This file is indexed.

/usr/share/doc/rdkit/html/GettingStartedInPython.html is in rdkit-doc 201503-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Getting Started with the RDKit in Python &mdash; The RDKit 2015.03.1 documentation</title>
    
    <link rel="stylesheet" href="_static/sphinxdoc.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '2015.03.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <link rel="top" title="The RDKit 2015.03.1 documentation" href="index.html" />
    <link rel="next" title="The RDKit Book" href="RDKit_Book.html" />
    <link rel="prev" title="Installation" href="Install.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="RDKit_Book.html" title="The RDKit Book"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="Install.html" title="Installation"
             accesskey="P">previous</a> |</li>
        <li><a href="index.html">The RDKit 2015.03.1 documentation</a> &raquo;</li> 
      </ul>
    </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="index.html">
              <img class="logo" src="_static/logo.png" alt="Logo"/>
            </a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Overview.html">An overview of the RDKit</a></li>
<li class="toctree-l1"><a class="reference internal" href="Install.html">Installation</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="">Getting Started with the RDKit in Python</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#what-is-this">What is this?</a></li>
<li class="toctree-l2"><a class="reference internal" href="#reading-and-writing-molecules">Reading and Writing Molecules</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#reading-single-molecules">Reading single molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#reading-sets-of-molecules">Reading sets of molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#writing-molecules">Writing molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#writing-sets-of-molecules">Writing sets of molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#working-with-molecules">Working with Molecules</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#looping-over-atoms-and-bonds">Looping over Atoms and Bonds</a></li>
<li class="toctree-l3"><a class="reference internal" href="#ring-information">Ring Information</a></li>
<li class="toctree-l3"><a class="reference internal" href="#modifying-molecules">Modifying molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#working-with-2d-molecules-generating-depictions">Working with 2D molecules: Generating Depictions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#working-with-3d-molecules">Working with 3D Molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#preserving-molecules">Preserving Molecules</a></li>
<li class="toctree-l3"><a class="reference internal" href="#drawing-molecules">Drawing Molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#substructure-searching">Substructure Searching</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#stereochemistry-in-substructure-matches">Stereochemistry in substructure matches</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-transformations">Chemical Transformations</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#substructure-based-transformations">Substructure-based transformations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#murcko-decomposition">Murcko Decomposition</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#maximum-common-substructure">Maximum Common Substructure</a></li>
<li class="toctree-l2"><a class="reference internal" href="#fingerprinting-and-molecular-similarity">Fingerprinting and Molecular Similarity</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#topological-fingerprints">Topological Fingerprints</a></li>
<li class="toctree-l3"><a class="reference internal" href="#maccs-keys">MACCS Keys</a></li>
<li class="toctree-l3"><a class="reference internal" href="#atom-pairs-and-topological-torsions">Atom Pairs and Topological Torsions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#morgan-fingerprints-circular-fingerprints">Morgan Fingerprints (Circular Fingerprints)</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#explaining-bits-from-morgan-fingerprints">Explaining bits from Morgan Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#picking-diverse-molecules-using-fingerprints">Picking Diverse Molecules Using Fingerprints</a></li>
<li class="toctree-l3"><a class="reference internal" href="#generating-similarity-maps-using-fingerprints">Generating Similarity Maps Using Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#descriptor-calculation">Descriptor Calculation</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#visualization-of-descriptors">Visualization of Descriptors</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-reactions">Chemical Reactions</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#advanced-reaction-functionality">Advanced Reaction Functionality</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#protecting-atoms">Protecting Atoms</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#recap-implementation">Recap Implementation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#brics-implementation">BRICS Implementation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#other-fragmentation-approaches">Other fragmentation approaches</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#chemical-features-and-pharmacophores">Chemical Features and Pharmacophores</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#chemical-features">Chemical Features</a></li>
<li class="toctree-l3"><a class="reference internal" href="#d-pharmacophore-fingerprints">2D Pharmacophore Fingerprints</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#molecular-fragments">Molecular Fragments</a></li>
<li class="toctree-l2"><a class="reference internal" href="#non-chemical-functionality">Non-Chemical Functionality</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#bit-vectors">Bit vectors</a></li>
<li class="toctree-l3"><a class="reference internal" href="#discrete-value-vectors">Discrete value vectors</a></li>
<li class="toctree-l3"><a class="reference internal" href="#d-grids">3D grids</a></li>
<li class="toctree-l3"><a class="reference internal" href="#points">Points</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#getting-help">Getting Help</a></li>
<li class="toctree-l2"><a class="reference internal" href="#advanced-topics-warnings">Advanced Topics/Warnings</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#editing-molecules">Editing Molecules</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#miscellaneous-tips-and-hints">Miscellaneous Tips and Hints</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#chem-vs-allchem">Chem vs AllChem</a></li>
<li class="toctree-l3"><a class="reference internal" href="#the-sssr-problem">The SSSR Problem</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#list-of-available-descriptors">List of Available Descriptors</a></li>
<li class="toctree-l2"><a class="reference internal" href="#list-of-available-fingerprints">List of Available Fingerprints</a></li>
<li class="toctree-l2"><a class="reference internal" href="#feature-definitions-used-in-the-morgan-fingerprints">Feature Definitions Used in the Morgan Fingerprints</a></li>
<li class="toctree-l2"><a class="reference internal" href="#license">License</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="RDKit_Book.html">The RDKit Book</a></li>
<li class="toctree-l1"><a class="reference internal" href="Cookbook.html">RDKit Cookbook</a></li>
<li class="toctree-l1"><a class="reference internal" href="Cartridge.html">The RDKit database cartridge</a></li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="Install.html"
                        title="previous chapter">Installation</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="RDKit_Book.html"
                        title="next chapter">The RDKit Book</a></p>
  <h3>This Page</h3>
  <ul class="this-page-menu">
    <li><a href="_sources/GettingStartedInPython.txt"
           rel="nofollow">Show Source</a></li>
  </ul>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="getting-started-with-the-rdkit-in-python">
<h1>Getting Started with the RDKit in Python<a class="headerlink" href="#getting-started-with-the-rdkit-in-python" title="Permalink to this headline"></a></h1>
<div class="section" id="what-is-this">
<h2>What is this?<a class="headerlink" href="#what-is-this" title="Permalink to this headline"></a></h2>
<p>This document is intended to provide an overview of how one can use
the RDKit functionality from Python.  It&#8217;s not comprehensive and it&#8217;s
not a manual.</p>
<p>If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: <a class="reference external" href="mailto:rdkit-devel&#37;&#52;&#48;lists&#46;sourceforge&#46;net">rdkit-devel<span>&#64;</span>lists<span>&#46;</span>sourceforge<span>&#46;</span>net</a></p>
</div>
<div class="section" id="reading-and-writing-molecules">
<h2>Reading and Writing Molecules<a class="headerlink" href="#reading-and-writing-molecules" title="Permalink to this headline"></a></h2>
<div class="section" id="reading-single-molecules">
<h3>Reading single molecules<a class="headerlink" href="#reading-single-molecules" title="Permalink to this headline"></a></h3>
<p>The majority of the basic molecular functionality is found in module <a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a>:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
</pre></div>
</div>
<p>Individual molecules can be constructed using a variety of approaches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">&#39;data/input.mol&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">stringWithMolData</span><span class="o">=</span><span class="nb">file</span><span class="p">(</span><span class="s">&#39;data/input.mol&#39;</span><span class="p">,</span><span class="s">&#39;r&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolBlock</span><span class="p">(</span><span class="n">stringWithMolData</span><span class="p">)</span>
</pre></div>
</div>
<p>All of these functions return a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.Mol</span></tt> object on success:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span>
<span class="go">&lt;rdkit.Chem.rdchem.Mol object at 0x...&gt;</span>
</pre></div>
</div>
<p>or None on failure:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">&#39;data/invalid.mol&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
</pre></div>
</div>
<p>An attempt is made to provide sensible error messages:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CO(C)C&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>displays a message like: <tt class="docutils literal"><span class="pre">[12:18:01]</span> <span class="pre">Explicit</span> <span class="pre">valence</span> <span class="pre">for</span> <span class="pre">atom</span> <span class="pre">#</span> <span class="pre">1</span> <span class="pre">O</span> <span class="pre">greater</span> <span class="pre">than</span> <span class="pre">permitted</span></tt> and</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1cc1&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>displays something like: <tt class="docutils literal"><span class="pre">[12:20:41]</span> <span class="pre">Can't</span> <span class="pre">kekulize</span> <span class="pre">mol</span></tt>. In each case the value <tt class="docutils literal"><span class="pre">None</span></tt> is returned:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="ow">is</span> <span class="bp">None</span>
<span class="go">True</span>
</pre></div>
</div>
</div>
<div class="section" id="reading-sets-of-molecules">
<h3>Reading sets of molecules<a class="headerlink" href="#reading-sets-of-molecules" title="Permalink to this headline"></a></h3>
<p>Groups of molecules are read using a Supplier (for example, an <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SDMolSupplier</span></tt> or a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SmilesMolSupplier</span></tt>):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/5ht3ligs.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span>  <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>You can easily produce lists of molecules from a Supplier:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span>
<span class="go">4</span>
</pre></div>
</div>
<p>or just treat the Supplier itself as a random-access object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">20</span>
</pre></div>
</div>
<p>A good practice is to test each molecule to see if it was correctly read before working with it:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/5ht3ligs.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span>  <span class="k">if</span> <span class="n">mol</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="k">continue</span>
<span class="gp">... </span>  <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>An alternate type of Supplier, the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.ForwardSDMolSupplier</span></tt> can be used to read from file-like objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">inf</span> <span class="o">=</span> <span class="nb">file</span><span class="p">(</span><span class="s">&#39;data/5ht3ligs.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fsuppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ForwardSDMolSupplier</span><span class="p">(</span><span class="n">inf</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">fsuppl</span><span class="p">:</span>
<span class="gp">... </span>  <span class="k">if</span> <span class="n">mol</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span> <span class="k">continue</span>
<span class="gp">... </span>  <span class="k">print</span> <span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">20</span>
<span class="go">24</span>
<span class="go">24</span>
<span class="go">26</span>
</pre></div>
</div>
<p>This means that they can be used to read from compressed files:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">gzip</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">inf</span> <span class="o">=</span> <span class="n">gzip</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s">&#39;data/actives_5ht3.sdf.gz&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">gzsuppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ForwardSDMolSupplier</span><span class="p">(</span><span class="n">inf</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">gzsuppl</span> <span class="k">if</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ms</span><span class="p">)</span>
<span class="go">180</span>
</pre></div>
</div>
<p>Note that ForwardSDMolSuppliers cannot be used as random-access objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fsuppl</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gt">Traceback (most recent call last):</span>
  <span class="c">...</span>
<span class="gr">TypeError</span>: <span class="n">&#39;ForwardSDMolSupplier&#39; object does not support indexing</span>
<span class="gt">Traceback (most recent call last):</span>
  <span class="c">...</span>
<span class="gr">TypeError</span>: <span class="n">&#39;ForwardSDMolSupplier&#39; object does not support indexing</span>
</pre></div>
</div>
</div>
<div class="section" id="writing-molecules">
<h3>Writing molecules<a class="headerlink" href="#writing-molecules" title="Permalink to this headline"></a></h3>
<p>Single molecules can be converted to text using several functions present in the <a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a> module.</p>
<p>For example, for SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromMolFile</span><span class="p">(</span><span class="s">&#39;data/chiral.mol&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">&#39;CC(O)c1ccccc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">isomericSmiles</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;C[C@H](O)c1ccccc1&#39;</span>
</pre></div>
</div>
<p>Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is input:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1=CC=CN=C1&#39;</span><span class="p">))</span>
<span class="go">&#39;c1ccncc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1cccnc1&#39;</span><span class="p">))</span>
<span class="go">&#39;c1ccncc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;n1ccccc1&#39;</span><span class="p">))</span>
<span class="go">&#39;c1ccncc1&#39;</span>
</pre></div>
</div>
<p>If you&#8217;d like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">Kekulize</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">kekuleSmiles</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;CC(O)C1=CC=CC=C1&#39;</span>
</pre></div>
</div>
<p>Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical.
The limitation is not in the SMILES generation, but in the kekulization itself.</p>
<p>MDL Mol blocks are also available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCC1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>    

<span class="go">     RDKit</span>

<span class="go">  4  4  0  0  0  0  0  0  0  0999 V2000</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">  1  2  1  0</span>
<span class="go">  2  3  1  0</span>
<span class="go">  3  4  1  0</span>
<span class="go">  4  1  1  0</span>
<span class="go">M  END</span>
</pre></div>
</div>
<p>To include names in the mol blocks, set the molecule&#8217;s “_Name” property:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">.</span><span class="n">SetProp</span><span class="p">(</span><span class="s">&quot;_Name&quot;</span><span class="p">,</span><span class="s">&quot;cyclobutane&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>     
<span class="go">cyclobutane</span>
<span class="go">     RDKit</span>

<span class="go">  4  4  0  0  0  0  0  0  0  0999 V2000</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">  1  2  1  0</span>
<span class="go">  2  3  1  0</span>
<span class="go">  3  4  1  0</span>
<span class="go">  4  1  1  0</span>
<span class="go">M  END</span>
</pre></div>
</div>
<p>It&#8217;s usually preferable to have a depiction in the Mol block, this can
be generated using functionality in the <a class="reference external" href="api/rdkit.Chem.AllChem-module.html">rdkit.Chem.AllChem</a>
module (see the <a class="reference internal" href="#chem-vs-allchem">Chem vs AllChem</a> section for more information).</p>
<p>You can either include 2D coordinates (i.e. a depiction):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>     
<span class="go">cyclobutane</span>
<span class="go">     RDKit          2D</span>

<span class="go">  4  4  0  0  0  0  0  0  0  0999 V2000</span>
<span class="go">    1.0607   -0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">   -0.0000   -1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">   -1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.0000    1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">  1  2  1  0</span>
<span class="go">  2  3  1  0</span>
<span class="go">  3  4  1  0</span>
<span class="go">  4  1  1  0</span>
<span class="go">M  END</span>
</pre></div>
</div>
<p>Or you can add 3D coordinates by embedding the molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>    
<span class="go">cyclobutane</span>
<span class="go">     RDKit          3D</span>

<span class="go">  4  4  0  0  0  0  0  0  0  0999 V2000</span>
<span class="go">   -0.7883    0.5560   -0.2718 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">   -0.4153   -0.9091   -0.1911 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.7883   -0.5560    0.6568 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    0.4153    0.9091    0.5762 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">  1  2  1  0</span>
<span class="go">  2  3  1  0</span>
<span class="go">  3  4  1  0</span>
<span class="go">  4  1  1  0</span>
<span class="go">M  END</span>
</pre></div>
</div>
<p>The optimization step isn&#8217;t necessary, but it substantially improves the quality of the conformation.</p>
<p>To get good conformations, it&#8217;s almost always a good idea to add hydrogens to the molecule first:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>These can then be removed:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RemoveHs</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m3</span><span class="p">)</span>    
<span class="go">cyclobutane</span>
<span class="go">     RDKit          3D</span>

<span class="go">  4  4  0  0  0  0  0  0  0  0999 V2000</span>
<span class="go">    0.2851    1.0372   -0.0171 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    1.0352   -0.2833    0.0743 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">   -0.2851   -1.0372    0.0171 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">   -1.0352    0.2833   -0.0743 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">  1  2  1  0</span>
<span class="go">  2  3  1  0</span>
<span class="go">  3  4  1  0</span>
<span class="go">  4  1  1  0</span>
<span class="go">M  END</span>
</pre></div>
</div>
<p>If you&#8217;d like to write the molecules to a file, use Python file objects:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="o">&gt;&gt;</span><span class="nb">file</span><span class="p">(</span><span class="s">&#39;data/foo.mol&#39;</span><span class="p">,</span><span class="s">&#39;w+&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToMolBlock</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">&gt;&gt;&gt;</span>
</pre></div>
</div>
</div>
<div class="section" id="writing-sets-of-molecules">
<h3>Writing sets of molecules<a class="headerlink" href="#writing-sets-of-molecules" title="Permalink to this headline"></a></h3>
<p>Multiple molecules can be written to a file using an <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SDWriter</span></tt> object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">w</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDWriter</span><span class="p">(</span><span class="s">&#39;data/foo.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">mols</span><span class="p">:</span> <span class="n">w</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">...</span>
<span class="go">&gt;&gt;&gt;</span>
</pre></div>
</div>
<p>An SDWriter can also be initialized using a file-like object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">StringIO</span> <span class="kn">import</span> <span class="n">StringIO</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sio</span> <span class="o">=</span> <span class="n">StringIO</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">w</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDWriter</span><span class="p">(</span><span class="n">sio</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">mols</span><span class="p">:</span> <span class="n">w</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">w</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">sio</span><span class="o">.</span><span class="n">getvalue</span><span class="p">()</span>
<span class="go">mol-295</span>
<span class="go">     RDKit          3D</span>

<span class="go"> 20 22  0  0  1  0  0  0  0  0999 V2000</span>
<span class="go">    2.3200    0.0800   -0.1000 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="go">    1.8400   -1.2200    0.1200 C   0  0  0  0  0  0  0  0  0  0  0  0</span>
<span class="gp">...</span>
<span class="go">  1  3  1  0</span>
<span class="go">  1  4  1  0</span>
<span class="go">  2  5  1  0</span>
<span class="go">M  END</span>
<span class="go">$$$$</span>
</pre></div>
</div>
<p>Other available Writers include the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.SmilesWriter</span></tt> and the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolfiles.TDTWriter</span></tt>.</p>
</div>
</div>
<div class="section" id="working-with-molecules">
<h2>Working with Molecules<a class="headerlink" href="#working-with-molecules" title="Permalink to this headline"></a></h2>
<div class="section" id="looping-over-atoms-and-bonds">
<h3>Looping over Atoms and Bonds<a class="headerlink" href="#looping-over-atoms-and-bonds" title="Permalink to this headline"></a></h3>
<p>Once you have a molecule, it&#8217;s easy to loop over its atoms and bonds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1OC1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">atom</span> <span class="ow">in</span> <span class="n">m</span><span class="o">.</span><span class="n">GetAtoms</span><span class="p">():</span>
<span class="gp">... </span>  <span class="k">print</span> <span class="n">atom</span><span class="o">.</span><span class="n">GetAtomicNum</span><span class="p">()</span>
<span class="gp">...</span>
<span class="go">6</span>
<span class="go">8</span>
<span class="go">6</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">m</span><span class="o">.</span><span class="n">GetBonds</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">SINGLE</span>
</pre></div>
</div>
<p>You can also request individual bonds or atoms:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetSymbol</span><span class="p">()</span>
<span class="go">&#39;C&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetExplicitValence</span><span class="p">()</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">()</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetEndAtomIdx</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.SINGLE</span>
</pre></div>
</div>
<p>Atoms keep track of their neighbors:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">atom</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetAtomicNum</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">atom</span><span class="o">.</span><span class="n">GetNeighbors</span><span class="p">()]</span>
<span class="go">[8, 6]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">GetBonds</span><span class="p">())</span>
<span class="go">2</span>
</pre></div>
</div>
</div>
<div class="section" id="ring-information">
<h3>Ring Information<a class="headerlink" href="#ring-information" title="Permalink to this headline"></a></h3>
<p>Atoms and bonds both carry information about the molecule&#8217;s rings:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OC1C2C1CC2&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">False</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">False</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRing</span><span class="p">()</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But note that the information is only about the smallest rings:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">IsInRingSize</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="go">False</span>
</pre></div>
</div>
<p>More detail about the smallest set of smallest rings (SSSR) is available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">ssr</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">GetSymmSSSR</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ssr</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">ssr</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">[1, 2, 3]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">ssr</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">[4, 5, 2, 3]</span>
</pre></div>
</div>
<p>As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the GetSSSR function.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">GetSSSR</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">2</span>
</pre></div>
</div>
<p>The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section <a class="reference internal" href="#the-sssr-problem">The SSSR Problem</a>.</p>
<p>For more efficient queries about a molecule&#8217;s ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.RingInfo</span></tt> class:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OC1C2C1CC2&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetRingInfo</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span><span class="o">.</span><span class="n">NumAtomRings</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span><span class="o">.</span><span class="n">IsAtomInRingOfSize</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ri</span><span class="o">.</span><span class="n">IsBondInRingOfSize</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="go">True</span>
</pre></div>
</div>
</div>
<div class="section" id="modifying-molecules">
<h3>Modifying molecules<a class="headerlink" href="#modifying-molecules" title="Permalink to this headline"></a></h3>
<p>Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the molecular graph.
When it is useful to have the hydrogens explicitly present, for example when generating or optimizing the 3D geometry, the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.AddHs</span></tt> function can be used:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCO&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">3</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">9</span>
</pre></div>
</div>
<p>The Hs can be removed again using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.RemoveHs</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RemoveHs</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">3</span>
</pre></div>
</div>
<p>RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types.
This can be changed with the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.Kekulize</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.AROMATIC</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">Kekulize</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.DOUBLE</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.SINGLE</span>
</pre></div>
</div>
<p>The bonds are still marked as being aromatic:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetIsAromatic</span><span class="p">()</span>
<span class="go">True</span>
</pre></div>
</div>
<p>and can be restored to the aromatic bond type using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.SanitizeMol</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetBondType</span><span class="p">()</span>
<span class="go">rdkit.Chem.rdchem.BondType.AROMATIC</span>
</pre></div>
</div>
<p>The value returned by <cite>SanitizeMol()</cite> indicates that no problems were encountered.</p>
</div>
<div class="section" id="working-with-2d-molecules-generating-depictions">
<h3>Working with 2D molecules: Generating Depictions<a class="headerlink" href="#working-with-2d-molecules-generating-depictions" title="Permalink to this headline"></a></h3>
<p>The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules.
This library, which is part of the AllChem module, is accessed using the <tt class="docutils literal"><span class="pre">rdkit.Chem.rdDepictor.Compute2DCoords</span></tt> function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1nccc2n1ccc2&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>The 2D conformation is constructed in a canonical orientation and is
built to minimize intramolecular clashes, i.e. to maximize the clarity
of the drawing.</p>
<p>If you have a set of molecules that share a common template and you&#8217;d
like to align them to that template, you can do so as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">template</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1nccc2n1ccc2&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">template</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">GenerateDepictionMatching2DStructure</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">template</span><span class="p">)</span>
</pre></div>
</div>
<p>Running this process for a couple of other molecules gives the
following depictions:</p>
<table border="1" class="docutils">
<colgroup>
<col width="33%" />
<col width="33%" />
<col width="33%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="_images/picture_1.png"><img alt="picture_1" src="_images/picture_1.png" style="width: 225.0px; height: 225.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_0.png"><img alt="picture_0" src="_images/picture_0.png" style="width: 225.0px; height: 225.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_3.png"><img alt="picture_3" src="_images/picture_3.png" style="width: 225.0px; height: 225.0px;" /></a></td>
</tr>
</tbody>
</table>
<p>Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D conformations.
This is available using the function <a class="reference external" href="api/rdkit.Chem.AllChem-module.html#GenerateDepictionMatching3DStructure">GenerateDepictionMatching3DStructure</a>.</p>
<p>Here is an illustration of the results using the ligand from PDB structure 1XP0:</p>
<table border="1" class="docutils">
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="_images/picture_2.png"><img alt="picture_2" src="_images/picture_2.png" style="width: 320.0px; height: 240.0px;" /></a></td>
<td><a class="reference internal" href="_images/picture_4.png"><img alt="picture_4" src="_images/picture_4.png" style="width: 225.0px; height: 225.0px;" /></a></td>
</tr>
</tbody>
</table>
<p>More fine-grained control can be obtained using the core function
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdDepictor.Compute2DCoordsMimicDistmat</span></tt>, but that is
beyond the scope of this document.  See the implementation of
GenerateDepictionMatching3DStructure in AllChem.py for an example of
how it is used.</p>
</div>
<div class="section" id="working-with-3d-molecules">
<h3>Working with 3D Molecules<a class="headerlink" href="#working-with-3d-molecules" title="Permalink to this headline"></a></h3>
<p>The RDKit can generate conformations for molecules using distance geometry. <a class="footnote-reference" href="#blaney" id="id1">[1]</a>
The algorithm followed is:</p>
<ol class="arabic simple">
<li>The molecule&#8217;s distance bounds matrix is calculated based on the connection table and a set of rules.</li>
<li>The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.</li>
<li>A random distance matrix that satisfies the bounds matrix is generated.</li>
<li>This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).</li>
<li>The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.</li>
</ol>
<p>Multiple conformations can be generated by repeating steps 4 and 5 several times, using a different random distance matrix each time.</p>
<p>Note that the conformations that result from this procedure tend to be fairly ugly.
They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the Universal Force Field (UFF). <a class="footnote-reference" href="#rappe" id="id2">[2]</a></p>
<p>The full process of embedding and optimizing a molecule is easier than all the above verbiage makes it sound:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCC1OC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">UFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>The RDKit also has an implementation of the MMFF94 force field available. <a class="footnote-reference" href="#mmff1" id="id3">[12]</a>, <a class="footnote-reference" href="#mmff2" id="id4">[13]</a>, <a class="footnote-reference" href="#mmff3" id="id5">[14]</a>, <a class="footnote-reference" href="#mmff4" id="id6">[15]</a>, <a class="footnote-reference" href="#mmffs" id="id7">[16]</a>
Please note that the MMFF atom typing code uses its own aromaticity model,
so the aromaticity flags of the molecule will be modified after calling
MMFF-related methods.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCC1OC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">MMFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">0</span>
</pre></div>
</div>
<p>Note the calls to <cite>Chem.AddHs()</cite> in the examples above. By default RDKit molecules do not have H atoms explicity present in the graph, but they are important for getting realistic geometries, so they generally should be added.</p>
<p>With the RDKit, also multiple conformers can be generated. The option numConfs allows the user to set the number of conformers that should be generated.
These conformers can be aligned to each other and the RMS values calculated.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCC1OC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">AddHs</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">cids</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">EmbedMultipleConfs</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">numConfs</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">cids</span><span class="p">)</span>
<span class="go">10</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">cid</span> <span class="ow">in</span> <span class="n">cids</span><span class="p">:</span>
<span class="gp">... </span>   <span class="n">_</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">MMFFOptimizeMolecule</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">confId</span><span class="o">=</span><span class="n">cid</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rmslist</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">AlignMolConformers</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="n">RMSlist</span><span class="o">=</span><span class="n">rmslist</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="nb">len</span><span class="p">(</span><span class="n">rmslist</span><span class="p">)</span>
<span class="go">9</span>
</pre></div>
</div>
<p>rmslist contains the RMS values between the first conformer and all others.
The RMS between two specific conformers (e.g. 1 and 9) can also be calculated. The flag prealigned lets the user specify if the conformers are already aligned (by default, the function aligns them).</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rms</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetConformerRMS</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">9</span><span class="p">,</span> <span class="n">prealigned</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
</pre></div>
</div>
<p>More 3D functionality of the RDKit is described in the Cookbook.</p>
<p><em>Disclaimer/Warning</em>: Conformation generation is a difficult and subtle task.
The 2D-&gt;3D conversion provided within the RDKit is not intended to be a replacement for a “real” conformational analysis tool; it merely provides quick 3D structures for cases when they are required.</p>
</div>
<div class="section" id="preserving-molecules">
<h3>Preserving Molecules<a class="headerlink" href="#preserving-molecules" title="Permalink to this headline"></a></h3>
<p>Molecules can be converted to and from text using Python&#8217;s pickling machinery:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccncc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">cPickle</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">pkl</span> <span class="o">=</span> <span class="n">cPickle</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">type</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go">&lt;type &#39;str&#39;&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">=</span><span class="n">cPickle</span><span class="o">.</span><span class="n">loads</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">&#39;c1ccncc1&#39;</span>
</pre></div>
</div>
<p>The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.</p>
<p>The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">binStr</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">ToBinary</span><span class="p">()</span>
</pre></div>
</div>
<p>This can be used to reconstruct molecules using the Chem.Mol constructor:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">Mol</span><span class="p">(</span><span class="n">binStr</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m2</span><span class="p">)</span>
<span class="go">&#39;c1ccncc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">binStr</span><span class="p">)</span>
<span class="go">123</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go">475</span>
</pre></div>
</div>
<p>Note that this huge difference in text length is because we didn&#8217;t tell python to use its most efficient representation of the pickle:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">pkl</span> <span class="o">=</span> <span class="n">cPickle</span><span class="o">.</span><span class="n">dumps</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">pkl</span><span class="p">)</span>
<span class="go">157</span>
</pre></div>
</div>
<p>The small overhead associated with python&#8217;s pickling machinery normally doesn&#8217;t end up making much of a difference for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule, while the binary string increases in length as the molecule gets larger).</p>
<p><em>Tip</em>: The performance difference associated with storing molecules in a pickled form on disk instead of constantly reparsing an SD file or SMILES table is difficult to overstate.
In a test I just ran on my laptop, loading a set of 699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7 seconds.
The pickle file is also smaller – 1/3 the size of the SD file – but this difference is not always so dramatic (it&#8217;s a particularly fat SD file).</p>
</div>
<div class="section" id="drawing-molecules">
<h3>Drawing Molecules<a class="headerlink" href="#drawing-molecules" title="Permalink to this headline"></a></h3>
<p>The RDKit has some built-in functionality for creating images from
molecules found in the <a class="reference external" href="api/rdkit.Chem.Draw-module.html">rdkit.Chem.Draw</a> package:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/cdk2.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span> <span class="k">if</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">:</span> <span class="n">tmp</span><span class="o">=</span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Draw</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Draw</span><span class="o">.</span><span class="n">MolToFile</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="s">&#39;images/cdk2_mol1.png&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Draw</span><span class="o">.</span><span class="n">MolToFile</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="s">&#39;images/cdk2_mol2.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing these images:</p>
<table border="1" class="docutils">
<colgroup>
<col width="50%" />
<col width="50%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><img alt="_images/cdk2_mol1.png" class="first last" src="_images/cdk2_mol1.png" />
</td>
<td><img alt="_images/cdk2_mol2.png" class="first last" src="_images/cdk2_mol2.png" />
</td>
</tr>
</tbody>
</table>
<p>It&#8217;s also possible to produce an image grid out of a set of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">img</span><span class="o">=</span><span class="n">Draw</span><span class="o">.</span><span class="n">MolsToGridImage</span><span class="p">(</span><span class="n">ms</span><span class="p">[:</span><span class="mi">8</span><span class="p">],</span><span class="n">molsPerRow</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span><span class="n">subImgSize</span><span class="o">=</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">),</span><span class="n">legends</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&quot;_Name&quot;</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">[:</span><span class="mi">8</span><span class="p">]])</span>
</pre></div>
</div>
<p>This returns a PIL image, which can then be saved to a file:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s">&#39;images/cdk2_molgrid.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The result looks like this:</p>
<img alt="_images/cdk2_molgrid.png" src="_images/cdk2_molgrid.png" />
<p>These would of course look better if the common core were
aligned. This is easy enough to do:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">p</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;[nH]1cnc2cncnc21&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">subms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">p</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">subms</span><span class="p">)</span>
<span class="go">14</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">p</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">subms</span><span class="p">:</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GenerateDepictionMatching2DStructure</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">p</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">img</span><span class="o">=</span><span class="n">Draw</span><span class="o">.</span><span class="n">MolsToGridImage</span><span class="p">(</span><span class="n">subms</span><span class="p">,</span><span class="n">molsPerRow</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span><span class="n">subImgSize</span><span class="o">=</span><span class="p">(</span><span class="mi">200</span><span class="p">,</span><span class="mi">200</span><span class="p">),</span><span class="n">legends</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&quot;_Name&quot;</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">subms</span><span class="p">])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">img</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s">&#39;images/cdk2_molgrid.aligned.png&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The result looks like this:</p>
<img alt="_images/cdk2_molgrid_aligned.png" src="_images/cdk2_molgrid_aligned.png" />
</div>
</div>
<div class="section" id="substructure-searching">
<h2>Substructure Searching<a class="headerlink" href="#substructure-searching" title="Permalink to this headline"></a></h2>
<p>Substructure matching can be done using query molecules built from SMARTS:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;ccO&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">(0, 5, 6)</span>
</pre></div>
</div>
<p>Those are the atom indices in <tt class="docutils literal"><span class="pre">m</span></tt>, ordered as <tt class="docutils literal"><span class="pre">patt</span></tt>&#8216;s atoms. To get all of the matches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">patt</span><span class="p">)</span>
<span class="go">((0, 5, 6), (4, 5, 6))</span>
</pre></div>
</div>
<p>This can be used to easily filter lists of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/actives_5ht3.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;c[NH1]&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">matches</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">mol</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">:</span>
<span class="gp">... </span>  <span class="k">if</span> <span class="n">mol</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">):</span>
<span class="gp">... </span>    <span class="n">matches</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">matches</span><span class="p">)</span>
<span class="go">22</span>
</pre></div>
</div>
<p>We can write the same thing more compactly using Python&#8217;s list comprehension syntax:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">matches</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">patt</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">matches</span><span class="p">)</span>
<span class="go">22</span>
</pre></div>
</div>
<p>Substructure matching can also be done using molecules built from SMILES instead of SMARTS:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1=CC=CC=C1OC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;CO&#39;</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CO&#39;</span><span class="p">))</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But don&#8217;t forget that the semantics of the two languages are not exactly equivalent:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;COC&#39;</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;COC&#39;</span><span class="p">))</span>
<span class="go">False</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;COc&#39;</span><span class="p">))</span> <span class="c">#&lt;- need an aromatic C</span>
<span class="go">True</span>
</pre></div>
</div>
<div class="section" id="stereochemistry-in-substructure-matches">
<h3>Stereochemistry in substructure matches<a class="headerlink" href="#stereochemistry-in-substructure-matches" title="Permalink to this headline"></a></h3>
<p>By default information about stereochemistry is not used in
substructure searches:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC[C@H](F)Cl&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C[C@H](F)Cl&#39;</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C[C@@H](F)Cl&#39;</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(F)Cl&#39;</span><span class="p">))</span>
<span class="go">True</span>
</pre></div>
</div>
<p>But this can be changed via the <cite>useChirality</cite> argument:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C[C@H](F)Cl&#39;</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C[C@@H](F)Cl&#39;</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">False</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(F)Cl&#39;</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">True</span>
</pre></div>
</div>
<p>Notice that when <cite>useChirality</cite> is set a non-chiral query <strong>does</strong> match a chiral
molecule. The same is not true for a chiral query and a non-chiral molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(F)Cl&#39;</span><span class="p">))</span>
<span class="go">True</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCC(F)Cl&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span><span class="o">.</span><span class="n">HasSubstructMatch</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C[C@H](F)Cl&#39;</span><span class="p">),</span><span class="n">useChirality</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="go">False</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="chemical-transformations">
<h2>Chemical Transformations<a class="headerlink" href="#chemical-transformations" title="Permalink to this headline"></a></h2>
<p>The RDKit contains a number of functions for modifying molecules. Note
that these transformation functions are intended to provide an easy
way to make simple modifications to molecules.
For more complex transformations, use the <a class="reference internal" href="#chemical-reactions">Chemical Reactions</a> functionality.</p>
<div class="section" id="substructure-based-transformations">
<h3>Substructure-based transformations<a class="headerlink" href="#substructure-based-transformations" title="Permalink to this headline"></a></h3>
<p>There&#8217;s a variety of functionality for using the RDKit&#8217;s
substructure-matching machinery for doing quick molecular transformations.
These transformations include deleting substructures:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;C(=O)[OH]&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rm</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">DeleteSubstructs</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">patt</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rm</span><span class="p">)</span>
<span class="go">&#39;C&#39;</span>
</pre></div>
</div>
<p>replacing substructures:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">repl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">patt</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;[$(NC(=O))]&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)N&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rms</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReplaceSubstructs</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">patt</span><span class="p">,</span><span class="n">repl</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rms</span>
<span class="go">(&lt;rdkit.Chem.rdchem.Mol object at 0x...&gt;,)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rms</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;COC(C)=O&#39;</span>
</pre></div>
</div>
<p>as well as simple SAR-table transformations like removing side chains:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;BrCCc1cncnc1C(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">core</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1cncnc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tmp</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceSidechains</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="go">&#39;[*]c1cncnc1[*]&#39;</span>
</pre></div>
</div>
<p>and removing cores:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">tmp</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceCore</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="go">&#39;[*]C(=O)O.[*]CCBr&#39;</span>
</pre></div>
</div>
<p>To get more detail about the sidechains (e.g. sidechain labels), use isomeric smiles:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[1*]CCBr.[2*]C(=O)O&#39;</span>
</pre></div>
</div>
<p>By default the sidechains are labeled based on the order they are found.
They can also be labeled according by the number of that core-atom they&#8217;re attached to:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1c(CCO)ncnc1C(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tmp</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">ReplaceCore</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="n">core</span><span class="p">,</span><span class="n">labelByIndex</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[1*]CCO.[5*]C(=O)O&#39;</span>
</pre></div>
</div>
<p><tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.ReplaceCore</span></tt> returns the sidechains in a single molecule.
This can be split into separate molecules using <tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.GetMolFrags</span></tt> :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rs</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">GetMolFrags</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span><span class="n">asMols</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">rs</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[1*]CCO&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">rs</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[5*]C(=O)O&#39;</span>
</pre></div>
</div>
</div>
<div class="section" id="murcko-decomposition">
<h3>Murcko Decomposition<a class="headerlink" href="#murcko-decomposition" title="Permalink to this headline"></a></h3>
<p>The RDKit provides standard Murcko-type decomposition <a class="footnote-reference" href="#bemis1" id="id8">[7]</a> of molecules
into scaffolds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Scaffolds</span> <span class="kn">import</span> <span class="n">MurckoScaffold</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">cdk2mols</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/cdk2.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">core</span> <span class="o">=</span> <span class="n">MurckoScaffold</span><span class="o">.</span><span class="n">GetScaffoldForMol</span><span class="p">(</span><span class="n">m1</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">core</span><span class="p">)</span>
<span class="go">&#39;c1ncc2nc[nH]c2n1&#39;</span>
</pre></div>
</div>
<p>or into a generic framework:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fw</span> <span class="o">=</span> <span class="n">MurckoScaffold</span><span class="o">.</span><span class="n">MakeScaffoldGeneric</span><span class="p">(</span><span class="n">core</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">fw</span><span class="p">)</span>
<span class="go">&#39;C1CCC2CCCC2C1&#39;</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="maximum-common-substructure">
<h2>Maximum Common Substructure<a class="headerlink" href="#maximum-common-substructure" title="Permalink to this headline"></a></h2>
<p>The FindMCS function find a maximum common substructure (MCS) of two
or more molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">rdFMCS</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;CC(C)CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;c1(C=O)cc(OC)c(O)cc1&quot;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">mol1</span><span class="p">,</span><span class="n">mol2</span><span class="p">,</span><span class="n">mol3</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span>
<span class="go">&lt;rdkit.Chem.rdFMCS.MCSResult object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span><span class="o">.</span><span class="n">numAtoms</span>
<span class="go">10</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span><span class="o">.</span><span class="n">numBonds</span>
<span class="go">10</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6]1(-[#6]):[#6]:[#6](-[#8]-[#6]):[#6](:[#6]:[#6]:1)-[#8]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">res</span><span class="o">.</span><span class="n">canceled</span>
<span class="go">False</span>
</pre></div>
</div>
<p>It returns an MCSResult instance with information about the number of
atoms and bonds in the MCS, the SMARTS string which matches the
identified MCS, and a flag saying if the algorithm timed out. If no
MCS is found then the number of atoms and bonds is set to 0 and the
SMARTS to <tt class="docutils literal"><span class="pre">''</span></tt>.</p>
<p>By default, two atoms match if they are the same element and two bonds
match if they have the same bond type. Specify <tt class="docutils literal"><span class="pre">atomCompare</span></tt> and
<tt class="docutils literal"><span class="pre">bondCompare</span></tt> to use different comparison functions, as in:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;NCC&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OC=C&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">atomCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">AtomCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#7,#8]-[#6]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6]-,=[#6]&#39;</span>
</pre></div>
</div>
<p>The options for the atomCompare argument are: CompareAny says that any
atom matches any other atom, CompareElements compares by element type,
and CompareIsotopes matches based on the isotope label. Isotope labels
can be used to implement user-defined atom types. A bondCompare of
CompareAny says that any bond matches any other bond, CompareOrderExact says
bonds are equivalent if and only if they have the same bond type, and
CompareOrder allows single and aromatic bonds to match each other, but
requires an exact order match otherwise:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCCC=C1&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareAny</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6]1:,-[#6]:,-[#6]:,-[#6]:,-[#6]:,=[#6]:,-1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareOrderExact</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span><span class="n">bondCompare</span><span class="o">=</span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">BondCompare</span><span class="o">.</span><span class="n">CompareOrder</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6](:,-[#6]:,-[#6]:,-[#6]):,-[#6]:,-[#6]&#39;</span>
</pre></div>
</div>
<p>A substructure has both atoms and bonds. By default, the algorithm
attempts to maximize the number of bonds found. You can change this by
setting the <tt class="docutils literal"><span class="pre">maximizeBonds</span></tt> argument to False.
Maximizing the number of bonds tends to maximize the number of rings,
although two small rings may have fewer bonds than one large ring.</p>
<p>You might not want a 3-valent nitrogen to match one which is 5-valent.
The default <tt class="docutils literal"><span class="pre">matchValences</span></tt> value of False ignores valence
information.  When True, the atomCompare setting is modified to also
require that the two atoms have the same valency.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;NC1OC1&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1OC1[N+](=O)[O-]&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">numAtoms</span>
<span class="go">4</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">matchValences</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">numBonds</span>
<span class="go">3</span>
</pre></div>
</div>
<p>It can be strange to see a linear carbon chain match a carbon ring,
which is what the <tt class="docutils literal"><span class="pre">ringMatchesRingOnly</span></tt> default of False does. If
you set it to True then ring bonds will only match ring bonds.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;C1CCC1CCC&quot;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;C1CCCCCC1&quot;</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6](-[#6]-[#6])-[#6]-[#6]-[#6]-[#6]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">ringMatchesRingOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6](-[#6]-[#6])-[#6]&#39;</span>
</pre></div>
</div>
<p>You can further restrict things and require that partial rings (as in
this case) are not allowed. That is, if an atom is part of the MCS and
the atom is in a ring of the entire molecule then that atom is also in
a ring of the MCS. Set <tt class="docutils literal"><span class="pre">completeRingsOnly</span></tt> to True to toggle this
requirement and also sets ringMatchesRingOnly to True.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;CCC1CC2C1CN2&quot;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;C1CC2C1CC2&quot;</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6]1-[#6]-[#6](-[#6]-1-[#6])-[#6]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">ringMatchesRingOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6](-[#6]-[#6]-[#6]-[#6])-[#6]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">completeRingsOnly</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span><span class="o">.</span><span class="n">smartsString</span>
<span class="go">&#39;[#6]1-[#6]-[#6]-[#6]-1&#39;</span>
</pre></div>
</div>
<p>The MCS algorithm will exhaustively search for a maximum common substructure.
Typically this takes a fraction of a second, but for some comparisons this
can take minutes or longer. Use the <tt class="docutils literal"><span class="pre">timeout</span></tt> parameter to stop the search
after the given number of seconds (wall-clock seconds, not CPU seconds) and
return the best match found in that time. If timeout is reached then the
<tt class="docutils literal"><span class="pre">canceled</span></tt> property of the MCSResult will be True instead of False.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">mols</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;Nc1ccccc1&quot;</span><span class="o">*</span><span class="mi">100</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&quot;Nc1ccccccccc1&quot;</span><span class="o">*</span><span class="mi">100</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rdFMCS</span><span class="o">.</span><span class="n">FindMCS</span><span class="p">(</span><span class="n">mols</span><span class="p">,</span> <span class="n">timeout</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">canceled</span>
<span class="go">True</span>
</pre></div>
</div>
<p>(The MCS after 50 seconds contained 511 atoms.)</p>
</div>
<div class="section" id="fingerprinting-and-molecular-similarity">
<h2>Fingerprinting and Molecular Similarity<a class="headerlink" href="#fingerprinting-and-molecular-similarity" title="Permalink to this headline"></a></h2>
<p>The RDKit has a variety of built-in functionality for generating molecular fingerprints and using them to calculate molecular similarity.</p>
<div class="section" id="topological-fingerprints">
<h3>Topological Fingerprints<a class="headerlink" href="#topological-fingerprints" title="Permalink to this headline"></a></h3>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Fingerprints</span> <span class="kn">import</span> <span class="n">FingerprintMols</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCOC&#39;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCO&#39;</span><span class="p">),</span>
<span class="gp">... </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;COC&#39;</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">FingerprintMols</span><span class="o">.</span><span class="n">FingerprintMol</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.6...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.4...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.25</span>
</pre></div>
</div>
<p>The fingerprinting algorithm used is similar to that used in the
Daylight fingerprinter: it identifies and hashes topological paths
(e.g. along bonds) in the molecule and then uses them to set bits in a
fingerprint of user-specified lengths. After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is obtained.</p>
<p>The default set of parameters used by the fingerprinter is:
- minimum path size: 1 bond
- maximum path size: 7 bonds
- fingerprint size: 2048 bits
- number of bits set per hash: 2
- minimum fingerprint size: 64 bits
- target on-bit density 0.3</p>
<p>You can control these by calling
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.RDKFingerprint</span></tt> directly; this will return
an unfolded fingerprint that you can then fold to the desired density.
The function
<a class="reference external" href="api/rdkit.Chem.Fingerprints.FingerprintMols-module.html#FingerprintMol">FingerprintMol</a> (written
in python) shows how this is done.</p>
<p>The default similarity metric used by
<a class="reference external" href="api/rdkit.DataStructs-module.html#FingerprintSimilarity">FingerprintSimilarity</a> is the Tanimoto
similarity.  One can use different similarity metrics:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">metric</span><span class="o">=</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">)</span>
<span class="go">0.75</span>
</pre></div>
</div>
<p>Available similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.</p>
</div>
<div class="section" id="maccs-keys">
<h3>MACCS Keys<a class="headerlink" href="#maccs-keys" title="Permalink to this headline"></a></h3>
<p>There is a SMARTS-based implementation of the 166 public MACCS keys.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">MACCSkeys</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">MACCSkeys</span><span class="o">.</span><span class="n">GenMACCSKeys</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.5</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.538...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">FingerprintSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.214...</span>
</pre></div>
</div>
<p>The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases where the public keys are fully defined, things looked pretty good.</p>
</div>
<div class="section" id="atom-pairs-and-topological-torsions">
<h3>Atom Pairs and Topological Torsions<a class="headerlink" href="#atom-pairs-and-topological-torsions" title="Permalink to this headline"></a></h3>
<p>Atom-pair descriptors <a class="footnote-reference" href="#carhart" id="id9">[3]</a> are available in several different forms.
The standard form is as fingerprint including counts for each bit instead of just zeros and ones:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.AtomPairs</span> <span class="kn">import</span> <span class="n">Pairs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C1CCC1OCC&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(C)OCC&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCOCC&#39;</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">pairFps</span> <span class="o">=</span> <span class="p">[</span><span class="n">Pairs</span><span class="o">.</span><span class="n">GetAtomPairFingerprint</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
</pre></div>
</div>
<p>Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner.
We can get the list of bits and their counts for each fingerprint as a dictionary:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">d</span> <span class="o">=</span> <span class="n">pairFps</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">GetNonzeroElements</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">d</span><span class="p">[</span><span class="mi">541732</span><span class="p">]</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">d</span><span class="p">[</span><span class="mi">1606690</span><span class="p">]</span>
<span class="go">2</span>
</pre></div>
</div>
<p>Descriptions of the bits are also available:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Pairs</span><span class="o">.</span><span class="n">ExplainPairScore</span><span class="p">(</span><span class="mi">558115</span><span class="p">)</span>
<span class="go">((&#39;C&#39;, 1, 0), 3, (&#39;C&#39;, 2, 0))</span>
</pre></div>
</div>
<p>The above means: C with 1 neighbor and 0 pi electrons which is 3 bonds
from a C with 2 neighbors and 0 pi electrons</p>
<p>The usual metric for similarity between atom-pair fingerprints is Dice similarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.333...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.258...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.56</span>
</pre></div>
</div>
<p>It&#8217;s also possible to get atom-pair descriptors encoded as a standard
bit vector fingerprint (ignoring the count information):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">pairFps</span> <span class="o">=</span> <span class="p">[</span><span class="n">Pairs</span><span class="o">.</span><span class="n">GetAtomPairFingerprintAsBitVect</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
</pre></div>
</div>
<p>Since these are standard bit vectors, the <a class="reference external" href="api/rdkit.DataStructs-module.html">rdkit.DataStructs</a>
module can be used for similarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.48</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.380...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">pairFps</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="go">0.625</span>
</pre></div>
</div>
<p>Topological torsion descriptors <a class="footnote-reference" href="#nilakantan" id="id10">[4]</a> are calculated in
essentially the same way:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.AtomPairs</span> <span class="kn">import</span> <span class="n">Torsions</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">tts</span> <span class="o">=</span> <span class="p">[</span><span class="n">Torsions</span><span class="o">.</span><span class="n">GetTopologicalTorsionFingerprintAsIntVect</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">tts</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">tts</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="go">0.166...</span>
</pre></div>
</div>
<p>At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.</p>
</div>
<div class="section" id="morgan-fingerprints-circular-fingerprints">
<h3>Morgan Fingerprints (Circular Fingerprints)<a class="headerlink" href="#morgan-fingerprints-circular-fingerprints" title="Permalink to this headline"></a></h3>
<p>This family of fingerprints, better known as circular fingerprints
<a class="footnote-reference" href="#rogers" id="id11">[5]</a>, is built by applying the Morgan algorithm to a set of
user-supplied atom invariants.  When generating Morgan fingerprints,
the radius of the fingerprint must also be provided :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span>
<span class="go">&lt;rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ncccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.55...</span>
</pre></div>
</div>
<p>Morgan fingerprints, like atom pairs and topological torsions, use
counts by default, but it&#8217;s also possible to calculate them as bit
vectors:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprintAsBitVect</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">nBits</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span>
<span class="go">&lt;rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprintAsBitVect</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">nBits</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.51...</span>
</pre></div>
</div>
<p>The default atom invariants use connectivity information similar to
those used for the well known ECFP family of fingerprints.
Feature-based invariants, similar to those used for the FCFP
fingerprints, can also be used. The feature definitions used are
defined in the section <a class="reference internal" href="#feature-definitions-used-in-the-morgan-fingerprints">Feature Definitions Used in the Morgan
Fingerprints</a>.  At times this can lead to quite different similarity
scores:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccn1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccco1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ffp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">useFeatures</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ffp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">useFeatures</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fp1</span><span class="p">,</span><span class="n">fp2</span><span class="p">)</span>
<span class="go">0.36...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">ffp1</span><span class="p">,</span><span class="n">ffp2</span><span class="p">)</span>
<span class="go">0.90...</span>
</pre></div>
</div>
<p>When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints
generated by the RDKit, remember that the 4 in ECFP4 corresponds to
the diameter of the atom environments considered, while the Morgan
fingerprints take a radius parameter.  So the examples above, with
radius=2, are roughly equivalent to ECFP4 and FCFP4.</p>
<p>The user can also provide their own atom invariants using the optional
invariants argument to
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdMolDescriptors.GetMorganFingerprint</span></tt>.  Here&#8217;s a
simple example that uses a constant for the invariant; the resulting
fingerprints compare the topology of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ncncn1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m1</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m2</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp2</span>
<span class="go">True</span>
</pre></div>
</div>
<p>Note that bond order is by default still considered:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m3</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC1CCCCC1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp3</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp3</span>
<span class="go">False</span>
</pre></div>
</div>
<p>But this can also be turned off:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m1</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(),</span>
<span class="gp">... </span><span class="n">useBondTypes</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp3</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">invariants</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">*</span><span class="n">m3</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(),</span>
<span class="gp">... </span><span class="n">useBondTypes</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp1</span><span class="o">==</span><span class="n">fp3</span>
<span class="go">True</span>
</pre></div>
</div>
<div class="section" id="explaining-bits-from-morgan-fingerprints">
<h4>Explaining bits from Morgan Fingerprints<a class="headerlink" href="#explaining-bits-from-morgan-fingerprints" title="Permalink to this headline"></a></h4>
<p>Information is available about the atoms that contribute to particular
bits in the Morgan fingerprint via the bitInfo argument.  The
dictionary provided is populated with one entry per bit set in the
fingerprint, the keys are the bit ids, the values are lists of (atom
index, radius) tuples.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1cccnc1C&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">info</span><span class="o">=</span><span class="p">{}</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">bitInfo</span><span class="o">=</span><span class="n">info</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetNonzeroElements</span><span class="p">())</span>
<span class="go">16</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">info</span><span class="p">)</span>
<span class="go">16</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">info</span><span class="p">[</span><span class="mi">98513984</span><span class="p">]</span>
<span class="go">((1, 1), (2, 1))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">info</span><span class="p">[</span><span class="mi">4048591891</span><span class="p">]</span>
<span class="go">((5, 2),)</span>
</pre></div>
</div>
<p>Interpreting the above: bit 98513984 is set twice: once by atom 1 and
once by atom 2, each at radius 1. Bit 4048591891 is set once by atom 5
at radius 2.</p>
<p>Focusing on bit 4048591891, we can extract the submolecule consisting
of all atoms within a radius of 2 of atom 5:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">env</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FindAtomEnvironmentOfRadiusN</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">amap</span><span class="o">=</span><span class="p">{}</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">submol</span><span class="o">=</span><span class="n">Chem</span><span class="o">.</span><span class="n">PathToSubmol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">env</span><span class="p">,</span><span class="n">atomMap</span><span class="o">=</span><span class="n">amap</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">submol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">6</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">amap</span>
<span class="go">{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2}</span>
</pre></div>
</div>
<p>And then “explain” the bit by generating SMILES for that submolecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">submol</span><span class="p">)</span>
<span class="go">&#39;ccc(C)nc&#39;</span>
</pre></div>
</div>
<p>This is more useful when the SMILES is rooted at the central atom:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">submol</span><span class="p">,</span><span class="n">rootedAtAtom</span><span class="o">=</span><span class="n">amap</span><span class="p">[</span><span class="mi">5</span><span class="p">],</span><span class="n">canonical</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="go">&#39;c(nc)(C)cc&#39;</span>
</pre></div>
</div>
<p>An alternate (and faster, particularly for large numbers of molecules)
approach to do the same thing, using the function <a class="reference external" href="api/rdkit.Chem-module.html#MolFragmentToSmiles">MolFragmentToSmiles</a> :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">atoms</span><span class="o">=</span><span class="nb">set</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">bidx</span> <span class="ow">in</span> <span class="n">env</span><span class="p">:</span>
<span class="gp">... </span>    <span class="n">atoms</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="n">bidx</span><span class="p">)</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">())</span>
<span class="gp">... </span>    <span class="n">atoms</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondWithIdx</span><span class="p">(</span><span class="n">bidx</span><span class="p">)</span><span class="o">.</span><span class="n">GetEndAtomIdx</span><span class="p">())</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFragmentToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">atomsToUse</span><span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">atoms</span><span class="p">),</span><span class="n">bondsToUse</span><span class="o">=</span><span class="n">env</span><span class="p">,</span><span class="n">rootedAtAtom</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="go">&#39;c(C)(cc)nc&#39;</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="picking-diverse-molecules-using-fingerprints">
<h3>Picking Diverse Molecules Using Fingerprints<a class="headerlink" href="#picking-diverse-molecules-using-fingerprints" title="Permalink to this headline"></a></h3>
<p>A common task is to pick a small subset of diverse molecules from a
larger set.  The RDKit provides a number of approaches for doing this
in the <a class="reference external" href="api/rdkit.SimDivFilters-module.html">rdkit.SimDivFilters</a> module.  The most efficient of these uses the
MaxMin algorithm. <a class="footnote-reference" href="#ashton" id="id12">[6]</a> Here&#8217;s an example:</p>
<p>Start by reading in a set of molecules and generating Morgan fingerprints:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.rdMolDescriptors</span> <span class="kn">import</span> <span class="n">GetMorganFingerprint</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.SimDivFilters.rdSimDivPickers</span> <span class="kn">import</span> <span class="n">MaxMinPicker</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/actives_5ht3.sdf&#39;</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">while</span> <span class="n">ms</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="bp">None</span><span class="p">):</span> <span class="n">ms</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="bp">None</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">nfps</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">fps</span><span class="p">)</span>
</pre></div>
</div>
<p>The algorithm requires a function to calculate distances between
objects, we&#8217;ll do that using DiceSimilarity:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="k">def</span> <span class="nf">distij</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="n">j</span><span class="p">,</span><span class="n">fps</span><span class="o">=</span><span class="n">fps</span><span class="p">):</span>
<span class="gp">... </span>  <span class="k">return</span> <span class="mi">1</span><span class="o">-</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">DiceSimilarity</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">fps</span><span class="p">[</span><span class="n">j</span><span class="p">])</span>
</pre></div>
</div>
<p>Now create a picker and grab a set of 10 diverse molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">picker</span> <span class="o">=</span> <span class="n">MaxMinPicker</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">pickIndices</span> <span class="o">=</span> <span class="n">picker</span><span class="o">.</span><span class="n">LazyPick</span><span class="p">(</span><span class="n">distij</span><span class="p">,</span><span class="n">nfps</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="n">seed</span><span class="o">=</span><span class="mi">23</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">pickIndices</span><span class="p">)</span>
<span class="go">[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]</span>
</pre></div>
</div>
<p>Note that the picker just returns indices of the fingerprints; we can
get the molecules themselves as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">picks</span> <span class="o">=</span> <span class="p">[</span><span class="n">ms</span><span class="p">[</span><span class="n">x</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">pickIndices</span><span class="p">]</span>
</pre></div>
</div>
</div>
<div class="section" id="generating-similarity-maps-using-fingerprints">
<h3>Generating Similarity Maps Using Fingerprints<a class="headerlink" href="#generating-similarity-maps-using-fingerprints" title="Permalink to this headline"></a></h3>
<p>Similarity maps are a way to visualize the atomic contributions to
the similarity between a molecule and a reference molecule. The
methodology is described in Ref. <a class="footnote-reference" href="#riniker" id="id13">[17]</a> .
They are in the <a class="reference external" href="api/rdkit.Chem.Draw.SimilarityMaps-module.html">rdkit.Chem.Draw.SimilarityMaps</a> module :</p>
<p>Start by creating two molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">refmol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCCN(CCCCN1CCN(c2ccccc2OC)CC1)Cc1ccc2ccccc2c1&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The SimilarityMaps module supports three kind of fingerprints:
atom pairs, topological torsions and Morgan fingerprints.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Draw</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Draw</span> <span class="kn">import</span> <span class="n">SimilarityMaps</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetAPFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">&#39;normal&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetTTFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">&#39;normal&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">&#39;bv&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>The types of atom pairs and torsions are normal (default), hashed and bit vector (bv).
The types of the Morgan fingerprint are bit vector (bv, default) and count vector (count).</p>
<p>The function generating a similarity map for two fingerprints requires the
specification of the fingerprint function and optionally the similarity metric.
The default for the latter is the Dice similarity. Using all the default arguments
of the Morgan fingerprint function, the similarity map can be generated like this:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fig</span><span class="p">,</span> <span class="n">maxweight</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp1.png" src="_images/similarity_map_fp1.png" />
<p>For a different type of Morgan (e.g. count) and radius = 1 instead of 2, as well as a different
similarity metric (e.g. Tanimoto), the call becomes:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">DataStructs</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fig</span><span class="p">,</span> <span class="n">maxweight</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">m</span><span class="p">,</span><span class="n">idx</span><span class="p">:</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">atomId</span><span class="o">=</span><span class="n">idx</span><span class="p">,</span> <span class="n">radius</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">fpType</span><span class="o">=</span><span class="s">&#39;count&#39;</span><span class="p">),</span> <span class="n">metric</span><span class="o">=</span><span class="n">DataStructs</span><span class="o">.</span><span class="n">TanimotoSimilarity</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp2.png" src="_images/similarity_map_fp2.png" />
<p>The convenience function GetSimilarityMapForFingerprint involves the normalisation
of the atomic weights such that the maximum absolute weight is 1. Therefore, the
function outputs the maximum weight that was found when creating the map.</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="n">maxweight</span>
<span class="go">0.0574712643678</span>
</pre></div>
</div>
<p>If one does not want the normalisation step, the map can be created like:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">weights</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetAtomicWeightsForFingerprint</span><span class="p">(</span><span class="n">refmol</span><span class="p">,</span> <span class="n">mol</span><span class="p">,</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetMorganFingerprint</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">print</span> <span class="p">[</span><span class="s">&quot;</span><span class="si">%.2f</span><span class="s"> &quot;</span> <span class="o">%</span> <span class="n">w</span> <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">]</span>
<span class="go">[&#39;0.05 &#39;, ...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">weights</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_fp3.png" src="_images/similarity_map_fp3.png" />
</div>
</div>
<div class="section" id="descriptor-calculation">
<h2>Descriptor Calculation<a class="headerlink" href="#descriptor-calculation" title="Permalink to this headline"></a></h2>
<p>A variety of descriptors are available within the RDKit.
The complete list is provided in <a class="reference internal" href="#list-of-available-descriptors">List of Available Descriptors</a>.</p>
<p>Most of the descriptors are straightforward to use from Python via the
centralized <a class="reference external" href="api/rdkit.Chem.Descriptors-module.html">rdkit.Chem.Descriptors</a> module :</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Descriptors</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1C(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Descriptors</span><span class="o">.</span><span class="n">TPSA</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">37.3</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Descriptors</span><span class="o">.</span><span class="n">MolLogP</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">1.3848</span>
</pre></div>
</div>
<p>Partial charges are handled a bit differently:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1C(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">ComputeGasteigerCharges</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">float</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&#39;_GasteigerCharge&#39;</span><span class="p">))</span>
<span class="go">-0.047...</span>
</pre></div>
</div>
<div class="section" id="visualization-of-descriptors">
<h3>Visualization of Descriptors<a class="headerlink" href="#visualization-of-descriptors" title="Permalink to this headline"></a></h3>
<p>Similarity maps can be used to visualize descriptors that can be divided into
atomic contributions.</p>
<p>The Gasteiger partial charges can be visualized as (using a different color scheme):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Draw</span> <span class="kn">import</span> <span class="n">SimilarityMaps</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">ComputeGasteigerCharges</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">contribs</span> <span class="o">=</span> <span class="p">[</span><span class="nb">float</span><span class="p">(</span><span class="n">mol</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="n">i</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&#39;_GasteigerCharge&#39;</span><span class="p">))</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">mol</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">())]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span> <span class="n">contribs</span><span class="p">,</span> <span class="n">colorMap</span><span class="o">=</span><span class="s">&#39;jet&#39;</span><span class="p">,</span> <span class="n">contourLines</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_charges.png" src="_images/similarity_map_charges.png" />
<p>Or for the Crippen contributions to logP:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">rdMolDescriptors</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">contribs</span> <span class="o">=</span> <span class="n">rdMolDescriptors</span><span class="o">.</span><span class="n">_CalcCrippenContribs</span><span class="p">(</span><span class="n">mol</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fig</span> <span class="o">=</span> <span class="n">SimilarityMaps</span><span class="o">.</span><span class="n">GetSimilarityMapFromWeights</span><span class="p">(</span><span class="n">mol</span><span class="p">,[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="n">contribs</span><span class="p">],</span> <span class="n">colorMap</span><span class="o">=</span><span class="s">&#39;jet&#39;</span><span class="p">,</span> <span class="n">contourLines</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
<p>Producing this image:</p>
<img alt="_images/similarity_map_crippen.png" src="_images/similarity_map_crippen.png" />
</div>
</div>
<div class="section" id="chemical-reactions">
<h2>Chemical Reactions<a class="headerlink" href="#chemical-reactions" title="Permalink to this headline"></a></h2>
<p>The RDKit also supports applying chemical reactions to sets of
molecules.  One way of constructing chemical reactions is to use a
SMARTS-based language similar to Daylight&#8217;s Reaction SMILES
<a class="footnote-reference" href="#rxnsmarts" id="id14">[11]</a>:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">&#39;[C:1](=[O:2])-[OD1].[N!H0:3]&gt;&gt;[C:1](=[O:2])[N:3]&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span>
<span class="go">&lt;rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumProductTemplates</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)O&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;NC&#39;</span><span class="p">)))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span> <span class="c"># one entry for each possible set of products</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c"># each entry contains one molecule for each product</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CNC(C)=O&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C(COC(=O)O)C(=O)O&#39;</span><span class="p">),</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;NC&#39;</span><span class="p">)))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CNC(=O)OCCC(=O)O&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CNC(=O)CCOC(=O)O&#39;</span>
</pre></div>
</div>
<p>Reactions can also be built from MDL rxn files:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromRxnFile</span><span class="p">(</span><span class="s">&#39;data/AmideBond.rxn&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumReactantTemplates</span><span class="p">()</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span><span class="o">.</span><span class="n">GetNumProductTemplates</span><span class="p">()</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)O&#39;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;NC&#39;</span><span class="p">)))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CNC(C)=O&#39;</span>
</pre></div>
</div>
<p>It is, of course, possible to do reactions more complex than amide
bond formation:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">&#39;[C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]&gt;&gt;[C:1]1[C:2][C:3][*:4]=[*:5][C:6]1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OC=C&#39;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C=CC(N)=C&#39;</span><span class="p">)))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;NC1=CCCC(O)C1&#39;</span>
</pre></div>
</div>
<p>Note in this case that there are multiple mappings of the reactants
onto the templates, so we have multiple product sets:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">4</span>
</pre></div>
</div>
<p>You can use canonical smiles and a python dictionary to get the unique products:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">uniqps</span> <span class="o">=</span> <span class="p">{}</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">ps</span><span class="p">:</span>
<span class="gp">... </span>  <span class="n">smi</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="gp">... </span>  <span class="n">uniqps</span><span class="p">[</span><span class="n">smi</span><span class="p">]</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">uniqps</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="go">[&#39;NC1=CCC(O)CC1&#39;, &#39;NC1=CCCC(O)C1&#39;]</span>
</pre></div>
</div>
<p>Note that the molecules that are produced by the chemical reaction
processing code are not sanitized, as this artificial reaction
demonstrates:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromSmarts</span><span class="p">(</span><span class="s">&#39;[C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]&gt;&gt;[C:1]1=[C:2][C:3]=[C:4][C:5]=[C:6]1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C=CC=C&#39;</span><span class="p">),</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;C=C&#39;</span><span class="p">)))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;C1=CC=CC=C1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">p0</span> <span class="o">=</span> <span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">p0</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">p0</span><span class="p">)</span>
<span class="go">&#39;c1ccccc1&#39;</span>
</pre></div>
</div>
<div class="section" id="advanced-reaction-functionality">
<h3>Advanced Reaction Functionality<a class="headerlink" href="#advanced-reaction-functionality" title="Permalink to this headline"></a></h3>
<div class="section" id="protecting-atoms">
<h4>Protecting Atoms<a class="headerlink" href="#protecting-atoms" title="Permalink to this headline"></a></h4>
<p>Sometimes, particularly when working with rxn files, it is difficult
to express a reaction exactly enough to not end up with extraneous
products. The RDKit provides a method of &#8220;protecting&#8221; atoms to
disallow them from taking part in reactions.</p>
<p>This can be demonstrated re-using the amide-bond formation reaction used
above. The query for amines isn&#8217;t specific enough, so it matches any
nitrogen that has at least one H attached. So if we apply the reaction
to a molecule that already has an amide bond, the amide N is also
treated as a reaction site:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">rxn</span> <span class="o">=</span> <span class="n">AllChem</span><span class="o">.</span><span class="n">ReactionFromRxnFile</span><span class="p">(</span><span class="s">&#39;data/AmideBond.rxn&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">acid</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">base</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)NCCN&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">acid</span><span class="p">,</span><span class="n">base</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CC(=O)N(CCN)C(C)=O&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CC(=O)NCCNC(C)=O&#39;</span>
</pre></div>
</div>
<p>The first product corresponds to the reaction at the amide N.</p>
<p>We can prevent this from happening by protecting all amide Ns. Here we
do it with a substructure query that matches amides and thioamides and
then set the &#8220;_protected&#8221; property on matching atoms:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">amidep</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;[N;$(NC=[O,S])]&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">match</span> <span class="ow">in</span> <span class="n">base</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">amidep</span><span class="p">):</span>
<span class="gp">... </span>    <span class="n">base</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="n">match</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">.</span><span class="n">SetProp</span><span class="p">(</span><span class="s">&#39;_protected&#39;</span><span class="p">,</span><span class="s">&#39;1&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Now the reaction only generates a single product:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">ps</span> <span class="o">=</span> <span class="n">rxn</span><span class="o">.</span><span class="n">RunReactants</span><span class="p">((</span><span class="n">acid</span><span class="p">,</span><span class="n">base</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">ps</span><span class="p">)</span>
<span class="go">1</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">ps</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="go">&#39;CC(=O)NCCNC(C)=O&#39;</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="recap-implementation">
<h3>Recap Implementation<a class="headerlink" href="#recap-implementation" title="Permalink to this headline"></a></h3>
<p>Associated with the chemical reaction functionality is an
implementation of the Recap algorithm. <a class="footnote-reference" href="#lewell" id="id15">[8]</a> Recap uses a set of
chemical transformations mimicking common reactions carried out in the
lab in order to decompose a molecule into a series of reasonable
fragments.</p>
<p>The RDKit <a class="reference external" href="api/rdkit.Chem.Recap-module.html">rdkit.Chem.Recap</a> implementation keeps track of the hierarchy of
transformations that were applied:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">Recap</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1OCCOC(=O)CC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">hierarch</span> <span class="o">=</span> <span class="n">Recap</span><span class="o">.</span><span class="n">RecapDecompose</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">type</span><span class="p">(</span><span class="n">hierarch</span><span class="p">)</span>
<span class="go">&lt;class &#39;rdkit.Chem.Recap.RecapHierarchyNode&#39;&gt;</span>
</pre></div>
</div>
<p>The hierarchy is rooted at the original molecule:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">hierarch</span><span class="o">.</span><span class="n">smiles</span>
<span class="go">&#39;CCC(=O)OCCOc1ccccc1&#39;</span>
</pre></div>
</div>
<p>and each node tracks its children using a dictionary keyed by SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span><span class="o">=</span><span class="n">hierarch</span><span class="o">.</span><span class="n">children</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span>
<span class="go">[&#39;[*]C(=O)CC&#39;, &#39;[*]CCOC(=O)CC&#39;, &#39;[*]CCOc1ccccc1&#39;, &#39;[*]OCCOc1ccccc1&#39;, &#39;[*]c1ccccc1&#39;]</span>
</pre></div>
</div>
<p>The nodes at the bottom of the hierarchy (the leaf nodes) are easily
accessible, also as a dictionary keyed by SMILES:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span><span class="o">=</span><span class="n">hierarch</span><span class="o">.</span><span class="n">GetLeaves</span><span class="p">()</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span><span class="o">.</span><span class="n">sort</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ks</span>
<span class="go">[&#39;[*]C(=O)CC&#39;, &#39;[*]CCO[*]&#39;, &#39;[*]CCOc1ccccc1&#39;, &#39;[*]c1ccccc1&#39;]</span>
</pre></div>
</div>
<p>Notice that dummy atoms are used to mark points where the molecule was fragmented.</p>
<p>The nodes themselves have associated molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">leaf</span> <span class="o">=</span> <span class="n">hierarch</span><span class="o">.</span><span class="n">GetLeaves</span><span class="p">()[</span><span class="n">ks</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">leaf</span><span class="o">.</span><span class="n">mol</span><span class="p">)</span>
<span class="go">&#39;[*]C(=O)CC&#39;</span>
</pre></div>
</div>
</div>
<div class="section" id="brics-implementation">
<h3>BRICS Implementation<a class="headerlink" href="#brics-implementation" title="Permalink to this headline"></a></h3>
<p>The RDKit also provides an implementation of the BRICS
algorithm. <a class="footnote-reference" href="#degen" id="id16">[9]</a> BRICS provides another
method for fragmenting molecules along synthetically accessible bonds:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">BRICS</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">cdk2mols</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/cdk2.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m1</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m1</span><span class="p">))</span>
<span class="go">[&#39;[4*]CC(=O)C(C)C&#39;, &#39;[14*]c1nc(N)nc2[nH]cnc12&#39;, &#39;[3*]O[3*]&#39;]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m2</span> <span class="o">=</span> <span class="n">cdk2mols</span><span class="p">[</span><span class="mi">20</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m2</span><span class="p">))</span>
<span class="go">[&#39;[3*]OC&#39;, &#39;[1*]C(=O)NN(C)C&#39;, &#39;[14*]c1[nH]nc2c1C(=O)c1c([16*])cccc1-2&#39;, &#39;[5*]N[5*]&#39;, &#39;[16*]c1ccc([16*])cc1&#39;]</span>
</pre></div>
</div>
<p>Notice that RDKit BRICS implementation returns the unique fragments
generated from a molecule and that the dummy atoms are tagged to
indicate which type of reaction applies.</p>
<p>It&#8217;s quite easy to generate the list of all fragments for a
group of molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">allfrags</span><span class="o">=</span><span class="nb">set</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">cdk2mols</span><span class="p">:</span>
<span class="gp">... </span>   <span class="n">pieces</span> <span class="o">=</span> <span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSDecompose</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">... </span>   <span class="n">allfrags</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">pieces</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">allfrags</span><span class="p">)</span>
<span class="go">90</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">allfrags</span><span class="p">)[:</span><span class="mi">5</span><span class="p">]</span>
<span class="go">[&#39;[4*]CC[NH3+]&#39;, &#39;[14*]c1cnc[nH]1&#39;, &#39;[16*]c1ccc([16*])c(Cl)c1&#39;, &#39;[15*]C1CCCC1&#39;, &#39;[7*]C1C(=O)Nc2ccc(S([12*])(=O)=O)cc21&#39;]</span>
</pre></div>
</div>
<p>The BRICS module also provides an option to apply the BRICS rules to a
set of fragments to create new molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">random</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">127</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fragms</span> <span class="o">=</span> <span class="p">[</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">allfrags</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="n">BRICS</span><span class="o">.</span><span class="n">BRICSBuild</span><span class="p">(</span><span class="n">fragms</span><span class="p">)</span>
</pre></div>
</div>
<p>The result is a generator object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span>
<span class="go">&lt;generator object BRICSBuild at 0x...&gt;</span>
</pre></div>
</div>
<p>That returns molecules on request:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">prods</span> <span class="o">=</span> <span class="p">[</span><span class="n">ms</span><span class="o">.</span><span class="n">next</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">)]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">prods</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">&lt;rdkit.Chem.rdchem.Mol object at 0x...&gt;</span>
</pre></div>
</div>
<p>The molecules have not been sanitized, so it&#8217;s a good idea to at least update the valences before continuing:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">prod</span> <span class="ow">in</span> <span class="n">prods</span><span class="p">:</span>
<span class="gp">... </span>    <span class="n">prod</span><span class="o">.</span><span class="n">UpdatePropertyCache</span><span class="p">(</span><span class="n">strict</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;O=[N+]([O-])c1ccc(C2CCCO2)cc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;c1ccc(C2CCCO2)cc1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">prods</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;NS(=O)(=O)c1ccc(C2CCCO2)cc1&#39;</span>
</pre></div>
</div>
</div>
<div class="section" id="other-fragmentation-approaches">
<h3>Other fragmentation approaches<a class="headerlink" href="#other-fragmentation-approaches" title="Permalink to this headline"></a></h3>
<p>In addition to the methods described above, the RDKit provide a very
flexible generic function for fragmenting molecules along
user-specified bonds.</p>
<p>Here&#8217;s a quick demonstration of using that to break all bonds between
atoms in rings and atoms not in rings. We start by finding all the
atom pairs:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC1CC(O)C1CCC1CC1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bis</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;[!R][R]&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bis</span>
<span class="go">((0, 1), (4, 3), (6, 5), (7, 8))</span>
</pre></div>
</div>
<p>then we get the corresponding bond indices:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">bs</span> <span class="o">=</span> <span class="p">[</span><span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">GetIdx</span><span class="p">()</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span> <span class="ow">in</span> <span class="n">bis</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bs</span>
<span class="go">[0, 3, 5, 7]</span>
</pre></div>
</div>
<p>then we use those bond indices as input to the fragmentation function:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">nm</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FragmentOnBonds</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">bs</span><span class="p">)</span>
</pre></div>
</div>
<p>the output is a molecule that has dummy atoms marking the places where
bonds were broken:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">nm</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[*]C1CC([4*])C1[6*].[1*]C.[3*]O.[5*]CC[8*].[7*]C1CC1&#39;</span>
</pre></div>
</div>
<p>By default the attachment points are labelled (using isotopes) with
the index of the atom that was removed. We can also provide our own set of
atom labels in the form of pairs of unsigned integers. The first value
in each pair is used as the label for the dummy that replaces the
bond&#8217;s begin atom, the second value in each pair is for the dummy that
replaces the bond&#8217;s end atom. Here&#8217;s an example, repeating the
analysis above and marking the positions where the non-ring atoms were
with the label 10 and marking the positions where the ring atoms were
with label 1:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">bis</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetSubstructMatches</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmarts</span><span class="p">(</span><span class="s">&#39;[!R][R]&#39;</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">bs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">labels</span><span class="o">=</span><span class="p">[]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">bi</span> <span class="ow">in</span> <span class="n">bis</span><span class="p">:</span>
<span class="gp">... </span>   <span class="n">b</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">GetBondBetweenAtoms</span><span class="p">(</span><span class="n">bi</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">bi</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="gp">... </span>   <span class="k">if</span> <span class="n">b</span><span class="o">.</span><span class="n">GetBeginAtomIdx</span><span class="p">()</span><span class="o">==</span><span class="n">bi</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span>
<span class="gp">... </span>       <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span>
<span class="gp">... </span>   <span class="k">else</span><span class="p">:</span>
<span class="gp">... </span>       <span class="n">labels</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">10</span><span class="p">))</span>
<span class="gp">... </span>   <span class="n">bs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">b</span><span class="o">.</span><span class="n">GetIdx</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">nm</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">FragmentOnBonds</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">bs</span><span class="p">,</span><span class="n">dummyLabels</span><span class="o">=</span><span class="n">labels</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">nm</span><span class="p">,</span><span class="bp">True</span><span class="p">)</span>
<span class="go">&#39;[1*]C.[1*]CC[1*].[1*]O.[10*]C1CC([10*])C1[10*].[10*]C1CC1&#39;</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="chemical-features-and-pharmacophores">
<h2>Chemical Features and Pharmacophores<a class="headerlink" href="#chemical-features-and-pharmacophores" title="Permalink to this headline"></a></h2>
<div class="section" id="chemical-features">
<h3>Chemical Features<a class="headerlink" href="#chemical-features" title="Permalink to this headline"></a></h3>
<p>Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in the RDKit book).
To identify chemical features in molecules, you first must build a feature factory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">ChemicalFeatures</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">RDConfig</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">os</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fdefName</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">RDConfig</span><span class="o">.</span><span class="n">RDDataDir</span><span class="p">,</span><span class="s">&#39;BaseFeatures.fdef&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">factory</span> <span class="o">=</span> <span class="n">ChemicalFeatures</span><span class="o">.</span><span class="n">BuildFeatureFactory</span><span class="p">(</span><span class="n">fdefName</span><span class="p">)</span>
</pre></div>
</div>
<p>and then use the factory to search for features:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OCc1ccccc1CN&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span> <span class="o">=</span> <span class="n">factory</span><span class="o">.</span><span class="n">GetFeaturesForMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">feats</span><span class="p">)</span>
<span class="go">8</span>
</pre></div>
</div>
<p>The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed description), and the atom(s) that is/are associated with the feature:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetFamily</span><span class="p">()</span>
<span class="go">&#39;Donor&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetType</span><span class="p">()</span>
<span class="go">&#39;SingleAtomDonor&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetAtomIds</span><span class="p">()</span>
<span class="go">(0,)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">GetFamily</span><span class="p">()</span>
<span class="go">&#39;Aromatic&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">GetAtomIds</span><span class="p">()</span>
<span class="go">(2, 3, 4, 5, 6, 7)</span>
</pre></div>
</div>
<p>If the molecule has coordinates, then the features will also have reasonable locations:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">AllChem</span><span class="o">.</span><span class="n">Compute2DCoords</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetPos</span><span class="p">()</span>
<span class="go">&lt;rdkit.Geometry.rdGeometry.Point3D object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">feats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">GetPos</span><span class="p">())</span>
<span class="go">[2.07..., -2.335..., 0.0]</span>
</pre></div>
</div>
</div>
<div class="section" id="d-pharmacophore-fingerprints">
<h3>2D Pharmacophore Fingerprints<a class="headerlink" href="#d-pharmacophore-fingerprints" title="Permalink to this headline"></a></h3>
<p>Combining a set of chemical features with the 2D (topological)
distances between them gives a 2D pharmacophore.  When the distances
are binned, unique integer ids can be assigned to each of these
pharmacophores and they can be stored in a fingerprint.  Details of
the encoding are in the <a class="reference internal" href="RDKit_Book.html"><em>The RDKit Book</em></a>.</p>
<p>Generating pharmacophore fingerprints requires chemical features
generated via the usual RDKit feature-typing mechanism:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">ChemicalFeatures</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fdefName</span> <span class="o">=</span> <span class="s">&#39;data/MinimalFeatures.fdef&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">featFactory</span> <span class="o">=</span> <span class="n">ChemicalFeatures</span><span class="o">.</span><span class="n">BuildFeatureFactory</span><span class="p">(</span><span class="n">fdefName</span><span class="p">)</span>
</pre></div>
</div>
<p>The fingerprints themselves are calculated using a signature
(fingerprint) factory, which keeps track of all the parameters
required to generate the pharmacophore:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D.SigFactory</span> <span class="kn">import</span> <span class="n">SigFactory</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span> <span class="o">=</span> <span class="n">SigFactory</span><span class="p">(</span><span class="n">featFactory</span><span class="p">,</span><span class="n">minPointCount</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span><span class="n">maxPointCount</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">SetBins</span><span class="p">([(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">),(</span><span class="mi">2</span><span class="p">,</span><span class="mi">5</span><span class="p">),(</span><span class="mi">5</span><span class="p">,</span><span class="mi">8</span><span class="p">)])</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">Init</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetSigSize</span><span class="p">()</span>
<span class="go">885</span>
</pre></div>
</div>
<p>The signature factory is now ready to be used to generate
fingerprints, a task which is done using the
<a class="reference external" href="api/rdkit.Chem.Pharm2D.Generate-module.html">rdkit.Chem.Pharm2D.Generate</a> module:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D</span> <span class="kn">import</span> <span class="n">Generate</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mol</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OCC(=O)CCCN&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span><span class="n">sigFactory</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span>
<span class="go">&lt;rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">len</span><span class="p">(</span><span class="n">fp</span><span class="p">)</span>
<span class="go">885</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">57</span>
</pre></div>
</div>
<p>Details about the bits themselves, including the features that are
involved and the binned distance matrix between the features, can be
obtained from the signature factory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())[:</span><span class="mi">5</span><span class="p">]</span>
<span class="go">[1, 2, 6, 7, 8]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">&#39;Acceptor Acceptor |0 1|1 0|&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">&#39;Acceptor Acceptor |0 2|2 0|&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span>
<span class="go">&#39;Acceptor Donor |0 2|2 0|&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())[</span><span class="o">-</span><span class="mi">5</span><span class="p">:]</span>
<span class="go">[704, 706, 707, 708, 714]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">707</span><span class="p">)</span>
<span class="go">&#39;Donor Donor PosIonizable |0 1 2|1 0 1|2 1 0|&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">714</span><span class="p">)</span>
<span class="go">&#39;Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0|&#39;</span>
</pre></div>
</div>
<p>For the sake of convenience (to save you from having to edit the fdef
file every time) it is possible to disable particular feature types
within the SigFactory:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">skipFeats</span><span class="o">=</span><span class="p">[</span><span class="s">&#39;PosIonizable&#39;</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">Init</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sigFactory</span><span class="o">.</span><span class="n">GetSigSize</span><span class="p">()</span>
<span class="go">510</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">mol</span><span class="p">,</span><span class="n">sigFactory</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">36</span>
</pre></div>
</div>
<p>Another possible set of feature definitions for 2D pharmacophore
fingerprints in the RDKit are those published by Gobbi and
Poppinger. <a class="footnote-reference" href="#gobbi" id="id17">[10]</a> The module
<a class="reference external" href="api/rdkit.Chem.Pharm2D.Gobbi_Pharm2D-module.html">rdkit.Chem.Pharm2D.Gobbi_Pharm2D</a> has a pre-configured signature
factory for these fingerprint types.  Here&#8217;s an example of using it:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit</span> <span class="kn">import</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem.Pharm2D</span> <span class="kn">import</span> <span class="n">Gobbi_Pharm2D</span><span class="p">,</span><span class="n">Generate</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OCC=CC(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">Generate</span><span class="o">.</span><span class="n">Gen2DFingerprint</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span>
<span class="go">&lt;rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">8</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">fp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="go">[23, 30, 150, 154, 157, 185, 28878, 30184]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">157</span><span class="p">)</span>
<span class="go">&#39;HA HD |0 3|3 0|&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Gobbi_Pharm2D</span><span class="o">.</span><span class="n">factory</span><span class="o">.</span><span class="n">GetBitDescription</span><span class="p">(</span><span class="mi">30184</span><span class="p">)</span>
<span class="go">&#39;HA HD HD |0 3 0|3 0 3|0 3 0|&#39;</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="molecular-fragments">
<h2>Molecular Fragments<a class="headerlink" href="#molecular-fragments" title="Permalink to this headline"></a></h2>
<p>The RDKit contains a collection of tools for fragmenting molecules and
working with those fragments.  Fragments are defined to be made up of
a set of connected atoms that may have associated functional groups.
This is more easily demonstrated than explained:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fName</span><span class="o">=</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">RDConfig</span><span class="o">.</span><span class="n">RDDataDir</span><span class="p">,</span><span class="s">&#39;FunctionalGroups.txt&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">FragmentCatalog</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fparams</span> <span class="o">=</span> <span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatParams</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="n">fName</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetNumFuncGroups</span><span class="p">()</span>
<span class="go">39</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcgen</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatGenerator</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OCC=CC(=O)O&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">3</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">&#39;C&lt;-O&gt;C&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">&#39;C=C&lt;-C(=O)O&gt;&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="go">&#39;C&lt;-C(=O)O&gt;=CC&lt;-O&gt;&#39;</span>
</pre></div>
</div>
<p>The fragments are stored as entries in a
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog</span></tt>.  Notice that the
entry descriptions include pieces in angular brackets (e.g. between
&#8216;&lt;&#8217; and &#8216;&gt;&#8217;).  These describe the functional groups attached to the
fragment.  For example, in the above example, the catalog entry 0
corresponds to an ethyl fragment with an alcohol attached to one of
the carbons and entry 1 is an ethylene with a carboxylic acid on one
carbon.  Detailed information about the functional groups can be
obtained by asking the fragment for the ids of the functional groups
it contains and then looking those ids up in the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatParams</span></tt>
object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryFuncGroupIds</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span>
<span class="go">[34, 1]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">&lt;rdkit.Chem.rdchem.Mol object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmarts</span><span class="p">(</span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
<span class="go">&#39;*-C(=O)-,:[O&amp;D1]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmarts</span><span class="p">(</span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">34</span><span class="p">))</span>
<span class="go">&#39;*-[O&amp;D1]&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&#39;_Name&#39;</span><span class="p">)</span>
<span class="go">&#39;-C(=O)O&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fparams</span><span class="o">.</span><span class="n">GetFuncGroup</span><span class="p">(</span><span class="mi">34</span><span class="p">)</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&#39;_Name&#39;</span><span class="p">)</span>
<span class="go">&#39;-O&#39;</span>
</pre></div>
</div>
<p>The catalog is hierarchical: smaller fragments are combined to form
larger ones.  From a small fragment, one can find the larger fragments
to which it contributes using the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog.GetEntryDownIds</span></tt>
method:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;OCC(NC1CC1)CCC&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">15</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">&#39;C&lt;-O&gt;C&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="go">&#39;CN&lt;-cPropyl&gt;&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="nb">list</span><span class="p">(</span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDownIds</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="go">[3, 4]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="go">&#39;C&lt;-O&gt;CC&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<span class="go">&#39;C&lt;-O&gt;CN&lt;-cPropyl&gt;&#39;</span>
</pre></div>
</div>
<p>The fragments from multiple molecules can be added to a catalog:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SmilesMolSupplier</span><span class="p">(</span><span class="s">&#39;data/bzr.smi&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">=</span><span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragCatalog</span><span class="p">(</span><span class="n">fparams</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">ms</span><span class="p">:</span> <span class="n">nAdded</span><span class="o">=</span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetNumEntries</span><span class="p">()</span>
<span class="go">1169</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="go">&#39;Cc&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span>
<span class="go">&#39;cc-nc(C)n&#39;</span>
</pre></div>
</div>
<p>The fragments in a catalog are unique, so adding a molecule a second
time doesn&#8217;t add any new entries:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fcgen</span><span class="o">.</span><span class="n">AddFragsFromMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="go">0</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetNumEntries</span><span class="p">()</span>
<span class="go">1169</span>
</pre></div>
</div>
<p>Once a <tt class="docutils literal"><span class="pre">rdkit.Chem.rdfragcatalog.FragCatalog</span></tt> has been
generated, it can be used to fingerprint molecules:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fpgen</span> <span class="o">=</span> <span class="n">FragmentCatalog</span><span class="o">.</span><span class="n">FragFPGenerator</span><span class="p">()</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span> <span class="o">=</span> <span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">8</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span>
<span class="go">&lt;rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...&gt;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fp</span><span class="o">.</span><span class="n">GetNumOnBits</span><span class="p">()</span>
<span class="go">189</span>
</pre></div>
</div>
<p>The rest of the machinery associated with fingerprints can now be
applied to these fragment fingerprints.  For example, it&#8217;s easy to
find the fragments that two molecules have in common by taking the
intersection of their fingerprints:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">fp2</span> <span class="o">=</span> <span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">ms</span><span class="p">[</span><span class="mi">7</span><span class="p">],</span><span class="n">fcat</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">andfp</span> <span class="o">=</span> <span class="n">fp</span><span class="o">&amp;</span><span class="n">fp2</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">obl</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">andfp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="go">&#39;ccc(cc)NC&lt;=O&gt;&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">5</span><span class="p">])</span>
<span class="go">&#39;c&lt;-X&gt;ccc(N)cc&#39;</span>
</pre></div>
</div>
<p>or we can find the fragments that distinguish one molecule from
another:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">combinedFp</span><span class="o">=</span><span class="n">fp</span><span class="o">&amp;</span><span class="p">(</span><span class="n">fp</span><span class="o">^</span><span class="n">fp2</span><span class="p">)</span> <span class="c"># can be more efficent than fp&amp;(!fp2)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">obl</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">combinedFp</span><span class="o">.</span><span class="n">GetOnBits</span><span class="p">())</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fcat</span><span class="o">.</span><span class="n">GetEntryDescription</span><span class="p">(</span><span class="n">obl</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="go">&#39;cccc(N)cc&#39;</span>
</pre></div>
</div>
<p>Or we can use the bit ranking functionality from the
<tt class="docutils literal"><span class="pre">rdkit.ML.InfoTheory.rdInfoTheory.InfoBitRanker</span></tt> class to identify fragments
that distinguish actives from inactives:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">suppl</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">SDMolSupplier</span><span class="p">(</span><span class="s">&#39;data/bzr.sdf&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">sdms</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">suppl</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">fps</span> <span class="o">=</span> <span class="p">[</span><span class="n">fpgen</span><span class="o">.</span><span class="n">GetFPForMol</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">fcat</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">sdms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.ML.InfoTheory</span> <span class="kn">import</span> <span class="n">InfoBitRanker</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">ranker</span> <span class="o">=</span> <span class="n">InfoBitRanker</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">fps</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">acts</span> <span class="o">=</span> <span class="p">[</span><span class="nb">float</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">GetProp</span><span class="p">(</span><span class="s">&#39;ACTIVITY&#39;</span><span class="p">))</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">sdms</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="n">i</span><span class="p">,</span><span class="n">fp</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">fps</span><span class="p">):</span>
<span class="gp">... </span>  <span class="n">act</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">acts</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">&gt;</span><span class="mi">7</span><span class="p">)</span>
<span class="gp">... </span>  <span class="n">ranker</span><span class="o">.</span><span class="n">AccumulateVotes</span><span class="p">(</span><span class="n">fp</span><span class="p">,</span><span class="n">act</span><span class="p">)</span>
<span class="gp">...</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">top5</span> <span class="o">=</span> <span class="n">ranker</span><span class="o">.</span><span class="n">GetTopN</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="k">for</span> <span class="nb">id</span><span class="p">,</span><span class="n">gain</span><span class="p">,</span><span class="n">n0</span><span class="p">,</span><span class="n">n1</span> <span class="ow">in</span> <span class="n">top5</span><span class="p">:</span>
<span class="gp">... </span>  <span class="k">print</span> <span class="nb">int</span><span class="p">(</span><span class="nb">id</span><span class="p">),</span><span class="s">&#39;</span><span class="si">%.3f</span><span class="s">&#39;</span><span class="o">%</span><span class="n">gain</span><span class="p">,</span><span class="nb">int</span><span class="p">(</span><span class="n">n0</span><span class="p">),</span><span class="nb">int</span><span class="p">(</span><span class="n">n1</span><span class="p">)</span>
<span class="gp">...</span>
<span class="go">702 0.081 20 17</span>
<span class="go">328 0.073 23 25</span>
<span class="go">341 0.073 30 43</span>
<span class="go">173 0.073 30 43</span>
<span class="go">1034 0.069 5 53</span>
</pre></div>
</div>
<p>The columns above are: bitId, infoGain, nInactive, nActive. Note that
this approach isn&#8217;t particularly effective for this artificial
example.</p>
</div>
<div class="section" id="non-chemical-functionality">
<h2>Non-Chemical Functionality<a class="headerlink" href="#non-chemical-functionality" title="Permalink to this headline"></a></h2>
<div class="section" id="bit-vectors">
<h3>Bit vectors<a class="headerlink" href="#bit-vectors" title="Permalink to this headline"></a></h3>
<p>Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints.
The RDKit includes two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but are best used for different purpose:</p>
<ul class="simple">
<li>SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely occupied vectors like pharmacophore fingerprints.
Some operations, such as retrieving the list of on bits, are quite fast.
Others, such as negating the vector, are very, very slow.</li>
<li>ExplicitBitVects keep track of both on and off bits.
They are generally faster than SparseBitVects, but require more memory to store.</li>
</ul>
</div>
<div class="section" id="discrete-value-vectors">
<h3>Discrete value vectors<a class="headerlink" href="#discrete-value-vectors" title="Permalink to this headline"></a></h3>
</div>
<div class="section" id="d-grids">
<h3>3D grids<a class="headerlink" href="#d-grids" title="Permalink to this headline"></a></h3>
</div>
<div class="section" id="points">
<h3>Points<a class="headerlink" href="#points" title="Permalink to this headline"></a></h3>
</div>
</div>
<div class="section" id="getting-help">
<h2>Getting Help<a class="headerlink" href="#getting-help" title="Permalink to this headline"></a></h2>
<p>There is a reasonable amount of documentation available within from the RDKit&#8217;s docstrings.
These are accessible using Python&#8217;s help command:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;Cc1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">7</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">help</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">)</span>
<span class="go">Help on method GetNumAtoms:</span>

<span class="go">GetNumAtoms(...) method of rdkit.Chem.rdchem.Mol instance</span>
<span class="go">    GetNumAtoms( (Mol)arg1 [, (int)onlyHeavy=-1 [, (bool)onlyExplicit=True]]) -&gt; int :</span>
<span class="go">        Returns the number of atoms in the molecule.</span>

<span class="go">          ARGUMENTS:</span>
<span class="go">            - onlyExplicit: (optional) include only explicit atoms (atoms in the molecular graph)</span>
<span class="go">                            defaults to 1.</span>
<span class="go">          NOTE: the onlyHeavy argument is deprecated</span>


<span class="go">        C++ signature :</span>
<span class="go">            int GetNumAtoms(RDKit::ROMol [,int=-1 [,bool=True]])</span>

<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">(</span><span class="n">onlyExplicit</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="go">15</span>
</pre></div>
</div>
<p>When working in an environment that does command completion or tooltips, one can see the available methods quite easily.
Here&#8217;s a sample screenshot from within Mark Hammond&#8217;s PythonWin environment:</p>
<img alt="_images/picture_6.png" src="_images/picture_6.png" />
</div>
<div class="section" id="advanced-topics-warnings">
<h2>Advanced Topics/Warnings<a class="headerlink" href="#advanced-topics-warnings" title="Permalink to this headline"></a></h2>
<div class="section" id="editing-molecules">
<h3>Editing Molecules<a class="headerlink" href="#editing-molecules" title="Permalink to this headline"></a></h3>
<p>Some of the functionality provided allows molecules to be edited “in place”:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">SetAtomicNum</span><span class="p">(</span><span class="mi">7</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">&#39;c1ccncc1&#39;</span>
</pre></div>
</div>
<p>Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don&#8217;t think):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;c1ccccc1&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span><span class="o">.</span><span class="n">GetAtomWithIdx</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">SetAtomicNum</span><span class="p">(</span><span class="mi">8</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="go">&#39;c1ccocc1&#39;</span>
</pre></div>
</div>
<p>but that are, of course, complete nonsense, as sanitization will indicate:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gt">Traceback (most recent call last):</span>
  File <span class="nb">&quot;/usr/lib/python2.6/doctest.py&quot;</span>, line <span class="m">1253</span>, in <span class="n">__run</span>
    <span class="n">compileflags</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="ow">in</span> <span class="n">test</span><span class="o">.</span><span class="n">globs</span>
  File <span class="nb">&quot;&lt;doctest default[0]&gt;&quot;</span>, line <span class="m">1</span>, in <span class="n">&lt;module&gt;</span>
    <span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gr">ValueError</span>: <span class="n">Sanitization error: Can&#39;t kekulize mol</span>
<span class="gt">Traceback (most recent call last):</span>
  File <span class="nb">&quot;/usr/lib/python2.6/doctest.py&quot;</span>, line <span class="m">1253</span>, in <span class="n">__run</span>
    <span class="n">compileflags</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="ow">in</span> <span class="n">test</span><span class="o">.</span><span class="n">globs</span>
  File <span class="nb">&quot;&lt;doctest default[0]&gt;&quot;</span>, line <span class="m">1</span>, in <span class="n">&lt;module&gt;</span>
    <span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gr">ValueError</span>: <span class="n">Sanitization error: Can&#39;t kekulize mol</span>
</pre></div>
</div>
<p>More complex transformations can be carried out using the
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdchem.RWMol</span></tt> class:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CC(=O)C=CC=C&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">RWMol</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">ReplaceAtom</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">7</span><span class="p">))</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">AddAtom</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">6</span><span class="p">))</span>
<span class="go">7</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">AddAtom</span><span class="p">(</span><span class="n">Chem</span><span class="o">.</span><span class="n">Atom</span><span class="p">(</span><span class="mi">6</span><span class="p">))</span>
<span class="go">8</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">SINGLE</span><span class="p">)</span>
<span class="go">7</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">DOUBLE</span><span class="p">)</span>
<span class="go">8</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">AddBond</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="n">Chem</span><span class="o">.</span><span class="n">BondType</span><span class="o">.</span><span class="n">SINGLE</span><span class="p">)</span>
<span class="go">9</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">RemoveAtom</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">mw</span><span class="o">.</span><span class="n">GetNumAtoms</span><span class="p">()</span>
<span class="go">8</span>
</pre></div>
</div>
<p>The RWMol can be used just like an ROMol:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">&#39;O=CC1C=CC=CN=1&#39;</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">SanitizeMol</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">Chem</span><span class="o">.</span><span class="n">MolToSmiles</span><span class="p">(</span><span class="n">mw</span><span class="p">)</span>
<span class="go">&#39;O=Cc1ccccn1&#39;</span>
</pre></div>
</div>
<p>It is even easier to generate nonsense using the RWMol than it
is with standard molecules.  If you need chemically reasonable
results, be certain to sanitize the results.</p>
</div>
</div>
<div class="section" id="miscellaneous-tips-and-hints">
<h2>Miscellaneous Tips and Hints<a class="headerlink" href="#miscellaneous-tips-and-hints" title="Permalink to this headline"></a></h2>
<div class="section" id="chem-vs-allchem">
<h3>Chem vs AllChem<a class="headerlink" href="#chem-vs-allchem" title="Permalink to this headline"></a></h3>
<p>The majority of “basic” chemical functionality (e.g. reading/writing
molecules, substructure searching, molecular cleanup, etc.) is in the
<a class="reference external" href="api/rdkit.Chem-module.html">rdkit.Chem</a> module.  More advanced, or less frequently used,
functionality is in <a class="reference external" href="api/rdkit.Chem.AllChem-module.html">rdkit.Chem.AllChem</a>.  The distinction has
been made to speed startup and lower import times; there&#8217;s no sense in
loading the 2D-&gt;3D library and force field implementation if one is
only interested in reading and writing a couple of molecules.  If you
find the Chem/AllChem thing annoying or confusing, you can use
python&#8217;s “import ... as ...” syntax to remove the irritation:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">rdkit.Chem</span> <span class="kn">import</span> <span class="n">AllChem</span> <span class="k">as</span> <span class="n">Chem</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">m</span> <span class="o">=</span> <span class="n">Chem</span><span class="o">.</span><span class="n">MolFromSmiles</span><span class="p">(</span><span class="s">&#39;CCC&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="the-sssr-problem">
<h3>The SSSR Problem<a class="headerlink" href="#the-sssr-problem" title="Permalink to this headline"></a></h3>
<p>As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule&#8217;s smallest set of smallest
rings is not unique.  In some high symmetry molecules, a “true” SSSR
will give results that are unappealing.  For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a <em>small</em>
(instead of <em>smallest</em>) set of smallest rings algorithm that returns
symmetric results.  This is the approach that we took with the RDKit.</p>
<p>Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
<tt class="docutils literal"><span class="pre">rdkit.Chem.rdmolops.GetSSSR</span></tt> function, but this only returns the
SSSR count, not the potentially non-unique set of rings.</p>
</div>
</div>
<div class="section" id="list-of-available-descriptors">
<h2>List of Available Descriptors<a class="headerlink" href="#list-of-available-descriptors" title="Permalink to this headline"></a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="55%" />
<col width="45%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Descriptor/Descriptor
Family</td>
<td>Notes</td>
</tr>
<tr class="row-even"><td>Gasteiger/Marsili
Partial Charges</td>
<td><em>Tetrahedron</em>
<strong>36</strong>:3219-28
(1980)</td>
</tr>
<tr class="row-odd"><td>BalabanJ</td>
<td><em>Chem. Phys. Lett.</em>
<strong>89</strong>:399-404
(1982)</td>
</tr>
<tr class="row-even"><td>BertzCT</td>
<td><em>J. Am. Chem. Soc.</em>
<strong>103</strong>:3599-601
(1981)</td>
</tr>
<tr class="row-odd"><td>Ipc</td>
<td><em>J. Chem. Phys.</em>
<strong>67</strong>:4517-33
(1977)</td>
</tr>
<tr class="row-even"><td>HallKierAlpha</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>Kappa1 - Kappa3</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-even"><td>Chi0, Chi1</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>Chi0n - Chi4n</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-even"><td>Chi0v - Chi4v</td>
<td><em>Rev. Comput. Chem.</em>
<strong>2</strong>:367-422
(1991)</td>
</tr>
<tr class="row-odd"><td>MolLogP</td>
<td>Wildman and Crippen
<em>JCICS</em>
<strong>39</strong>:868-73
(1999)</td>
</tr>
<tr class="row-even"><td>MolMR</td>
<td>Wildman and Crippen
<em>JCICS</em>
<strong>39</strong>:868-73
(1999)</td>
</tr>
<tr class="row-odd"><td>MolWt</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>ExactMolWt</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>HeavyAtomCount</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>HeavyAtomMolWt</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>NHOHCount</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>NOCount</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>NumHAcceptors</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>NumHDonors</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>NumHeteroatoms</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>NumRotatableBonds</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>NumValenceElectrons</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>NumAmideBonds</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>Num{Aromatic,Saturated,Aliphatic}Rings</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>Num{Aromatic,Saturated,Aliphatic}{Hetero,Carbo}cycles</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>RingCount</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>FractionCSP3</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>TPSA</td>
<td><em>J. Med. Chem.</em>
<strong>43</strong>:3714-7,
(2000)</td>
</tr>
<tr class="row-even"><td>LabuteASA</td>
<td><em>J. Mol. Graph. Mod.</em>
<strong>18</strong>:464-77 (2000)</td>
</tr>
<tr class="row-odd"><td>PEOE_VSA1 - PEOE_VSA14</td>
<td>MOE-type descriptors using partial charges
and surface area contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-even"><td>SMR_VSA1 - SMR_VSA10</td>
<td>MOE-type descriptors using MR
contributions and surface area
contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-odd"><td>SlogP_VSA1 - SlogP_VSA12</td>
<td>MOE-type descriptors using LogP
contributions and surface area
contributions
<a class="reference external" href="http://www.chemcomp.com/journal/vsadesc.htm">http://www.chemcomp.com/journal/vsadesc.htm</a></td>
</tr>
<tr class="row-even"><td>EState_VSA1 - EState_VSA11</td>
<td>MOE-type descriptors using EState indices
and surface area contributions (developed
at RD, not described in the CCG paper)</td>
</tr>
<tr class="row-odd"><td>VSA_EState1 - VSA_EState10</td>
<td>MOE-type descriptors using EState indices
and surface area contributions (developed
at RD, not described in the CCG paper)</td>
</tr>
<tr class="row-even"><td>MQNs</td>
<td>Nguyen et al. <em>ChemMedChem</em> <strong>4</strong>:1803-5
(2009)</td>
</tr>
<tr class="row-odd"><td>Topliss fragments</td>
<td>implemented using a set of SMARTS
definitions in
$(RDBASE)/Data/FragmentDescriptors.csv</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="list-of-available-fingerprints">
<h2>List of Available Fingerprints<a class="headerlink" href="#list-of-available-fingerprints" title="Permalink to this headline"></a></h2>
<table border="1" class="docutils">
<colgroup>
<col width="17%" />
<col width="83%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Fingerprint Type</td>
<td>Notes</td>
</tr>
<tr class="row-even"><td>RDKit</td>
<td>a Daylight-like fingerprint based on hashing molecular subgraphs</td>
</tr>
<tr class="row-odd"><td>Atom Pairs</td>
<td><em>JCICS</em> <strong>25</strong>:64-73 (1985)</td>
</tr>
<tr class="row-even"><td>Topological Torsions</td>
<td><em>JCICS</em> <strong>27</strong>:82-5 (1987)</td>
</tr>
<tr class="row-odd"><td>MACCS keys</td>
<td>Using the 166 public keys implemented as SMARTS</td>
</tr>
<tr class="row-even"><td>Morgan/Circular</td>
<td>Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints
<em>JCIM</em> <strong>50</strong>:742-54 (2010).</td>
</tr>
<tr class="row-odd"><td>2D Pharmacophore</td>
<td>Uses topological distances between pharmacophoric points.</td>
</tr>
<tr class="row-even"><td>Pattern</td>
<td>a topological fingerprint optimized for substructure screening</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="feature-definitions-used-in-the-morgan-fingerprints">
<h2>Feature Definitions Used in the Morgan Fingerprints<a class="headerlink" href="#feature-definitions-used-in-the-morgan-fingerprints" title="Permalink to this headline"></a></h2>
<p>These are adapted from the definitions in Gobbi, A. &amp; Poppinger, D. “Genetic optimization of combinatorial libraries.” <em>Biotechnology and Bioengineering</em> <strong>61</strong>, 47-54 (1998).</p>
<table border="1" class="docutils">
<colgroup>
<col width="6%" />
<col width="94%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Feature</td>
<td>SMARTS</td>
</tr>
<tr class="row-even"><td>Donor</td>
<td><tt class="docutils literal"><span class="pre">[$([N;!H0;v3,v4&amp;+1]),$([O,S;H1;+0]),n&amp;H1&amp;+0]</span></tt></td>
</tr>
<tr class="row-odd"><td>Acceptor</td>
<td><tt class="docutils literal"><span class="pre">[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N;v3;!$(N-*=[O,N,P,S])]),n&amp;H0&amp;+0,$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]</span></tt></td>
</tr>
<tr class="row-even"><td>Aromatic</td>
<td><tt class="docutils literal"><span class="pre">[a]</span></tt></td>
</tr>
<tr class="row-odd"><td>Halogen</td>
<td><tt class="docutils literal"><span class="pre">[F,Cl,Br,I]</span></tt></td>
</tr>
<tr class="row-even"><td>Basic</td>
<td><tt class="docutils literal"><span class="pre">[#7;+,$([N;H2&amp;+0][$([C,a]);!$([C,a](=O))]),$([N;H1&amp;+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),$([N;H0&amp;+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]</span></tt></td>
</tr>
<tr class="row-odd"><td>Acidic</td>
<td><tt class="docutils literal"><span class="pre">[$([C,S](=[O,S,P])-[O;H1,-1])]</span></tt></td>
</tr>
</tbody>
</table>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="blaney" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>Blaney, J. M.; Dixon, J. S. &#8220;Distance Geometry in Molecular Modeling&#8221;.  <em>Reviews in Computational Chemistry</em>; VCH: New York, 1994.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rappe" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[2]</a></td><td>Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. &#8220;UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations&#8221;. <em>J. Am. Chem. Soc.</em> <strong>114</strong>:10024-35 (1992) .</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="carhart" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id9">[3]</a></td><td>Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications” <em>J. Chem. Inf. Comp. Sci.</em> <strong>25</strong>:64-73 (1985).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="nilakantan" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id10">[4]</a></td><td>Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Desciptors.” <em>J. Chem.Inf. Comp. Sci.</em> <strong>27</strong>:82-5 (1987).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rogers" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id11">[5]</a></td><td>Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” <em>J. Chem. Inf. and Model.</em> <strong>50</strong>:742-54 (2010).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="ashton" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id12">[6]</a></td><td>Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” <em>Quantitative Structure-Activity Relationships</em> <strong>21</strong>:598-604 (2002).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="bemis1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id8">[7]</a></td><td>Bemis, G. W.; Murcko, M. A. &#8220;The Properties of Known Drugs. 1. Molecular Frameworks.&#8221; <em>J. Med. Chem.</em>  <strong>39</strong>:2887-93 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="lewell" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id15">[8]</a></td><td>Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” <em>J. Chem. Inf. Comp. Sci.</em> <strong>38</strong>:511-22 (1998).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="degen" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id16">[9]</a></td><td>Degen, J.; Wegscheid-Gerlach, C.; Zaliani, A; Rarey, M. &#8220;On the Art of Compiling and Using ‘Drug-Like’ Chemical Fragment Spaces.&#8221; <em>ChemMedChem</em> <strong>3</strong>:1503–7 (2008).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="gobbi" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id17">[10]</a></td><td>Gobbi, A. &amp; Poppinger, D. &#8220;Genetic optimization of combinatorial libraries.&#8221; <em>Biotechnology and Bioengineering</em> <strong>61</strong>:47-54 (1998).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="rxnsmarts" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id14">[11]</a></td><td>A more detailed description of reaction smarts, as defined by the rdkit, is in the <a class="reference internal" href="RDKit_Book.html"><em>The RDKit Book</em></a>.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[12]</a></td><td>Halgren, T. A. &#8220;Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.&#8221; <em>J. Comp. Chem.</em> <strong>17</strong>:490–19 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[13]</a></td><td>Halgren, T. A. &#8220;Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions.&#8221; <em>J. Comp. Chem.</em> <strong>17</strong>:520–52 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id5">[14]</a></td><td>Halgren, T. A. &#8220;Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94.&#8221; <em>J. Comp. Chem.</em> <strong>17</strong>:553–86 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmff4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6">[15]</a></td><td>Halgren, T. A. &amp; Nachbar, R. B. &#8220;Merck molecular force field. IV. conformational energies and geometries for MMFF94.&#8221; <em>J. Comp. Chem.</em> <strong>17</strong>:587-615 (1996).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="mmffs" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[16]</a></td><td>Halgren, T. A. &#8220;MMFF VI. MMFF94s option for energy minimization studies.&#8221; <em>J. Comp. Chem.</em> <strong>20</strong>:720–9 (1999).</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="riniker" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id13">[17]</a></td><td>Riniker, S.; Landrum, G. A. &#8220;Similarity Maps - A Visualization Strategy for Molecular Fingerprints and Machine-Learning Methods&#8221; <em>J. Cheminf.</em> <strong>5</strong>:43 (2013).</td></tr>
</tbody>
</table>
</div>
<div class="section" id="license">
<h2>License<a class="headerlink" href="#license" title="Permalink to this headline"></a></h2>
<img alt="_images/picture_5.png" src="_images/picture_5.png" />
<p>This document is copyright (C) 2007-2013 by Greg Landrum</p>
<p>This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit <a class="reference external" href="http://creativecommons.org/licenses/by-sa/3.0/">http://creativecommons.org/licenses/by-sa/3.0/</a> or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.</p>
<p>The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”</p>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="RDKit_Book.html" title="The RDKit Book"
             >next</a> |</li>
        <li class="right" >
          <a href="Install.html" title="Installation"
             >previous</a> |</li>
        <li><a href="index.html">The RDKit 2015.03.1 documentation</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2014, Greg Landrum.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.2.3.
    </div>
  </body>
</html>