This file is indexed.

/usr/share/doc/root/test/MainEvent.cxx is in root-system-doc 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// @(#)root/test:$Id$
// Author: Rene Brun   19/01/97

////////////////////////////////////////////////////////////////////////
//
//             A simple example with a ROOT tree
//             =================================
//
//  This program creates :
//    - a ROOT file
//    - a tree
//  Additional arguments can be passed to the program to control the flow
//  of execution. (see comments describing the arguments in the code).
//      Event  nevent comp split fill
//  All arguments are optional. Default is:
//      Event  400      1    1     1
//
//  In this example, the tree consists of one single "super branch"
//  The statement ***tree->Branch("event", &event, 64000,split);*** below
//  will parse the structure described in Event.h and will make
//  a new branch for each data member of the class if split is set to 1.
//    - 9 branches corresponding to the basic types fType, fNtrack,fNseg,
//           fNvertex,fFlag,fTemperature,fMeasures,fMatrix,fClosesDistance.
//    - 3 branches corresponding to the members of the subobject EventHeader.
//    - one branch for each data member of the class Track of TClonesArray.
//    - one branch for the TRefArray of high Pt tracks
//    - one branch for the TRefArray of muon tracks
//    - one branch for the reference pointer to the last track
//    - one branch for the object fH (histogram of class TH1F).
//
//  if split = 0 only one single branch is created and the complete event
//  is serialized in one single buffer.
//  if split = -2 the event is split using the old TBranchObject mechanism
//  if split = -1 the event is streamed using the old TBranchObject mechanism
//  if split > 0  the event is split using the new TBranchElement mechanism.
//
//  if comp = 0 no compression at all.
//  if comp = 1 event is compressed.
//  if comp = 2 same as 1. In addition branches with floats in the TClonesArray
//                         are also compressed.
//  The 4th argument fill can be set to 0 if one wants to time
//     the percentage of time spent in creating the event structure and
//     not write the event in the file.
//  In this example, one loops over nevent events.
//  The branch "event" is created at the first event.
//  The branch address is set for all other events.
//  For each event, the event header is filled and ntrack tracks
//  are generated and added to the TClonesArray list.
//  For each event the event histogram is saved as well as the list
//  of all tracks.
//
//  The two TRefArray contain only references to the original tracks owned by
//  the TClonesArray fTracks.
//
//  The number of events can be given as the first argument to the program.
//  By default 400 events are generated.
//  The compression option can be activated/deactivated via the second argument.
//
//   ---Running/Linking instructions----
//  This program consists of the following files and procedures.
//    - Event.h event class description
//    - Event.C event class implementation
//    - MainEvent.C the main program to demo this class might be used (this file)
//    - EventCint.C  the CINT dictionary for the event and Track classes
//        this file is automatically generated by rootcint (see Makefile),
//        when the class definition in Event.h is modified.
//
//   ---Analyzing the Event.root file with the interactive root
//        example of a simple session
//   Root > TFile f("Event.root")
//   Root > T.Draw("fNtrack")   //histogram the number of tracks per event
//   Root > T.Draw("fPx")       //histogram fPx for all tracks in all events
//   Root > T.Draw("fXfirst:fYfirst","fNtrack>600")
//                              //scatter-plot for x versus y of first point of each track
//   Root > T.Draw("fH.GetRMS()")  //histogram of the RMS of the event histogram
//
//   Look also in the same directory at the following macros:
//     - eventa.C  an example how to read the tree
//     - eventb.C  how to read events conditionally
//
////////////////////////////////////////////////////////////////////////

#include <stdlib.h>

#include "Riostream.h"
#include "TROOT.h"
#include "TFile.h"
#include "TNetFile.h"
#include "TRandom.h"
#include "TTree.h"
#include "TBranch.h"
#include "TClonesArray.h"
#include "TStopwatch.h"

#include "Event.h"


//______________________________________________________________________________
int main(int argc, char **argv)
{
   Int_t nevent = 400;     // by default create 400 events
   Int_t comp   = 1;       // by default file is compressed
   Int_t split  = 1;       // by default, split Event in sub branches
   Int_t write  = 1;       // by default the tree is filled
   Int_t hfill  = 0;       // by default histograms are not filled
   Int_t read   = 0;
   Int_t arg4   = 1;
   Int_t arg5   = 600;     //default number of tracks per event
   Int_t netf   = 0;
   Int_t punzip = 0;

   if (argc > 1)  nevent = atoi(argv[1]);
   if (argc > 2)  comp   = atoi(argv[2]);
   if (argc > 3)  split  = atoi(argv[3]);
   if (argc > 4)  arg4   = atoi(argv[4]);
   if (argc > 5)  arg5   = atoi(argv[5]);
   if (arg4 ==  0) { write = 0; hfill = 0; read = 1;}
   if (arg4 ==  1) { write = 1; hfill = 0;}
   if (arg4 ==  2) { write = 0; hfill = 0;}
   if (arg4 == 10) { write = 0; hfill = 1;}
   if (arg4 == 11) { write = 1; hfill = 1;}
   if (arg4 == 20) { write = 0; read  = 1;}  //read sequential
   if (arg4 == 21) { write = 0; read  = 1;  punzip = 1;}  //read sequential + parallel unzipping
   if (arg4 == 25) { write = 0; read  = 2;}  //read random
   if (arg4 >= 30) { netf  = 1; }            //use TNetFile
   if (arg4 == 30) { write = 0; read  = 1;}  //netfile + read sequential
   if (arg4 == 35) { write = 0; read  = 2;}  //netfile + read random
   if (arg4 == 36) { write = 1; }            //netfile + write sequential
   Int_t branchStyle = 1; //new style by default
   if (split < 0) {branchStyle = 0; split = -1-split;}

   TFile *hfile;
   TTree *tree;
   Event *event = 0;

   // Fill event, header and tracks with some random numbers
   //   Create a timer object to benchmark this loop
   TStopwatch timer;
   timer.Start();
   Long64_t nb = 0;
   Int_t ev;
   Int_t bufsize;
   Double_t told = 0;
   Double_t tnew = 0;
   Int_t printev = 100;
   if (arg5 < 100) printev = 1000;
   if (arg5 < 10)  printev = 10000;

//         Read case
   if (read) {
      if (netf) {
         hfile = new TNetFile("root://localhost/root/test/EventNet.root");
      } else
         hfile = new TFile("Event.root");
      tree = (TTree*)hfile->Get("T");
      TBranch *branch = tree->GetBranch("event");
      branch->SetAddress(&event);
      Int_t nentries = (Int_t)tree->GetEntries();
      nevent = TMath::Min(nevent,nentries);
      if (read == 1) {  //read sequential
         //by setting the read cache to -1 we set it to the AutoFlush value when writing
         Int_t cachesize = -1; 
         if (punzip) tree->SetParallelUnzip();
         tree->SetCacheSize(cachesize);
         tree->SetCacheLearnEntries(1); //one entry is sufficient to learn
         tree->SetCacheEntryRange(0,nevent);
         for (ev = 0; ev < nevent; ev++) {
            tree->LoadTree(ev);  //this call is required when using the cache
            if (ev%printev == 0) {
               tnew = timer.RealTime();
               printf("event:%d, rtime=%f s\n",ev,tnew-told);
               told=tnew;
               timer.Continue();
            }
            nb += tree->GetEntry(ev);        //read complete event in memory
         }
      } else {    //read random
         Int_t evrandom;
         for (ev = 0; ev < nevent; ev++) {
            if (ev%printev == 0) cout<<"event="<<ev<<endl;
            evrandom = Int_t(nevent*gRandom->Rndm(1));
            nb += tree->GetEntry(evrandom);  //read complete event in memory
         }
      }
   } else {
//         Write case
      // Create a new ROOT binary machine independent file.
      // Note that this file may contain any kind of ROOT objects, histograms,
      // pictures, graphics objects, detector geometries, tracks, events, etc..
      // This file is now becoming the current directory.
      if (netf) {
         hfile = new TNetFile("root://localhost/root/test/EventNet.root","RECREATE","TTree benchmark ROOT file");
      } else
         hfile = new TFile("Event.root","RECREATE","TTree benchmark ROOT file");
      hfile->SetCompressionLevel(comp);

     // Create histogram to show write_time in function of time
     Float_t curtime = -0.5;
     Int_t ntime = nevent/printev;
     TH1F *htime = new TH1F("htime","Real-Time to write versus time",ntime,0,ntime);
     HistogramManager *hm = 0;
     if (hfill) {
        TDirectory *hdir = new TDirectory("histograms", "all histograms");
        hm = new HistogramManager(hdir);
     }

     // Create a ROOT Tree and one superbranch
      tree = new TTree("T","An example of a ROOT tree");
      tree->SetAutoSave(1000000000); // autosave when 1 Gbyte written
      tree->SetCacheSize(10000000);  // set a 10 MBytes cache (useless when writing local files)
      bufsize = 64000;
      if (split)  bufsize /= 4;
      event = new Event();           // By setting the value, we own the pointer and must delete it.
      TTree::SetBranchStyle(branchStyle);
      TBranch *branch = tree->Branch("event", &event, bufsize,split);
      branch->SetAutoDelete(kFALSE);
      if(split >= 0 && branchStyle) tree->BranchRef();
      Float_t ptmin = 1;

      for (ev = 0; ev < nevent; ev++) {
         if (ev%printev == 0) {
            tnew = timer.RealTime();
            printf("event:%d, rtime=%f s\n",ev,tnew-told);
            htime->Fill(curtime,tnew-told);
            curtime += 1;
            told=tnew;
            timer.Continue();
         }

         event->Build(ev, arg5, ptmin);

         if (write) nb += tree->Fill();  //fill the tree

         if (hm) hm->Hfill(event);      //fill histograms
      }
      if (write) {
         hfile = tree->GetCurrentFile(); //just in case we switched to a new file
         hfile->Write();
         tree->Print();
      }
   }
   // We own the event (since we set the branch address explicitly), we need to delete it.
   delete event;  event = 0;

   //  Stop timer and print results
   timer.Stop();
   Float_t mbytes = 0.000001*nb;
   Double_t rtime = timer.RealTime();
   Double_t ctime = timer.CpuTime();


   printf("\n%d events and %lld bytes processed.\n",nevent,nb);
   printf("RealTime=%f seconds, CpuTime=%f seconds\n",rtime,ctime);
   if (read) {
      tree->PrintCacheStats();
      printf("You read %f Mbytes/Realtime seconds\n",mbytes/rtime);
      printf("You read %f Mbytes/Cputime seconds\n",mbytes/ctime);
   } else {
      printf("compression level=%d, split=%d, arg4=%d\n",comp,split,arg4);
      printf("You write %f Mbytes/Realtime seconds\n",mbytes/rtime);
      printf("You write %f Mbytes/Cputime seconds\n",mbytes/ctime);
      //printf("file compression factor = %f\n",hfile.GetCompressionFactor());
   }
   hfile->Close();
   return 0;
}