/usr/share/doc/root/test/MainEvent.cxx is in root-system-doc 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // @(#)root/test:$Id$
// Author: Rene Brun 19/01/97
////////////////////////////////////////////////////////////////////////
//
// A simple example with a ROOT tree
// =================================
//
// This program creates :
// - a ROOT file
// - a tree
// Additional arguments can be passed to the program to control the flow
// of execution. (see comments describing the arguments in the code).
// Event nevent comp split fill
// All arguments are optional. Default is:
// Event 400 1 1 1
//
// In this example, the tree consists of one single "super branch"
// The statement ***tree->Branch("event", &event, 64000,split);*** below
// will parse the structure described in Event.h and will make
// a new branch for each data member of the class if split is set to 1.
// - 9 branches corresponding to the basic types fType, fNtrack,fNseg,
// fNvertex,fFlag,fTemperature,fMeasures,fMatrix,fClosesDistance.
// - 3 branches corresponding to the members of the subobject EventHeader.
// - one branch for each data member of the class Track of TClonesArray.
// - one branch for the TRefArray of high Pt tracks
// - one branch for the TRefArray of muon tracks
// - one branch for the reference pointer to the last track
// - one branch for the object fH (histogram of class TH1F).
//
// if split = 0 only one single branch is created and the complete event
// is serialized in one single buffer.
// if split = -2 the event is split using the old TBranchObject mechanism
// if split = -1 the event is streamed using the old TBranchObject mechanism
// if split > 0 the event is split using the new TBranchElement mechanism.
//
// if comp = 0 no compression at all.
// if comp = 1 event is compressed.
// if comp = 2 same as 1. In addition branches with floats in the TClonesArray
// are also compressed.
// The 4th argument fill can be set to 0 if one wants to time
// the percentage of time spent in creating the event structure and
// not write the event in the file.
// In this example, one loops over nevent events.
// The branch "event" is created at the first event.
// The branch address is set for all other events.
// For each event, the event header is filled and ntrack tracks
// are generated and added to the TClonesArray list.
// For each event the event histogram is saved as well as the list
// of all tracks.
//
// The two TRefArray contain only references to the original tracks owned by
// the TClonesArray fTracks.
//
// The number of events can be given as the first argument to the program.
// By default 400 events are generated.
// The compression option can be activated/deactivated via the second argument.
//
// ---Running/Linking instructions----
// This program consists of the following files and procedures.
// - Event.h event class description
// - Event.C event class implementation
// - MainEvent.C the main program to demo this class might be used (this file)
// - EventCint.C the CINT dictionary for the event and Track classes
// this file is automatically generated by rootcint (see Makefile),
// when the class definition in Event.h is modified.
//
// ---Analyzing the Event.root file with the interactive root
// example of a simple session
// Root > TFile f("Event.root")
// Root > T.Draw("fNtrack") //histogram the number of tracks per event
// Root > T.Draw("fPx") //histogram fPx for all tracks in all events
// Root > T.Draw("fXfirst:fYfirst","fNtrack>600")
// //scatter-plot for x versus y of first point of each track
// Root > T.Draw("fH.GetRMS()") //histogram of the RMS of the event histogram
//
// Look also in the same directory at the following macros:
// - eventa.C an example how to read the tree
// - eventb.C how to read events conditionally
//
////////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include "Riostream.h"
#include "TROOT.h"
#include "TFile.h"
#include "TNetFile.h"
#include "TRandom.h"
#include "TTree.h"
#include "TBranch.h"
#include "TClonesArray.h"
#include "TStopwatch.h"
#include "Event.h"
//______________________________________________________________________________
int main(int argc, char **argv)
{
Int_t nevent = 400; // by default create 400 events
Int_t comp = 1; // by default file is compressed
Int_t split = 1; // by default, split Event in sub branches
Int_t write = 1; // by default the tree is filled
Int_t hfill = 0; // by default histograms are not filled
Int_t read = 0;
Int_t arg4 = 1;
Int_t arg5 = 600; //default number of tracks per event
Int_t netf = 0;
Int_t punzip = 0;
if (argc > 1) nevent = atoi(argv[1]);
if (argc > 2) comp = atoi(argv[2]);
if (argc > 3) split = atoi(argv[3]);
if (argc > 4) arg4 = atoi(argv[4]);
if (argc > 5) arg5 = atoi(argv[5]);
if (arg4 == 0) { write = 0; hfill = 0; read = 1;}
if (arg4 == 1) { write = 1; hfill = 0;}
if (arg4 == 2) { write = 0; hfill = 0;}
if (arg4 == 10) { write = 0; hfill = 1;}
if (arg4 == 11) { write = 1; hfill = 1;}
if (arg4 == 20) { write = 0; read = 1;} //read sequential
if (arg4 == 21) { write = 0; read = 1; punzip = 1;} //read sequential + parallel unzipping
if (arg4 == 25) { write = 0; read = 2;} //read random
if (arg4 >= 30) { netf = 1; } //use TNetFile
if (arg4 == 30) { write = 0; read = 1;} //netfile + read sequential
if (arg4 == 35) { write = 0; read = 2;} //netfile + read random
if (arg4 == 36) { write = 1; } //netfile + write sequential
Int_t branchStyle = 1; //new style by default
if (split < 0) {branchStyle = 0; split = -1-split;}
TFile *hfile;
TTree *tree;
Event *event = 0;
// Fill event, header and tracks with some random numbers
// Create a timer object to benchmark this loop
TStopwatch timer;
timer.Start();
Long64_t nb = 0;
Int_t ev;
Int_t bufsize;
Double_t told = 0;
Double_t tnew = 0;
Int_t printev = 100;
if (arg5 < 100) printev = 1000;
if (arg5 < 10) printev = 10000;
// Read case
if (read) {
if (netf) {
hfile = new TNetFile("root://localhost/root/test/EventNet.root");
} else
hfile = new TFile("Event.root");
tree = (TTree*)hfile->Get("T");
TBranch *branch = tree->GetBranch("event");
branch->SetAddress(&event);
Int_t nentries = (Int_t)tree->GetEntries();
nevent = TMath::Min(nevent,nentries);
if (read == 1) { //read sequential
//by setting the read cache to -1 we set it to the AutoFlush value when writing
Int_t cachesize = -1;
if (punzip) tree->SetParallelUnzip();
tree->SetCacheSize(cachesize);
tree->SetCacheLearnEntries(1); //one entry is sufficient to learn
tree->SetCacheEntryRange(0,nevent);
for (ev = 0; ev < nevent; ev++) {
tree->LoadTree(ev); //this call is required when using the cache
if (ev%printev == 0) {
tnew = timer.RealTime();
printf("event:%d, rtime=%f s\n",ev,tnew-told);
told=tnew;
timer.Continue();
}
nb += tree->GetEntry(ev); //read complete event in memory
}
} else { //read random
Int_t evrandom;
for (ev = 0; ev < nevent; ev++) {
if (ev%printev == 0) cout<<"event="<<ev<<endl;
evrandom = Int_t(nevent*gRandom->Rndm(1));
nb += tree->GetEntry(evrandom); //read complete event in memory
}
}
} else {
// Write case
// Create a new ROOT binary machine independent file.
// Note that this file may contain any kind of ROOT objects, histograms,
// pictures, graphics objects, detector geometries, tracks, events, etc..
// This file is now becoming the current directory.
if (netf) {
hfile = new TNetFile("root://localhost/root/test/EventNet.root","RECREATE","TTree benchmark ROOT file");
} else
hfile = new TFile("Event.root","RECREATE","TTree benchmark ROOT file");
hfile->SetCompressionLevel(comp);
// Create histogram to show write_time in function of time
Float_t curtime = -0.5;
Int_t ntime = nevent/printev;
TH1F *htime = new TH1F("htime","Real-Time to write versus time",ntime,0,ntime);
HistogramManager *hm = 0;
if (hfill) {
TDirectory *hdir = new TDirectory("histograms", "all histograms");
hm = new HistogramManager(hdir);
}
// Create a ROOT Tree and one superbranch
tree = new TTree("T","An example of a ROOT tree");
tree->SetAutoSave(1000000000); // autosave when 1 Gbyte written
tree->SetCacheSize(10000000); // set a 10 MBytes cache (useless when writing local files)
bufsize = 64000;
if (split) bufsize /= 4;
event = new Event(); // By setting the value, we own the pointer and must delete it.
TTree::SetBranchStyle(branchStyle);
TBranch *branch = tree->Branch("event", &event, bufsize,split);
branch->SetAutoDelete(kFALSE);
if(split >= 0 && branchStyle) tree->BranchRef();
Float_t ptmin = 1;
for (ev = 0; ev < nevent; ev++) {
if (ev%printev == 0) {
tnew = timer.RealTime();
printf("event:%d, rtime=%f s\n",ev,tnew-told);
htime->Fill(curtime,tnew-told);
curtime += 1;
told=tnew;
timer.Continue();
}
event->Build(ev, arg5, ptmin);
if (write) nb += tree->Fill(); //fill the tree
if (hm) hm->Hfill(event); //fill histograms
}
if (write) {
hfile = tree->GetCurrentFile(); //just in case we switched to a new file
hfile->Write();
tree->Print();
}
}
// We own the event (since we set the branch address explicitly), we need to delete it.
delete event; event = 0;
// Stop timer and print results
timer.Stop();
Float_t mbytes = 0.000001*nb;
Double_t rtime = timer.RealTime();
Double_t ctime = timer.CpuTime();
printf("\n%d events and %lld bytes processed.\n",nevent,nb);
printf("RealTime=%f seconds, CpuTime=%f seconds\n",rtime,ctime);
if (read) {
tree->PrintCacheStats();
printf("You read %f Mbytes/Realtime seconds\n",mbytes/rtime);
printf("You read %f Mbytes/Cputime seconds\n",mbytes/ctime);
} else {
printf("compression level=%d, split=%d, arg4=%d\n",comp,split,arg4);
printf("You write %f Mbytes/Realtime seconds\n",mbytes/rtime);
printf("You write %f Mbytes/Cputime seconds\n",mbytes/ctime);
//printf("file compression factor = %f\n",hfile.GetCompressionFactor());
}
hfile->Close();
return 0;
}
|