalink to this headline">¶</a></h3>
<p>Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in the RDKit book).
To identify chemical features in molecules, you first must build a feature factory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">ChemicalFeatures</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">RDConfig</span>
<span class="gp">>>> </span><span class="kn">import</span> <span class="nn">os</span>
<span class="gp">>>> </span><span class="n">fdefName</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">RDConfig</span><span class="o">.</span><span class="n">RDDataDir</span><span class="p">,</span><span class="s">'BaseFeatures.fdef'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">factory</span> <span class="o">=</span> <span class="n">ChemicalFeatures</span><span class="o">.</span><span class="n">BuildFeatureFactory</span><span class="p">(</span><span class="n">fdefName</span><span class="p">)</span>
</pre></div>
</div>
<p>and then use the factory to search for features:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OCc1ccccc1CN'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">feats</span> <span class="o">=</span> <span class="n">factory</span><span class="o">.</span><span class="n">GetFeaturesForMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">feats</span><span class="p">)</span>
<span class="go">8</span>
</pre></div>
</div>
<p>The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed description), and the atom(s) that is/are associated with the feature:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetFamily</span><span class="p">()</span>
<span class="go">'Donor'</span>
<span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetType</span><span class="p">()</span>
<span class="go">'SingleAtomDonor'</span>
<span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetAtomIds</span><span class="p">()</span>
<span class="go">(0,)</span>
<span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">GetFamily</span><span class="p">()</span>
<span class="go">'Aromatic'</span>
<span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">GetAtomIds</span><span class="p">()</span>
<span class="go">(2, 3, 4, 5, 6, 7)</span>
</pre></div>
</div>
<p>If the molecule has coordinates, then the features will also have reasonable locations:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">>>> </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetPos</span><span class="p">()</span>
<span class="go"><rdkit.Geometry.rdGeometry.Point3D object at 0x...></span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetPos</span><span class="p">())</span>
<span class="go">[2.07..., -2.335..., 0.0]</span>
</pre></div>
</div>
</div>
<div class="section" id="d-pharmacophore-fingerprints">
<h3>2D Pharmacophore Fingerprints<a class="headerlink" href="#d-pharmacophore-fingerprints" title="Permalink to this headline">¶</a></h3>
<p>Combining a set of chemical features with the 2D (topological)
distances between them gives a 2D pharmacophore. When the distances
are binned, unique integer ids can be assigned to each of these
pharmacophores and they can be stored in a fingerprint. Details of
the encoding are in the <a class="reference internal" href="RDKit_Book.html"><em>The RDKit Book</em></a>.</p>
<p>Generating pharmacophore fingerprints requires chemical features
generated via the usual RDKit feature-typing mechanism:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">ChemicalFeatures</span>
<span class="gp">>>> </span><span class="n">fdefName</span> <span class="o">=</span> <span class="s">'data/MinimalFeatures.fdef'</span>
<span class="gp">>>> </span><span class="n">featFactory</span> <span class="o">=</span> <span class="n">ChemicalFeatures</span><span class="o">.</span><span class="n">BuildFeatureFactory</span><span class="p">(</span><span class="n">fdefName</span><span class="p">)</span>
</pre></div>
</div>
<p>The fingerprints themselves are calculated using a signature
(fingerprint) factory, which keeps track of all the parameters
required to generate the pharmacophore:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D.SigFactory</span> <span class="kn">import</span> <span class="n">SigFactory</span>
<span class="gp">>>> </span><span class="n">sigFactory</span> <span class="o">=</span> <span class="n">SigFactory</span><span class="p">(</span><span class="n">featFactory</span><span class="p">,</span><span class="n">minPointCount</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">maxPointCount</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">SetBins</span><span class="p">([(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">2</span><span class="p">,</span><span class="mi">5</span><span class="p">),(</span><span class="mi">5</span><span class="p">,</span><span class="mi">8</span><span class="p">)])</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">Init</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetSigSize</span><span class="p">()</span>
<span class="go">885</span>
</pre></div>
</div>
<p>The signature factory is now ready to be used to generate
fingerprints, a task which is done using the
<a class="reference external" href="api/rdkit.Chem.Pharm2D.Generate-module.html">rdkit.Chem.Pharm2D.Generate</a> module:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D</span> <span class="kn">import</span> <span class="n">Generate</span>
<span class="gp">>>> </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OCC(=O)CCCN'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span><span class="n">sigFactory</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span>
<span class="go"><rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...></span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">fp</span><span class="p">)</span>
<span class="go">885</span>
<span class="gp">>>> </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">57</span>
</pre></div>
</div>
<p>Details about the bits themselves, including the features that are
involved and the binned distance matrix between the features, can be
obtained from the signature factory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())[:</span><span class="mi">5</span><span class="p">]</span>
<span class="go">[1, 2, 6, 7, 8]</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">'Acceptor Acceptor |0 1|1 0|'</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">'Acceptor Acceptor |0 2|2 0|'</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span>
<span class="go">'Acceptor Donor |0 2|2 0|'</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())[</span><span class="o">-</span><span class="mi">5</span><span class="p">:]</span>
<span class="go">[704, 706, 707, 708, 714]</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">707</span><span class="p">)</span>
<span class="go">'Donor Donor PosIonizable |0 1 2|1 0 1|2 1 0|'</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">714</span><span class="p">)</span>
<span class="go">'Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0|'</span>
</pre></div>
</div>
<p>For the sake of convenience (to save you from having to edit the fdef
file every time) it is possible to disable particular feature types
within the SigFactory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">skipFeats</span><span class="o">=</span><span class="p">[</span><span class="s">'PosIonizable'</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">Init</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetSigSize</span><span class="p">()</span>
<span class="go">510</span>
<span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span><span class="n">sigFactory</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp2</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">36</span>
</pre></div>
</div>
<p>Another possible set of feature definitions for 2D pharmacophore
fingerprints in the RDKit are those published by Gobbi and
Poppinger. <a class="footnote-reference" href="#gobbi" id="id17">[10]</a> The module
<a class="reference external" href="api/rdkit.Chem.Pharm2D.Gobbi_Pharm2D-module.html">rdkit.Chem.Pharm2D.Gobbi_Pharm2D</a> has a pre-configured signature
factory for these fingerprint types. Here’s an example of using it:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D</span> <span class="kn">import</span> <span class="n">Gobbi_Pharm2D</span><span class="p">,</span><span class="n">Generate</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OCC=CC(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span>
<span class="go"><rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...></span>
<span class="gp">>>> </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">8</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="go">[23, 30, 150, 154, 157, 185, 28878, 30184]</span>
<span class="gp">>>> </span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">157</span><span class="p">)</span>
<span class="go">'HA HD |0 3|3 0|'</span>
<span class="gp">>>> </span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">30184</span><span class="p">)</span>
<span class="go">'HA HD HD |0 3 0|3 0 3|0 3 0|'</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="molecular-fragments">
<h2>Molecular Fragments<a class="headerlink" href="#molecular-fragments" title="Permalink to this headline">¶</a></h2>
<p>The RDKit contains a collection of tools for fragmenting molecules and
working with those fragments. Fragments are defined to be made up of
a set of connected atoms that may have associated functional groups.
This is more easily demonstrated than explained:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fName</span><span class="o">=</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">RDConfig</span><span class="o">.</span><span class="n">RDDataDir</span><span class="p">,</span><span class="s">'FunctionalGroups.txt'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">FragmentCatalog</span>
<span class="gp">>>> </span><span class="n">fparams</span> <span class="o">=</span> <span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatParams</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="n">fName</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetNumFuncGroups</span><span class="p">()</span>
<span class="go">39</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fcgen</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatGenerator</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OCC=CC(=O)O'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">3</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">'C<-O>C'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">'C=C<-C(=O)O>'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">'C<-C(=O)O>=CC<-O>'</span>
</pre></div>
</div>
<p>The fragments are stored as entries in a
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog</span></tt>. Notice that the
entry descriptions include pieces in angular brackets (e.g. between
‘<’ and ‘>’). These describe the functional groups attached to the
fragment. For example, in the above example, the catalog entry 0
corresponds to an ethyl fragment with an alcohol attached to one of
the carbons and entry 1 is an ethylene with a carboxylic acid on one
carbon. Detailed information about the functional groups can be
obtained by asking the fragment for the ids of the functional groups
it contains and then looking those ids up in the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatParams</span></tt>
object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryFuncGroupIds</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="go">[34, 1]</span>
<span class="gp">>>> </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go"><rdkit.Chem.rdchem.Mol object at 0x...></span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmarts</span><span class="p">(</span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
<span class="go">'*-C(=O)-,:[O&D1]'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmarts</span><span class="p">(</span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">34</span><span class="p">))</span>
<span class="go">'*-[O&D1]'</span>
<span class="gp">>>> </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">'_Name'</span><span class="p">)</span>
<span class="go">'-C(=O)O'</span>
<span class="gp">>>> </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">34</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">'_Name'</span><span class="p">)</span>
<span class="go">'-O'</span>
</pre></div>
</div>
<p>The catalog is hierarchical: smaller fragments are combined to form
larger ones. From a small fragment, one can find the larger fragments
to which it contributes using the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog.GetEntryDownIds</span></tt>
method:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'OCC(NC1CC1)CCC'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">15</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">'C<-O>C'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">'CN<-cPropyl>'</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDownIds</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="go">[3, 4]</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">'C<-O>CC'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="go">'C<-O>CN<-cPropyl>'</span>
</pre></div>
</div>
<p>The fragments from multiple molecules can be added to a catalog:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SmilesMolSupplier</span><span class="p">(</span><span class="s">'data/bzr.smi'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">:</span> <span class="n">nAdded</span><span class="o">=</span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetNumEntries</span><span class="p">()</span>
<span class="go">1169</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">'Cc'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span>
<span class="go">'cc-nc(C)n'</span>
</pre></div>
</div>
<p>The fragments in a catalog are unique, so adding a molecule a second
time doesn’t add any new entries:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetNumEntries</span><span class="p">()</span>
<span class="go">1169</span>
</pre></div>
</div>
<p>Once a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog</span></tt> has been
generated, it can be used to fingerprint molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fpgen</span> <span class="o">=</span> <span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragFPGenerator</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">fp</span> <span class="o">=</span> <span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">fp</span>
<span class="go"><rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...></span>
<span class="gp">>>> </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">189</span>
</pre></div>
</div>
<p>The rest of the machinery associated with fingerprints can now be
applied to these fragment fingerprints. For example, it’s easy to
find the fragments that two molecules have in common by taking the
intersection of their fingerprints:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">7</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">andfp</span> <span class="o">=</span> <span class="n">fp</span><span class="o">&</span><span class="n">fp2</span>
<span class="gp">>>> </span><span class="n">obl</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">andfp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="go">'ccc(cc)NC<=O>'</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">5</span><span class="p">])</span>
<span class="go">'c<-X>ccc(N)cc'</span>
</pre></div>
</div>
<p>or we can find the fragments that distinguish one molecule from
another:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">combinedFp</span><span class="o">=</span><span class="n">fp</span><span class="o">&</span><span class="p">(</span><span class="n">fp</span><span class="o">^</span><span class="n">fp2</span><span class="p">)</span> <span class="c"># can be more efficent than fp&(!fp2)</span>
<span class="gp">>>> </span><span class="n">obl</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">combinedFp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="gp">>>> </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="go">'cccc(N)cc'</span>
</pre></div>
</div>
<p>Or we can use the bit ranking functionality from the
<tt class="docutils literal"><span class="pre">rdkit.ML.InfoTheory.rdInfoTheory.InfoBitRanker</span></tt> class to identify fragments
that distinguish actives from inactives:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">'data/bzr.sdf'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">sdms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">sdms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.ML.InfoTheory</span> <span class="kn">import</span> <span class="n">InfoBitRanker</span>
<span class="gp">>>> </span><span class="n">ranker</span> <span class="o">=</span> <span class="n">InfoBitRanker</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">acts</span> <span class="o">=</span> <span class="p">[</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">'ACTIVITY'</span><span class="p">))</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">sdms</span><span class="p">]</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">fp</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">fps</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">act</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">acts</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">></span><span class="mi">7</span><span class="p">)</span>
<span class="gp">... </span> <span class="n">ranker</span><span class="o">.</span><span class="n">AccumulateVotes</span><span class="p">(</span><span class="n">fp</span><span class="p">,</span><span class="n">act</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">top5</span> <span class="o">=</span> <span class="n">ranker</span><span class="o">.</span><span class="n">GetTopN</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">>>> </span><span class="k">for</span> <span class="nb">id</span><span class="p">,</span><span class="n">gain</span><span class="p">,</span><span class="n">n0</span><span class="p">,</span><span class="n">n1</span> <span class="ow">in</span> <span class="n">top5</span><span class="p">:</span>
<span class="gp">... </span> <span class="k">print</span> <span class="nb">int</span><span class="p">(</span><span class="nb">id</span><span class="p">),</span><span class="s">'</span><span class="si">%.3f</span><span class="s">'</span><span class="o">%</span><span class="n">gain</span><span class="p">,</span><span class="nb">int</span><span class="p">(</span><span class="n">n0</span><span class="p">),</span><span class="nb">int</span><span class="p">(</span><span class="n">n1</span><span class="p">)</span>
<span class="gp">...</span>
<span class="go">702 0.081 20 17</span>
<span class="go">328 0.073 23 25</span>
<span class="go">341 0.073 30 43</span>
<span class="go">173 0.073 30 43</span>
<span class="go">1034 0.069 5 53</span>
</pre></div>
</div>
<p>The columns above are: bitId, infoGain, nInactive, nActive. Note that
this approach isn’t particularly effective for this artificial
example.</p>
</div>
<div class="section" id="non-chemical-functionality">
<h2>Non-Chemical Functionality<a class="headerlink" href="#non-chemical-functionality" title="Permalink to this headline">¶</a></h2>
<div class="section" id="bit-vectors">
<h3>Bit vectors<a class="headerlink" href="#bit-vectors" title="Permalink to this headline">¶</a></h3>
<p>Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints.
The RDKit includes two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but are best used for different purpose:</p>
<ul class="simple">
<li>SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely occupied vectors like pharmacophore fingerprints.
Some operations, such as retrieving the list of on bits, are quite fast.
Others, such as negating the vector, are very, very slow.</li>
<li>ExplicitBitVects keep track of both on and off bits.
They are generally faster than SparseBitVects, but require more memory to store.</li>
</ul>
</div>
<div class="section" id="discrete-value-vectors">
<h3>Discrete value vectors<a class="headerlink" href="#discrete-value-vectors" title="Permalink to this headline">¶</a></h3>
</div>
<div class="section" id="d-grids">
<h3>3D grids<a class="headerlink" href="#d-grids" title="Permalink to this headline">¶</a></h3>
</div>
<div class="section" id="points">
<h3>Points<a class="headerlink" href="#points" title="Permalink to this headline">¶</a></h3>
</div>
</div>
<div class="section" id="getting-help">
<h2>Getting Help<a class="headerlink" href="#getting-help" title="Permalink to this headline">¶</a></h2>
<p>There is a reasonable amount of documentation available within from the RDKit’s docstrings.
These are accessible using Python’s help command:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'Cc1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">7</span>
<span class="gp">>>> </span><span class="n">help</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">)</span>
<span class="go">Help on method GetNumAtoms:</span>
<span class="go">GetNumAtoms(...) method of rdkit.Chem.rdchem.Mol instance</span>
<span class="go"> GetNumAtoms( (Mol)arg1 [, (int)onlyHeavy=-1 [, (bool)onlyExplicit=True]]) -> int :</span>
<span class="go"> Returns the number of atoms in the molecule.</span>
<span class="go"> ARGUMENTS:</span>
<span class="go"> - onlyExplicit: (optional) include only explicit atoms (atoms in the molecular graph)</span>
<span class="go"> defaults to 1.</span>
<span class="go"> NOTE: the onlyHeavy argument is deprecated</span>
<span class="go"> C++ signature :</span>
<span class="go"> int GetNumAtoms(RDKit::ROMol [,int=-1 [,bool=True]])</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(</span><span class="n">onlyExplicit</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="go">15</span>
</pre></div>
</div>
<p>When working in an environment that does command completion or tooltips, one can see the available methods quite easily.
Here’s a sample screenshot from within Mark Hammond’s PythonWin environment:</p>
<img alt="_images/picture_6.png" src="_images/picture_6.png" />
</div>
<div class="section" id="advanced-topics-warnings">
<h2>Advanced Topics/Warnings<a class="headerlink" href="#advanced-topics-warnings" title="Permalink to this headline">¶</a></h2>
<div class="section" id="editing-molecules">
<h3>Editing Molecules<a class="headerlink" href="#editing-molecules" title="Permalink to this headline">¶</a></h3>
<p>Some of the functionality provided allows molecules to be edited “in place”:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">SetAtomicNum</span><span class="p">(</span><span class="mi">7</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">'c1ccncc1'</span>
</pre></div>
</div>
<p>Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don’t think):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'c1ccccc1'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">SetAtomicNum</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">'c1ccocc1'</span>
</pre></div>
</div>
<p>but that are, of course, complete nonsense, as sanitization will indicate:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gt">Traceback (most recent call last):</span>
File <span class="nb">"/usr/lib/python2.6/doctest.py"</span>, line <span class="m">1253</span>, in <span class="n">__run</span>
<span class="n">compileflags</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="ow">in</span> <span class="n">test</span><span class="o">.</span><span class="n">globs</span>
File <span class="nb">"<doctest default[0]>"</span>, line <span class="m">1</span>, in <span class="n"><module></span>
<span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gr">ValueError</span>: <span class="n">Sanitization error: Can't kekulize mol</span>
<span class="gt">Traceback (most recent call last):</span>
File <span class="nb">"/usr/lib/python2.6/doctest.py"</span>, line <span class="m">1253</span>, in <span class="n">__run</span>
<span class="n">compileflags</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="ow">in</span> <span class="n">test</span><span class="o">.</span><span class="n">globs</span>
File <span class="nb">"<doctest default[0]>"</span>, line <span class="m">1</span>, in <span class="n"><module></span>
<span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gr">ValueError</span>: <span class="n">Sanitization error: Can't kekulize mol</span>
</pre></div>
</div>
<p>More complex transformations can be carried out using the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.RWMol</span></tt> class:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CC(=O)C=CC=C'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mw</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RWMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">ReplaceAtom</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">7</span><span class="p">))</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">AddAtom</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">6</span><span class="p">))</span>
<span class="go">7</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">AddAtom</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">6</span><span class="p">))</span>
<span class="go">8</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">SINGLE</span><span class="p">)</span>
<span class="go">7</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">DOUBLE</span><span class="p">)</span>
<span class="go">8</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">SINGLE</span><span class="p">)</span>
<span class="go">9</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">RemoveAtom</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">mw</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">8</span>
</pre></div>
</div>
<p>The RWMol can be used just like an ROMol:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">'O=CC1C=CC=CN=1'</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">>>> </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">'O=Cc1ccccn1'</span>
</pre></div>
</div>
<p>It is even easier to generate nonsense using the RWMol than it
is with standard molecules. If you need chemically reasonable
results, be certain to sanitize the results.</p>
</div>
</div>
<div class="section" id="miscellaneous-tips-and-hints">
<h2>Miscellaneous Tips and Hints<a class="headerlink" href="#miscellaneous-tips-and-hints" title="Permalink to this headline">¶</a></h2>
<div class="section" id="chem-vs-allchem">
<h3>Chem vs AllChem<a class="headerlink" href="#chem-vs-allchem" title="Permalink to this headline">¶</a></h3>
<p>The majority of “basic” chemical functionality (e.g. reading/writing
molecules, substructure searching, molecular cleanup, etc.) is in the
<a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a> module. More advanced, or less frequently used,
functionality is in <a class="reference external" href="api/rdkit.Chem.AllChem-module.html">rdkit.Chem.AllChem</a>. The distinction has
been made to speed startup and lower import times; there’s no sense in
loading the 2D->3D library and force field implementation if one is
only interested in reading and writing a couple of molecules. If you
find the Chem/AllChem thing annoying or confusing, you can use
python’s “import ... as ...” syntax to remove the irritation:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span> <span class="k">as</span> <span class="n">Chem</span>
<span class="gp">>>> </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">'CCC'</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="the-sssr-problem">
<h3>The SSSR Problem<a class="headerlink" href="#the-sssr-problem" title="Permalink to this headline">¶</a></h3>
<p>As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule’s smallest set of smallest
rings is not unique. In some high symmetry molecules, a “true” SSSR
will give results that are unappealing. For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a <em>small</em>
(instead of <em>smallest</em>) set of smallest rings algorithm that returns
symmetric results. This is the approach that we took with the RDKit.</p>
<p>Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.GetSSSR</span></tt> function, but this only returns the
SSSR count, not the potentially non-unique set of rings.</p>
</div>
</div>
<div class="section" id="list-of-available-descriptors">
<h2>List of Available Descriptors<a class="headerlink" href="#list-of-available-descriptors" title="Permalink to this headline">¶</a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="55%" />
<col width="45%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Descriptor/Descriptor
Family</td>
<td>Notes</td>
</tr>
<tr class="row-even"><td>Gasteiger/Marsili
Partial Charges</td>
<td><em>Tetrahedron</em>
<strong>36</strong>:3219-28
(1980)</td>
</tr>
<tr class="row-odd"><td>BalabanJ</td>
<td><em>Chem. Phys. Lett.</em>
<strong>89</strong>:399-404
(1982)</td>
</tr>
<tr class="row-even"><td>BertzCT</td>
<td><em>J. Am. Chem. Soc.</em>
<strong>103</strong>:3599-601
(1981)</td>
</tr>
<tr class="row-odd"><td>Ipc</td>
<td><em>J. Chem. Phys.</em>
<strong>67</strong>:4517-33
(1977)</td>
</tr>
<tr class="row-even"><td>HallKierAlpha</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>Kappa1 - Kappa3</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-even"><td>Chi0, Chi1</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>Chi0n - Chi4n</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-even"><td>Chi0v - Chi4v</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>MolLogP</td>
<td>Wildman and Crippen
<em>JCICS</em>
<strong>39</strong>:868-73
(1999)</td>
</tr>
<tr class="row-even"><td>MolMR</td>
<td>Wildman and Crippen
<em>JCICS</em>
<strong>39</strong>:868-73
(1999)</td>
</tr>
<tr class="row-odd"><td>MolWt</td>
<td> </td>
</tr>
<tr class="row-even"><td>ExactMolWt</td>
<td> </td>
</tr>
<tr class="row-odd"><td>HeavyAtomCount</td>
<td> </td>
</tr>
<tr class="row-even"><td>HeavyAtomMolWt</td>
<td> </td>
</tr>
<tr class="row-odd"><td>NHOHCount</td>
<td> </td>
</tr>
<tr class="row-even"><td>NOCount</td>
<td> </td>
</tr>
<tr class="row-odd"><td>NumHAcceptors</td>
<td> </td>
</tr>
<tr class="row-even"><td>NumHDonors</td>
<td> </td>
</tr>
<tr class="row-odd"><td>NumHeteroatoms</td>
<td> </td>
</tr>
<tr class="row-even"><td>NumRotatableBonds</td>
<td> </td>
</tr>
<tr class="row-odd"><td>NumValenceElectrons</td>
<td> </td>
</tr>
<tr class="row-even"><td>NumAmideBonds</td>
<td> </td>
</tr>
<tr class="row-odd"><td>Num{Aromatic,Saturated,Aliphatic}Rings</td>
<td> </td>
</tr>
<tr class="row-even"><td>Num{Aromatic,Saturated,Aliphatic}{Hetero,Carbo}cycles</td>
<td> </td>
</tr>
<tr class="row-odd"><td>RingCount</td>
<td> </td>
</tr>
<tr class="row-even"><td>FractionCSP3</td>
<td> </td>
</tr>
<tr class="row-odd"><td>TPSA</td>
<td><em>J. Med. Chem.</em>
<strong>43</strong>:3714-7,
(2000)</td>
</tr>
<tr class="row-even"><td>LabuteASA</td>
<td><em>J. Mol. Graph. Mod.</em>
<strong>18</strong>:464-77 (2000)</td>
</tr>
<tr class="row-odd"><td>PEOE_VSA1 - PEOE_VSA14</td>
<td>MOE-type descriptors using partial charges
and surface area contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-even"><td>SMR_VSA1 - SMR_VSA10</td>
<td>MOE-type descriptors using MR
contributions and surface area
contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-odd"><td>SlogP_VSA1 - SlogP_VSA12</td>
<td>MOE-type descriptors using LogP
contributions and surface area
contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-even"><td>EState_VSA1 - EState_VSA11</td>
<td>MOE-type descriptors using EState indices
and surface area contributions (developed
at RD, not described in the CCG paper)</td>
</tr>
<tr class="row-odd"><td>VSA_EState1 - VSA_EState10</td>
<td>MOE-type descriptors using EState indices
and surface area contributions (developed
at RD, not described in the CCG paper)</td>
</tr>
<tr class="row-even"><td>MQNs</td>
<td>Nguyen et al. <em>ChemMedChem</em> <strong>4</strong>:1803-5
(2009)</td>
</tr>
<tr class="row-odd"><td>Topliss fragments</td>
<td>implemented using a set of SMARTS
definitions in
$(RDBASE)/Data/FragmentDescriptors.csv</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="list-of-available-fingerprints">
<h2>List of Available Fingerprints<a class="headerlink" href="#list-of-available-fingerprints" title="Permalink to this headline">¶</a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="17%" />
<col width="83%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Fingerprint Type</td>
<td>Notes</td>
</tr>
<tr class="row-even"><td>RDKit</td>
<td>a Daylight-like fingerprint based on hashing molecular subgraphs</td>
</tr>
<tr class="row-odd"><td>Atom Pairs</td>
<td><em>JCICS</em> <strong>25</strong>:64-73 (1985)</td>
</tr>
<tr class="row-even"><td>Topological Torsions</td>
<td><em>JCICS</em> <strong>27</strong>:82-5 (1987)</td>
</tr>
<tr class="row-odd"><td>MACCS keys</td>
<td>Using the 166 public keys implemented as SMARTS</td>
</tr>
<tr class="row-even"><td>Morgan/Circular</td>
<td>Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints
<em>JCIM</em> <strong>50</strong>:742-54 (2010).</td>
</tr>
<tr class="row-odd"><td>2D Pharmacophore</td>
<td>Uses topological distances between pharmacophoric points.</td>
</tr>
<tr class="row-even"><td>Pattern</td>
<td>a topological fingerprint optimized for substructure screening</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="feature-definitions-used-in-the-morgan-fingerprints">
<h2>Feature Definitions Used in the Morgan Fingerprints<a class="headerlink" href="#feature-definitions-used-in-the-morgan-fingerprints" title="Permalink to this headline">¶</a></h2>
<p>These are adapted from the definitions in Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” <em>Biotechnology and Bioengineering</em> <strong>61</strong>, 47-54 (1998).</p>
<table border="1" class="docutils">
<colgroup>
<col width="6%" />
<col width="94%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Feature</td>
<td>SMARTS</td>
</tr>
<tr class="row-even"><td>Donor</td>
<td><tt class="docutils literal"><span class="pre">[$([N;!H0;v3,v4&+1]),$([O,S;H1;+0]),n&H1&+0]</span></tt></td>
</tr>
<tr class="row-odd"><td>Acceptor</td>
<td><tt class="docutils literal"><span class="pre">[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N;v3;!$(N-*=[O,N,P,S])]),n&H0&+0,$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]</span></tt></td>
</tr>
<tr class="row-even"><td>Aromatic</td>
<td><tt class="docutils literal"><span class="pre">[a]</span></tt></td>
</tr>
<tr class="row-odd"><td>Halogen</td>
<td><tt class="docutils literal"><span class="pre">[F,Cl,Br,I]</span></tt></td>
</tr>
<tr class="row-even"><td>Basic</td>
<td><tt class="docutils literal"><span class="pre">[#7;+,$([N;H2&+0][$([C,a]);!$([C,a](=O))]),$([N;H1&+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),$([N;H0&+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]</span></tt></td>
</tr>
<tr class="row-odd"><td>Acidic</td>
<td><tt class="docutils literal"><span class="pre">[$([C,S](=[O,S,P])-[O;H1,-1])]</span></tt></td>
</tr>
</tbody>
</table>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="blaney" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>Blaney, J. M.; Dixon, J. S. “Distance Geometry in Molecular Modeling”. <em>Reviews in Computational Chemistry</em>; VCH: New York, 1994.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rappe" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[2]</a></td><td>Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”. <em>J. Am. Chem. Soc.</em> <strong>114</strong>:10024-35 (1992) .</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="carhart" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id9">[3]</a></td><td>Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications” <em>J. Chem. Inf. Comp. Sci.</em> <strong>25</strong>:64-73 (1985).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="nilakantan" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id10">[4]</a></td><td>Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Desciptors.” <em>J. Chem.Inf. Comp. Sci.</em> <strong>27</strong>:82-5 (1987).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rogers" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id11">[5]</a></td><td>Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” <em>J. Chem. Inf. and Model.</em> <strong>50</strong>:742-54 (2010).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="ashton" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id12">[6]</a></td><td>Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” <em>Quantitative Structure-Activity Relationships</em> <strong>21</strong>:598-604 (2002).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="bemis1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id8">[7]</a></td><td>Bemis, G. W.; Murcko, M. A. “The Properties of Known Drugs. 1. Molecular Frameworks.” <em>J. Med. Chem.</em> <strong>39</strong>:2887-93 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="lewell" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id15">[8]</a></td><td>Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” <em>J. Chem. Inf. Comp. Sci.</em> <strong>38</strong>:511-22 (1998).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="degen" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id16">[9]</a></td><td>Degen, J.; Wegscheid-Gerlach, C.; Zaliani, A; Rarey, M. “On the Art of Compiling and Using ‘Drug-Like’ Chemical Fragment Spaces.” <em>ChemMedChem</em> <strong>3</strong>:1503–7 (2008).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="gobbi" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id17">[10]</a></td><td>Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” <em>Biotechnology and Bioengineering</em> <strong>61</strong>:47-54 (1998).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rxnsmarts" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id14">[11]</a></td><td>A more detailed description of reaction smarts, as defined by the rdkit, is in the <a class="reference internal" href="RDKit_Book.html"><em>The RDKit Book</em></a>.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[12]</a></td><td>Halgren, T. A. “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.” <em>J. Comp. Chem.</em> <strong>17</strong>:490–19 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[13]</a></td><td>Halgren, T. A. “Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions.” <em>J. Comp. Chem.</em> <strong>17</strong>:520–52 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[14]</a></td><td>Halgren, T. A. “Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94.” <em>J. Comp. Chem.</em> <strong>17</strong>:553–86 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6">[15]</a></td><td>Halgren, T. A. & Nachbar, R. B. “Merck molecular force field. IV. conformational energies and geometries for MMFF94.” <em>J. Comp. Chem.</em> <strong>17</strong>:587-615 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmffs" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[16]</a></td><td>Halgren, T. A. “MMFF VI. MMFF94s option for energy minimization studies.” <em>J. Comp. Chem.</em> <strong>20</strong>:720–9 (1999).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="riniker" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id13">[17]</a></td><td>Riniker, S.; Landrum, G. A. “Similarity Maps - A Visualization Strategy for Molecular Fingerprints and Machine-Learning Methods” <em>J. Cheminf.</em> <strong>5</strong>:43 (2013).</td></tr>
</tbody>
</table>
</div>
<div class="section" id="license">
<h2>License<a class="headerlink" href="#license" title="Permalink to this headline">¶</a></h2>
<img alt="_images/picture_5.png" src="_images/picture_5.png" />
<p>This document is copyright (C) 2007-2013 by Greg Landrum</p>
<p>This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit <a class="reference external" href="http://creativecommons.org/licenses/by-sa/3.0/">http://creativecommons.org/licenses/by-sa/3.0/</a> or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.</p>
<p>The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”</p>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="RDKit_Book.html" title="The RDKit Book"
>next</a> |</li>
<li class="right" >
<a href="Install.html" title="Installation"
>previous</a> |</li>
<li><a href="index.html">The RDKit 2015.03.1 documentation</a> »</li>
</ul>
</div>
<div class="footer">
© Copyright 2014, Greg Landrum.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.2.3.
</div>
</body>
</html>
|