This file is indexed.

/usr/share/doc/root/test/vmatrix.cxx is in root-system-doc 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
// @(#)root/test:$Id$
// Author: Fons Rademakers and Eddy Offermann  Nov 2003

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// Linear Algebra Package -- Matrix Verifications.                      //
//                                                                      //
// This file implements a large set of TMat operation tests.            //
// *******************************************************************  //
// *  Starting  Matrix - S T R E S S suite                              //
// *******************************************************************  //
// Test  1 : Allocation, Resizing.................................. OK  //
// Test  2 : Filling, Inserting, Using............................. OK  //
// Test  3 : Uniform matrix operations............................. OK  //
// Test  4 : Binary Matrix element-by-element operations............OK  //
// Test  5 : Matrix transposition...................................OK  //
// Test  6 : Haar/Hilbert Matrix....................................OK  //
// Test  7 : Matrix promises........................................OK  //
// Test  8 : Matrix Norms...........................................OK  //
// Test  9 : Matrix Determinant.....................................OK  //
// Test 10 : General Matrix Multiplications.........................OK  //
// Test 11 : Symmetric Matrix Multiplications.......................OK  //
// Test 12 : Matrix Vector Multiplications..........................OK  //
// Test 13 : Matrix Inversion.......................................OK  //
// Test 14 : Matrix Persistence.....................................OK  //
// *******************************************************************  //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

//_____________________________batch only_____________________
#ifndef __CINT__

#include "Riostream.h"
#include "TFile.h"
#include "TMatrixD.h"
#include "TMatrixDSym.h"
#include "TMatrixDLazy.h"
#include "TVectorD.h"
#include "TArrayD.h"
#include "TMath.h"

#include "TDecompLU.h"
#include "TDecompQRH.h"
#include "TDecompSVD.h"

void stress_matrix                (Int_t verbose);
void StatusPrint                  (Int_t id,const TString &title,Int_t status);

void stress_allocation            ();
void stress_matrix_fill           (Int_t rsize,Int_t csize);
void stress_element_op            (Int_t rsize,Int_t csize);
void stress_binary_ebe_op         (Int_t rsize, Int_t csize);
void stress_transposition         (Int_t msize);
void stress_special_creation      (Int_t dim);
void stress_matrix_fill           (Int_t rsize,Int_t csize);
void stress_matrix_promises       (Int_t dim);
void stress_norms                 (Int_t rsize,Int_t csize);
void stress_determinant           (Int_t msize);
void stress_mm_multiplications    (Int_t msize);
void stress_sym_mm_multiplications(Int_t msize);
void stress_vm_multiplications    (Int_t msize);
void stress_inversion             (Int_t msize);
void stress_matrix_io             ();

int main(int argc,char **argv)
{
  Int_t verbose = 0;
  Char_t c;
  while (argc > 1 && argv[1][0] == '-' && argv[1][1] != 0) {
    for (Int_t i = 1; (c = argv[1][i]) != 0; i++) {
      switch (c) {
        case 'v':
          verbose = 1;
          break;
        default:
          Error("vmatrix", "unknown flag -%c",c);
          break;
      }
    }
    argc--;
    argv++;
  }
  stress_matrix(verbose);
  return 0;
}
#endif

#define EPSILON 1.0e-14

Int_t gVerbose = 0;

//________________________________common part_________________________

void stress_matrix(Int_t verbose=0)
{
  cout << "******************************************************************" <<endl;
  cout << "*  Starting  Matrix - S T R E S S suite                          *" <<endl;
  cout << "******************************************************************" <<endl;

  gVerbose = verbose;
  stress_allocation();
  stress_matrix_fill(20,10);
  stress_element_op(20,10);
  stress_binary_ebe_op(10,20);
  stress_transposition(20);
  stress_special_creation(20);
#ifndef __CINT__
  stress_matrix_promises(20);
#endif
  stress_norms(40,20);
  stress_determinant(20);
  stress_mm_multiplications(20);
  stress_sym_mm_multiplications(20);
  stress_vm_multiplications(20);
  stress_inversion(20);

  stress_matrix_io();
  cout << "******************************************************************" <<endl;
}

//------------------------------------------------------------------------
void StatusPrint(Int_t id,const Char_t *title,Bool_t status)
{
  // Print test program number and its title
//   const Int_t kMAX = 65;
//   TString header = TString("Test ")+Form("%2d",id)+" : "+title;
//   const Int_t nch = header.Length();
//   for (Int_t i = nch; i < kMAX; i++) header += '.';
//   cout << header << (status ? "OK" : "FAILED") << endl;
  // Print test program number and its title
   const Int_t kMAX = 65;
   char header[80];
   snprintf(header,80,"Test %2d : %s",id,title);
   Int_t nch = strlen(header);
   for (Int_t i=nch;i<kMAX;i++) header[i] = '.';
   header[kMAX] = 0;
   header[kMAX-1] = ' ';
   cout << header << (status ? "OK" : "FAILED") << endl;
}

//------------------------------------------------------------------------
//          Test allocation functions and compatibility check
//
void stress_allocation()
{
  if (gVerbose)
    cout << "\n\n---> Test allocation and compatibility check" << endl;

  Bool_t ok = kTRUE;

  Int_t i,j;
  TMatrixD m1(4,20);
  for (i = m1.GetRowLwb(); i <= m1.GetRowUpb(); i++)
    for (j = m1.GetColLwb(); j <= m1.GetColUpb(); j++)
      m1(i,j) = TMath::Pi()*i+TMath::E()*j;

  TMatrixD m2(0,3,0,19);
  TMatrixD m3(1,4,0,19);
  TMatrixD m4(m1);

  if (gVerbose) {
    cout << "\nStatus information reported for matrix m3:" << endl;
    cout << "  Row lower bound ... " << m3.GetRowLwb() << endl;
    cout << "  Row upper bound ... " << m3.GetRowUpb() << endl;
    cout << "  Col lower bound ... " << m3.GetColLwb() << endl;
    cout << "  Col upper bound ... " << m3.GetColUpb() << endl;
    cout << "  No. rows ..........." << m3.GetNrows()  << endl;
    cout << "  No. cols ..........." << m3.GetNcols()  << endl;
    cout << "  No. of elements ...." << m3.GetNoElements() << endl;
  }

  if (gVerbose)
    cout << "\nCheck matrices 1 & 2 for compatibility" << endl;
  ok &= AreCompatible(m1,m2,gVerbose);

  if (gVerbose)
    cout << "Check matrices 1 & 4 for compatibility" << endl;
  ok &= AreCompatible(m1,m4,gVerbose);

  if (gVerbose)
    cout << "m2 has to be compatible with m3 after resizing to m3" << endl;
  m2.ResizeTo(m3);
  ok &= AreCompatible(m2,m3,gVerbose);

  TMatrixD m5(m1.GetNrows()+1,m1.GetNcols()+5);
  for (i = m5.GetRowLwb(); i <= m5.GetRowUpb(); i++)
    for (j = m5.GetColLwb(); j <= m5.GetColUpb(); j++)
      m5(i,j) = TMath::Pi()*i+TMath::E()*j;

  if (gVerbose)
    cout << "m1 has to be compatible with m5 after resizing to m5" << endl;
  m1.ResizeTo(m5.GetNrows(),m5.GetNcols());
  ok &= AreCompatible(m1,m5,gVerbose);

  if (gVerbose)
    cout << "m1 has to be equal to m4 after stretching and shrinking" << endl;
  m1.ResizeTo(m4.GetNrows(),m4.GetNcols());
  ok &= VerifyMatrixIdentity(m1,m4,gVerbose,EPSILON);
  if (gVerbose)
    cout << "m5 has to be equal to m1 after shrinking" << endl;
  m5.ResizeTo(m1.GetNrows(),m1.GetNcols());
  ok &= VerifyMatrixIdentity(m1,m5,gVerbose,EPSILON);

  if (gVerbose)
    cout << "stretching and shrinking for small matrices (stack)" << endl;
  if (gVerbose)
    cout << "m8 has to be equal to m7 after stretching and shrinking" << endl;
  TMatrixD m6(4,4);
  for (i = m6.GetRowLwb(); i <= m6.GetRowUpb(); i++)
    for (j = m6.GetColLwb(); j <= m6.GetColUpb(); j++)
      m6(i,j) = TMath::Pi()*i+TMath::E()*j;
  TMatrixD m8(3,3);
  for (i = m8.GetRowLwb(); i <= m8.GetRowUpb(); i++)
    for (j = m8.GetColLwb(); j <= m8.GetColUpb(); j++)
      m8(i,j) = TMath::Pi()*i+TMath::E()*j;
  TMatrixD m7(m8);

  m8.ResizeTo(4,4);
  m8.ResizeTo(3,3);
  ok &= VerifyMatrixIdentity(m7,m8,gVerbose,EPSILON);

  if (gVerbose)
    cout << "m6 has to be equal to m8 after shrinking" << endl;
  m6.ResizeTo(3,3);
  ok &= VerifyMatrixIdentity(m6,m8,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(1,"Allocation, Resizing",ok);
}

class FillMatrix : public TElementPosActionD {
   Int_t no_elems,no_cols;
   void Operation(Double_t &element) const
      { element = 4*TMath::Pi()/no_elems * (fI*no_cols+fJ); }
public:
   FillMatrix() {}
   FillMatrix(const TMatrixD &m) :
         no_elems(m.GetNoElements()),no_cols(m.GetNcols()) { }
};

//
//------------------------------------------------------------------------
//          Test Filling of matrix
//
void stress_matrix_fill(Int_t rsize,Int_t csize)
{
  if (gVerbose)
    cout << "\n\n---> Test different matrix filling methods\n" << endl;

  Bool_t ok = kTRUE;
  if (gVerbose)
    cout << "Creating m  with Apply function..." << endl;
  TMatrixD m(-1,rsize-2,1,csize);
#ifndef __CINT__
  FillMatrix f(m);
  m.Apply(f);
#else
  for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
    for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
      m(i,j) = 4*TMath::Pi()/m.GetNoElements() * (i*m.GetNcols()+j);
#endif

  {
    if (gVerbose)
      cout << "Check identity between m and matrix filled through (i,j)" << endl;

    TMatrixD m_overload1(-1,rsize-2,1,csize);
    TMatrixD m_overload2(-1,rsize-2,1,csize);

    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
    {
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
      {
        const Double_t val = 4*TMath::Pi()/rsize/csize*(i*csize+j);
        m_overload1(i,j)  = val;
        m_overload2[i][j] = val;
      }
    }

    ok &= VerifyMatrixIdentity(m,m_overload1,gVerbose,EPSILON);
    if (gVerbose)
      cout << "Check identity between m and matrix filled through [i][j]" << endl;
    ok &= VerifyMatrixIdentity(m,m_overload2,gVerbose,EPSILON);
    if (gVerbose)
      cout << "Check identity between matrix filled through [i][j] and (i,j)" << endl;
    ok &= VerifyMatrixIdentity(m_overload1,m_overload2,gVerbose,EPSILON);
  }

  {
    TArrayD a_fortran(rsize*csize);
    TArrayD a_c      (rsize*csize);
    for (Int_t i = 0; i < rsize; i++)
    {
      for (Int_t j = 0; j < csize; j++)
      {
        a_c[i*csize+j]       = 4*TMath::Pi()/rsize/csize*((i-1)*csize+j+1);
        a_fortran[i+rsize*j] = a_c[i*csize+j];
      }
    }

    if (gVerbose)
      cout << "Creating m_fortran by filling with fortran stored matrix" << endl;
    TMatrixD m_fortran(-1,rsize-2,1,csize,a_fortran.GetArray(),"F");
    if (gVerbose)
      cout << "Check identity between m and m_fortran" << endl;
    ok &= VerifyMatrixIdentity(m,m_fortran,gVerbose,EPSILON);

    if (gVerbose)
      cout << "Creating m_c by filling with c stored matrix" << endl;
    TMatrixD m_c(-1,rsize-2,1,csize,a_c.GetArray());
    if (gVerbose)
      cout << "Check identity between m and m_c" << endl;
    ok &= VerifyMatrixIdentity(m,m_c,gVerbose,EPSILON);
  }

  {
    if (gVerbose)
      cout << "Check insertion/extraction of sub-matrices" << endl;
    {
      TMatrixD m_sub1 = m;
      m_sub1.ResizeTo(0,rsize-2,2,csize);
      TMatrixD m_sub2 = m.GetSub(0,rsize-2,2,csize,"");
      ok &= VerifyMatrixIdentity(m_sub1,m_sub2,gVerbose,EPSILON);
    }

    {
      TMatrixD m2(-1,rsize-2,1,csize);
      TMatrixD m_part1 = m.GetSub(0,rsize-2,2,csize,"");
      TMatrixD m_part2 = m.GetSub(0,rsize-2,1,1,"");
      TMatrixD m_part3 = m.GetSub(-1,-1,2,csize,"");
      TMatrixD m_part4 = m.GetSub(-1,-1,1,1,"");
      m2.SetSub(0,2,m_part1);
      m2.SetSub(0,1,m_part2);
      m2.SetSub(-1,2,m_part3);
      m2.SetSub(-1,1,m_part4);
      ok &= VerifyMatrixIdentity(m,m2,gVerbose,EPSILON);
    }

    {
      TMatrixD m2(-1,rsize-2,1,csize);
      TMatrixD m_part1 = m.GetSub(0,rsize-2,2,csize,"S");
      TMatrixD m_part2 = m.GetSub(0,rsize-2,1,1,"S");
      TMatrixD m_part3 = m.GetSub(-1,-1,2,csize,"S");
      TMatrixD m_part4 = m.GetSub(-1,-1,1,1,"S");
      m2.SetSub(0,2,m_part1);
      m2.SetSub(0,1,m_part2);
      m2.SetSub(-1,2,m_part3);
      m2.SetSub(-1,1,m_part4);
      ok &= VerifyMatrixIdentity(m,m2,gVerbose,EPSILON);
    }
  }

  {
    if (gVerbose)
      cout << "Check array Use" << endl;
    {
      TMatrixD *m1 = new TMatrixD(m);
      TMatrixD *m2 = new TMatrixD();
      m2->Use(m1->GetRowLwb(),m1->GetRowUpb(),m1->GetColLwb(),m1->GetColUpb(),m1->GetMatrixArray());
      ok &= VerifyMatrixIdentity(m,*m2,gVerbose,EPSILON);
      m2->Sqr();
      TMatrixD m3 = m; m3.Sqr();
      ok &= VerifyMatrixIdentity(m3,*m1,gVerbose,EPSILON);
      delete m1;
      delete m2;
    }
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(2,"Filling, Inserting, Using",ok);
}

//
//------------------------------------------------------------------------
//                Test uniform element operations
//
typedef  double (*dfunc)(double);
class ApplyFunction : public TElementActionD {
   dfunc fFunc;
   void Operation(Double_t &element) const { element = fFunc(double(element)); }
public:
   ApplyFunction(dfunc func) : fFunc(func) { }
};

void stress_element_op(Int_t rsize,Int_t csize)
{
  Bool_t ok = kTRUE;
  const Double_t pattern = 8.625;

  TMatrixD m(-1,rsize-2,1,csize);

  if (gVerbose)
    cout << "\nWriting zeros to m..." << endl;
  {
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for(Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
        m(i,j) = 0;
    ok &= VerifyMatrixValue(m,0.,gVerbose,EPSILON);
  }

  if (gVerbose)
    cout << "Creating zero m1 ..." << endl;
  TMatrixD m1(TMatrixD::kZero, m);
  ok &= VerifyMatrixValue(m1,0.,gVerbose,EPSILON);

  if (gVerbose)
    cout << "Comparing m1 with 0 ..." << endl;
  R__ASSERT(m1 == 0);
  R__ASSERT(!(m1 != 0));

  if (gVerbose)
    cout << "Writing a pattern " << pattern << " by assigning to m(i,j)..." << endl;
  {
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
        m(i,j) = pattern;
    ok &= VerifyMatrixValue(m,pattern,gVerbose,EPSILON);
  }

  if (gVerbose)
    cout << "Writing the pattern by assigning to m1 as a whole ..."  << endl;
  m1 = pattern;
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);

  if (gVerbose)
    cout << "Comparing m and m1 ..." << endl;
  R__ASSERT(m == m1);
  if (gVerbose)
    cout << "Comparing (m=0) and m1 ..." << endl;
  R__ASSERT(!(m.Zero() == m1));

  if (gVerbose)
    cout << "Clearing m1 ..." << endl;
  m1.Zero();
  ok &= VerifyMatrixValue(m1,0.,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nClear m and add the pattern" << endl;
  m.Zero();
  m += pattern;
  ok &= VerifyMatrixValue(m,pattern,gVerbose,EPSILON);
  if (gVerbose)
    cout << "   add the doubled pattern with the negative sign" << endl;
  m += -2*pattern;
  ok &= VerifyMatrixValue(m,-pattern,gVerbose,EPSILON);
  if (gVerbose)
    cout << "   subtract the trippled pattern with the negative sign" << endl;
  m -= -3*pattern;
  ok &= VerifyMatrixValue(m,2*pattern,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nVerify comparison operations when all elems are the same" << endl;
  m = pattern;
  R__ASSERT( m == pattern && !(m != pattern) );
  R__ASSERT( m > 0 && m >= pattern && m <= pattern );
  R__ASSERT( m > -pattern && m >= -pattern );
  R__ASSERT( m <= pattern && !(m < pattern) );
  m -= 2*pattern;
  R__ASSERT( m  < -pattern/2 && m <= -pattern/2 );
  R__ASSERT( m  >= -pattern && !(m > -pattern) );

  if (gVerbose)
    cout << "\nVerify comparison operations when not all elems are the same" << endl;
  m = pattern; m(m.GetRowUpb(),m.GetColUpb()) = pattern-1;
  R__ASSERT( !(m == pattern) && !(m != pattern) );
  R__ASSERT( m != 0 );                   // none of elements are 0
  R__ASSERT( !(m >= pattern) && m <= pattern && !(m<pattern) );
  R__ASSERT( !(m <= pattern-1) && m >= pattern-1 && !(m>pattern-1) );

  if (gVerbose)
    cout << "\nAssign 2*pattern to m by repeating additions" << endl;
  m = 0; m += pattern; m += pattern;
  if (gVerbose)
    cout << "Assign 2*pattern to m1 by multiplying by two " << endl;
  m1 = pattern; m1 *= 2;
  ok &= VerifyMatrixValue(m1,2*pattern,gVerbose,EPSILON);
  R__ASSERT( m == m1 );
  if (gVerbose)
    cout << "Multiply m1 by one half returning it to the 1*pattern" << endl;
  m1 *= 1/2.;
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nAssign -pattern to m and m1" << endl;
  m.Zero(); m -= pattern; m1 = -pattern;
  ok &= VerifyMatrixValue(m,-pattern,gVerbose,EPSILON);
  R__ASSERT( m == m1 );
  if (gVerbose)
    cout << "m = sqrt(sqr(m)); m1 = abs(m1); Now m and m1 have to be the same" << endl;
  m.Sqr();
  ok &= VerifyMatrixValue(m,pattern*pattern,gVerbose,EPSILON);
  m.Sqrt();
  ok &= VerifyMatrixValue(m,pattern,gVerbose,EPSILON);
  m1.Abs();
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);
  ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nCheck out to see that sin^2(x) + cos^2(x) = 1" << endl;
  {
#ifndef __CINT__
    FillMatrix f(m);
    m.Apply(f);
#else
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
        m(i,j) = 4*TMath::Pi()/m.GetNoElements() * (i*m.GetNcols()+j);
#endif
  }
  m1 = m;
  {
#ifndef __CINT__
    ApplyFunction s(&TMath::Sin);
    ApplyFunction c(&TMath::Cos);
    m.Apply(s);
    m1.Apply(c);
#else
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++) {
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++) {
        m(i,j)  = TMath::Sin(m(i,j));
        m1(i,j) = TMath::Cos(m1(i,j));
      }
    }
#endif
  }
  m.Sqr();
  m1.Sqr();
  m += m1;
  ok &= VerifyMatrixValue(m,1.,gVerbose,EPSILON);

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(3,"Uniform matrix operations",ok);
}

//
//------------------------------------------------------------------------
//        Test binary matrix element-by-element operations
//
void stress_binary_ebe_op(Int_t rsize, Int_t csize)
{
  if (gVerbose)
    cout << "\n---> Test Binary Matrix element-by-element operations" << endl;

  Bool_t ok = kTRUE;
  const double pattern = 4.25;

  TMatrixD m(2,rsize+1,0,csize-1);
  TMatrixD m1(TMatrixD::kZero,m);
  TMatrixD mp(TMatrixD::kZero,m);

  {
    for (Int_t i = mp.GetRowLwb(); i <= mp.GetRowUpb(); i++)
      for (Int_t j = mp.GetColLwb(); j <= mp.GetColUpb(); j++)
        mp(i,j) = (i-m.GetNrows()/2.)*j*pattern;
  }

  if (gVerbose)
    cout << "\nVerify assignment of a matrix to the matrix" << endl;
  m = pattern;
  m1.Zero();
  m1 = m;
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);
  R__ASSERT( m1 == m );

  if (gVerbose)
    cout << "\nAdding the matrix to itself, uniform pattern " << pattern << endl;
  m.Zero(); m = pattern;
  m1 = m; m1 += m1;
  ok &= VerifyMatrixValue(m1,2*pattern,gVerbose,EPSILON);
  if (gVerbose)
    cout << "  subtracting two matrices ..." << endl;
  m1 -= m;
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);
  if (gVerbose)
    cout << "  subtracting the matrix from itself" << endl;
  m1 -= m1;
  ok &= VerifyMatrixValue(m1,0.,gVerbose,EPSILON);
  if (gVerbose)
    cout << "  adding two matrices together" << endl;
  m1 += m;
  ok &= VerifyMatrixValue(m1,pattern,gVerbose,EPSILON);

  if (gVerbose) {
    cout << "\nArithmetic operations on matrices with not the same elements" << endl;
    cout << "   adding mp to the zero matrix..." << endl;
  }
  m.Zero(); m += mp;
  ok &= VerifyMatrixIdentity(m,mp,gVerbose,EPSILON);
  m1 = m;
  if (gVerbose)
    cout << "   making m = 3*mp and m1 = 3*mp, via add() and succesive mult" << endl;
  Add(m,2.,mp);
  m1 += m1; m1 += mp;
  ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);
  if (gVerbose)
    cout << "   clear both m and m1, by subtracting from itself and via add()" << endl;
  m1 -= m1;
  Add(m,-3.,mp);
  ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);

  if (gVerbose) {
    cout << "\nTesting element-by-element multiplications and divisions" << endl;
    cout << "   squaring each element with sqr() and via multiplication" << endl;
  }
  m = mp; m1 = mp;
  m.Sqr();
  ElementMult(m1,m1);
  ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);
  if (gVerbose)
    cout << "   compare (m = pattern^2)/pattern with pattern" << endl;
  m = pattern; m1 = pattern;
  m.Sqr();
  ElementDiv(m,m1);
  ok &= VerifyMatrixValue(m,pattern,gVerbose,EPSILON);
  if (gVerbose)
    Compare(m1,m);

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(4,"Binary Matrix element-by-element operations",ok);
}

//
//------------------------------------------------------------------------
//              Verify matrix transposition
//
void stress_transposition(Int_t msize)
{
  if (gVerbose) {
    cout << "\n---> Verify matrix transpose "
            "for matrices of a characteristic size " << msize << endl;
  }

  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\nCheck to see that a square UnitMatrix stays the same";
    TMatrixD m(msize,msize);
    m.UnitMatrix();
    TMatrixD mt(TMatrixD::kTransposed,m);
    ok &= ( m == mt ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "\nTest a non-square UnitMatrix";
    TMatrixD m(msize,msize+1);
    m.UnitMatrix();
    TMatrixD mt(TMatrixD::kTransposed,m);
    R__ASSERT(m.GetNrows() == mt.GetNcols() && m.GetNcols() == mt.GetNrows() );
    for (Int_t i = m.GetRowLwb(); i <= TMath::Min(m.GetRowUpb(),m.GetColUpb()); i++)
      for (Int_t j = m.GetColLwb(); j <= TMath::Min(m.GetRowUpb(),m.GetColUpb()); j++)
        ok &= ( m(i,j) == mt(i,j) ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "\nCheck to see that a symmetric (Hilbert)Matrix stays the same";
    TMatrixD m = THilbertMatrixD(msize,msize);
    TMatrixD mt(TMatrixD::kTransposed,m);
    ok &= ( m == mt ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "\nCheck transposing a non-symmetric matrix";
    TMatrixD m = THilbertMatrixD(msize+1,msize);
    m(1,2) = TMath::Pi();
    TMatrixD mt(TMatrixD::kTransposed,m);
    R__ASSERT(m.GetNrows() == mt.GetNcols() && m.GetNcols() == mt.GetNrows());
    R__ASSERT(mt(2,1)  == (Double_t)TMath::Pi() && mt(1,2)  != (Double_t)TMath::Pi());
    R__ASSERT(mt[2][1] == (Double_t)TMath::Pi() && mt[1][2] != (Double_t)TMath::Pi());

    if (gVerbose)
      cout << "\nCheck double transposing a non-symmetric matrix" << endl;
    TMatrixD mtt(TMatrixD::kTransposed,mt);
    ok &= ( m == mtt ) ? kTRUE : kFALSE;
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(5,"Matrix transposition",ok);
}

//
//------------------------------------------------------------------------
//           Test special matrix creation
//
class MakeHilbert : public TElementPosActionD {
  void Operation(Double_t &element) const { element = 1./(fI+fJ+1); }
public:
  MakeHilbert() { }
};

#ifndef __CINT__
class TestUnit : public TElementPosActionD {
  mutable Int_t fIsUnit;
  void Operation(Double_t &element) const
      { if (fIsUnit)
          fIsUnit = ((fI==fJ) ? (element == 1.0) : (element == 0)); }
public:
  TestUnit() : fIsUnit(0==0) { }
  Int_t is_indeed_unit() const { return fIsUnit; }
};
#else
  Bool_t is_indeed_unit(TMatrixD &m) {
    Bool_t isUnit = kTRUE;
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++) {
        if (isUnit)
          isUnit = ((i==j) ? (m(i,j) == 1.0) : (m(i,j) == 0));
      }
    return isUnit;
  }
#endif

void stress_special_creation(Int_t dim)
{
  if (gVerbose)
    cout << "\n---> Check creating some special matrices of dimension " << dim << endl;

  Int_t j;
  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\ntest creating Hilbert matrices" << endl;
    TMatrixD m = THilbertMatrixD(dim+1,dim);
    TMatrixD m1(TMatrixD::kZero,m);
    ok &= ( !(m == m1) ) ? kTRUE : kFALSE;
    ok &= ( m != 0 ) ? kTRUE : kFALSE;
#ifndef __CINT__
    MakeHilbert mh;
    m1.Apply(mh);
#else
    for (Int_t i = m1.GetRowLwb(); i <= m1.GetRowUpb(); i++)
      for (j = m1.GetColLwb(); j <= m1.GetColUpb(); j++)
        m1(i,j) = 1./(i+j+1);
#endif
    ok &= ( m1 != 0 ) ? kTRUE : kFALSE;
    ok &= ( m == m1 ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "test creating zero matrix and copy constructor" << endl;
    TMatrixD m = THilbertMatrixD(dim,dim+1);
    ok &= ( m != 0 ) ? kTRUE : kFALSE;
    TMatrixD m1(m);               // Applying the copy constructor
    ok &= ( m1 == m ) ? kTRUE : kFALSE;
    TMatrixD m2(TMatrixD::kZero,m);
    ok &= ( m2 == 0 ) ? kTRUE : kFALSE;
    ok &= ( m != 0 ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "test creating unit matrices" << endl;
    TMatrixD m(dim,dim);
#ifndef __CINT__
    {
      TestUnit test_unit;
      m.Apply(test_unit);
      ok &= ( !test_unit.is_indeed_unit() ) ? kTRUE : kFALSE;
    }
#else
    ok &= ( !is_indeed_unit(m) ) ? kTRUE : kFALSE;
#endif
    m.UnitMatrix();
#ifndef __CINT__
    {
      TestUnit test_unit;
       m.Apply(test_unit);
       ok &= ( test_unit.is_indeed_unit() ) ? kTRUE : kFALSE;
    }
#else
    ok &= ( is_indeed_unit(m) ) ? kTRUE : kFALSE;
#endif
    m.ResizeTo(dim-1,dim);
    TMatrixD m2(TMatrixD::kUnit,m);
#ifndef __CINT__
    {
      TestUnit test_unit;
      m2.Apply(test_unit);
      ok &= ( test_unit.is_indeed_unit() ) ? kTRUE : kFALSE;
    }
#else
    ok &= ( is_indeed_unit(m2) ) ? kTRUE : kFALSE;
#endif
    m.ResizeTo(dim,dim-2);
    m.UnitMatrix();
#ifndef __CINT__
    {
      TestUnit test_unit;
      m.Apply(test_unit);
      ok &= ( test_unit.is_indeed_unit() ) ? kTRUE : kFALSE;
    }
#else
    ok &= ( is_indeed_unit(m) ) ? kTRUE : kFALSE;
#endif
  }

  {
    if (gVerbose)
      cout << "check to see that Haar matrix has *exactly* orthogonal columns" << endl;
    const Int_t order = 5;
    const TMatrixD haar = THaarMatrixD(order);
    ok &= ( haar.GetNrows() == (1<<order) &&
               haar.GetNrows() == haar.GetNcols() ) ? kTRUE : kFALSE;
    TVectorD colj(1<<order);
    TVectorD coll(1<<order);
    for (j = haar.GetColLwb(); j <= haar.GetColUpb(); j++) {
      colj = TMatrixDColumn_const(haar,j);
      ok &= (TMath::Abs(colj*colj-1.0) <= 1.0e-15 ) ? kTRUE : kFALSE;
      for (Int_t l = j+1; l <= haar.GetColUpb(); l++) {
        coll = TMatrixDColumn_const(haar,l);
        const Double_t val = colj*coll;
        ok &= ( TMath::Abs(val) <= 1.0e-15 ) ? kTRUE : kFALSE;
      }
    }

    if (gVerbose)
      cout << "make Haar (sub)matrix and test it *is* a submatrix" << endl;
    const Int_t no_sub_cols = (1<<order) - 3;
    const TMatrixD haar_sub = THaarMatrixD(order,no_sub_cols);
    ok &= ( haar_sub.GetNrows() == (1<<order) &&
               haar_sub.GetNcols() == no_sub_cols ) ? kTRUE : kFALSE;
    for (j = haar_sub.GetColLwb(); j <= haar_sub.GetColUpb(); j++) {
      colj = TMatrixDColumn_const(haar,j);
      coll = TMatrixDColumn_const(haar_sub,j);
      ok &= VerifyVectorIdentity(colj,coll,gVerbose);
    }
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(6,"Haar/Hilbert Matrix",ok);
}

//
//------------------------------------------------------------------------
//           Test matrix promises
//
class hilbert_matrix_promise : public TMatrixDLazy {
  void FillIn(TMatrixD &m) const { m = THilbertMatrixD(m.GetRowLwb(),m.GetRowUpb(),
                                                   m.GetColLwb(),m.GetColUpb()); }

public:
  hilbert_matrix_promise(Int_t nrows,Int_t ncols)
     : TMatrixDLazy(nrows,ncols) {}
  hilbert_matrix_promise(Int_t row_lwb,Int_t row_upb,
                         Int_t col_lwb,Int_t col_upb)
     : TMatrixDLazy(row_lwb,row_upb,col_lwb,col_upb) { }
};

void stress_matrix_promises(Int_t dim)
{
  if (gVerbose)
    cout << "\n---> Check making/forcing promises, (lazy)matrices of dimension " << dim << endl;

  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\nmake a promise and force it by a constructor" << endl;
    TMatrixD m  = hilbert_matrix_promise(dim,dim+1);
    TMatrixD m1 = THilbertMatrixD(dim,dim+1);
    ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);
  }

  {
    if (gVerbose)
      cout << "make a promise and force it by an assignment" << endl;
    TMatrixD m(-1,dim,0,dim);
    m = hilbert_matrix_promise(-1,dim,0,dim);
    TMatrixD m1 = THilbertMatrixD(-1,dim,0,dim);
    ok &= VerifyMatrixIdentity(m,m1,gVerbose,EPSILON);
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(7,"Matrix promises",ok);
}

//
//------------------------------------------------------------------------
//             Verify the norm calculation
//
void stress_norms(Int_t rsize,Int_t csize)
{
  if (gVerbose)
    cout << "\n---> Verify norm calculations" << endl;

  Bool_t ok = kTRUE;
  const double pattern = 10.25;

  if (rsize % 2 == 1 || csize %2 == 1)
    Fatal("stress_norms","Sorry, size of the matrix to test must be even for this test\n");

  TMatrixD m(rsize,csize);

  if (gVerbose)
    cout << "\nAssign " << pattern << " to all the elements and check norms" << endl;
  m = pattern;
  if (gVerbose)
    cout << "  1. (col) norm should be pattern*nrows" << endl;
  ok &= ( m.Norm1() == pattern*m.GetNrows() ) ? kTRUE : kFALSE;
  ok &= ( m.Norm1() == m.ColNorm() ) ? kTRUE : kFALSE;
  if (gVerbose)
    cout << "  Inf (row) norm should be pattern*ncols" << endl;
  ok &= ( m.NormInf() == pattern*m.GetNcols() ) ? kTRUE : kFALSE;
  ok &= ( m.NormInf() == m.RowNorm() ) ? kTRUE : kFALSE;
  if (gVerbose)
    cout << "  Square of the Eucl norm has got to be pattern^2 * no_elems" << endl;
  ok &= ( m.E2Norm() == (pattern*pattern)*m.GetNoElements() ) ? kTRUE : kFALSE;
  TMatrixD m1(TMatrixD::kZero,m);
  ok &= ( m.E2Norm() == E2Norm(m,m1) ) ? kTRUE : kFALSE;

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(8,"Matrix Norms",ok);
}

//
//------------------------------------------------------------------------
//              Verify the determinant evaluation
//
void stress_determinant(Int_t msize)
{
  if (gVerbose)
    cout << "\n---> Verify determinant evaluation for a square matrix of size " << msize << endl;

  Bool_t ok = kTRUE;
  TMatrixD m(msize,msize);
  const double pattern = 2.5;

  if (gVerbose)
    cout << "\nCheck to see that the determinant of the unit matrix is one";
  m.UnitMatrix();
  if (gVerbose)
    cout << "\n determinant is " << m.Determinant();
  ok &= ( m.Determinant() == 1 ) ? kTRUE : kFALSE;

  if (gVerbose)
    cout << "\nCheck the determinant for the matrix with " << pattern << " at the diagonal";
  {
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
        m(i,j) = ( i==j ? pattern : 0 );
  }
  if (gVerbose)
    cout << "\n\tdeterminant is " << m.Determinant() << " should be " << TMath::Power(pattern,(double)m.GetNrows()) <<endl;
  ok &= ( TMath::Abs(m.Determinant()-TMath::Power(pattern,(double)m.GetNrows())) < DBL_EPSILON  ) ? kTRUE : kFALSE;

  if (gVerbose)
    cout << "\nCheck the determinant of the transposed matrix";
  m.UnitMatrix();
  m(1,2) = pattern;
  TMatrixD m_tran(TMatrixD::kTransposed,m);
  ok &= ( !(m == m_tran) ) ? kTRUE : kFALSE;
  ok &= ( m.Determinant() == m_tran.Determinant() ) ? kTRUE : kFALSE;

  {
    if (gVerbose)
      cout << "\nswap two rows/cols of a matrix through method 1 and watch det's sign";
    m.UnitMatrix();
    TMatrixDRow(m,3) = pattern;
    const double det1 = m.Determinant();
    TMatrixDRow row1(m,1);
    TVectorD vrow1(m.GetRowLwb(),m.GetRowUpb()); vrow1 = row1;
    TVectorD vrow3(m.GetRowLwb(),m.GetRowUpb()); vrow3 = TMatrixDRow(m,3);
    row1 = vrow3; TMatrixDRow(m,3) = vrow1;
    ok &= ( m.Determinant() == -det1 ) ? kTRUE : kFALSE;
    TMatrixDColumn col2(m,2);
    TVectorD vcol2(m.GetRowLwb(),m.GetRowUpb()); vcol2 = col2;
    TVectorD vcol4(m.GetRowLwb(),m.GetRowUpb()); vcol4 = TMatrixDColumn(m,4);
    col2 = vcol4; TMatrixDColumn(m,4) = vcol2;
    ok &= ( m.Determinant() == det1 ) ? kTRUE : kFALSE;
  }

  {
    if (gVerbose)
      cout << "\nswap two rows/cols of a matrix through method 2 and watch det's sign";
    m.UnitMatrix();
    TMatrixDRow(m,3) = pattern;
    const double det1 = m.Determinant();

    TMatrixD m_save( m);
    TMatrixDRow(m,1) = TMatrixDRow(m_save,3);
    TMatrixDRow(m,3) = TMatrixDRow(m_save,1);
    ok &= ( m.Determinant() == -det1 ) ? kTRUE : kFALSE;

    m_save = m;
    TMatrixDColumn(m,2) = TMatrixDColumn(m_save,4);
    TMatrixDColumn(m,4) = TMatrixDColumn(m_save,2);
    ok &= ( m.Determinant() == det1 ) ? kTRUE : kFALSE;
  }

  if (gVerbose)
    cout << "\nCheck the determinant for the matrix with " << pattern << " at the anti-diagonal";
  {
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
        m(i,j) = ( i==(m.GetColUpb()+m.GetColLwb()-j) ? pattern : 0 );
    ok &= ( m.Determinant() == TMath::Power(pattern,(double)m.GetNrows()) *
               ( m.GetNrows()*(m.GetNrows()-1)/2 & 1 ? -1 : 1 ) ) ? kTRUE : kFALSE;
  }

  if (0)
  {
    if (gVerbose)
      cout << "\nCheck the determinant for the singular matrix"
              "\n\tdefined as above with zero first row";
    m.Zero();
    {
      for (Int_t i = m.GetRowLwb()+1; i <= m.GetRowUpb(); i++)
        for (Int_t j = m.GetColLwb(); j <= m.GetColUpb(); j++)
          m(i,j) = ( i==(m.GetColUpb()+m.GetColLwb()-j) ? pattern : 0 );
    }
    if (gVerbose)
      cout << "\n\tdeterminant is " << m.Determinant();
    ok &= ( m.Determinant() == 0 ) ? kTRUE : kFALSE;
  }

  if (gVerbose)
    cout << "\nCheck out the determinant of the Hilbert matrix";
  TMatrixD H = THilbertMatrixD(3,3);
  if (gVerbose) {
    cout << "\n    3x3 Hilbert matrix: exact determinant 1/2160 ";
    cout << "\n                              computed    1/"<< 1/H.Determinant();
  }

  H.ResizeTo(4,4);
  H = THilbertMatrixD(4,4);
  if (gVerbose) {
    cout << "\n    4x4 Hilbert matrix: exact determinant 1/6048000 ";
    cout << "\n                              computed    1/"<< 1/H.Determinant();
  }

  H.ResizeTo(5,5);
  H = THilbertMatrixD(5,5);
  if (gVerbose) {
    cout << "\n    5x5 Hilbert matrix: exact determinant 3.749295e-12";
    cout << "\n                              computed    "<< H.Determinant();
  }

  if (gVerbose) {
    TDecompQRH qrh(H);
    Double_t d1,d2;
    qrh.Det(d1,d2);
    cout  << "\n qrh det = " << d1*TMath::Power(2.0,d2) <<endl;
  }

  if (gVerbose) {
    TDecompSVD svd(H);
    Double_t d1,d2;
    svd.Det(d1,d2);
    cout  << "\n svd det = " << d1*TMath::Power(2.0,d2) <<endl;
  }

  H.ResizeTo(7,7);
  H = THilbertMatrixD(7,7);
  if (gVerbose) {
    cout << "\n    7x7 Hilbert matrix: exact determinant 4.8358e-25";
    cout << "\n                              computed    "<< H.Determinant();
  }

  H.ResizeTo(9,9);
  H = THilbertMatrixD(9,9);
  if (gVerbose) {
    cout << "\n    9x9 Hilbert matrix: exact determinant 9.72023e-43";
    cout << "\n                              computed    "<< H.Determinant();
  }

  H.ResizeTo(10,10);
  H = THilbertMatrixD(10,10);
  if (gVerbose) {
    cout << "\n    10x10 Hilbert matrix: exact determinant 2.16418e-53";
    cout << "\n                              computed    "<< H.Determinant();
  }

  if (gVerbose)
  cout << "\nDone\n" << endl;

  StatusPrint(9,"Matrix Determinant",ok);
}

//
//------------------------------------------------------------------------
//               Verify matrix multiplications
//
void stress_mm_multiplications(Int_t msize)
{
  if (gVerbose)
    cout << "\n---> Verify matrix multiplications "
            "for matrices of the characteristic size " << msize << endl;

  const Double_t epsilon = EPSILON*msize/100;

  Int_t i,j;
  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\nTest inline multiplications of the UnitMatrix" << endl;
    TMatrixD m = THilbertMatrixD(-1,msize,-1,msize);
    TMatrixD u(TMatrixD::kUnit,m);
    m(3,1) = TMath::Pi();
    u *= m;
    ok &= VerifyMatrixIdentity(u,m,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Test inline multiplications by a DiagMat" << endl;
    TMatrixD m = THilbertMatrixD(msize+3,msize);
    m(1,3) = TMath::Pi();
    TVectorD v(msize);
    for (i = v.GetLwb(); i <= v.GetUpb(); i++)
      v(i) = 1+i;
    TMatrixD diag(msize,msize);
    TMatrixDDiag d = TMatrixDDiag(diag);
    d = v;
    TMatrixD eth = m;
    for (i = eth.GetRowLwb(); i <= eth.GetRowUpb(); i++)
      for (j = eth.GetColLwb(); j <= eth.GetColUpb(); j++)
        eth(i,j) *= v(j);
    m *= diag;
    ok &= VerifyMatrixIdentity(m,eth,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Test XPP = X where P is a permutation matrix" << endl;
    TMatrixD m = THilbertMatrixD(msize-1,msize);
    m(2,3) = TMath::Pi();
    TMatrixD eth = m;
    TMatrixD p(msize,msize);
    for (i = p.GetRowLwb(); i <= p.GetRowUpb(); i++)
      p(p.GetRowUpb()+p.GetRowLwb()-i,i) = 1;
    m *= p;
    m *= p;
    ok &= VerifyMatrixIdentity(m,eth,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Test general matrix multiplication through inline mult" << endl;
    TMatrixD m = THilbertMatrixD(msize-2,msize);
    m(3,3) = TMath::Pi();
    TMatrixD mt(TMatrixD::kTransposed,m);
    TMatrixD p = THilbertMatrixD(msize,msize);
    TMatrixDDiag(p) += 1;
    TMatrixD mp(m,TMatrixD::kMult,p);
    TMatrixD m1 = m;
    m *= p;
    ok &= VerifyMatrixIdentity(m,mp,gVerbose,epsilon);
    TMatrixD mp1(mt,TMatrixD::kTransposeMult,p);
    VerifyMatrixIdentity(m,mp1,gVerbose,epsilon);
    ok &= ( !(m1 == m) );
    TMatrixD mp2(TMatrixD::kZero,m1);
    ok &= ( mp2 == 0 );
    mp2.Mult(m1,p);
    ok &= VerifyMatrixIdentity(m,mp2,gVerbose,epsilon);

    if (gVerbose)
      cout << "Test XP=X*P  vs XP=X;XP*=P" << endl;
    TMatrixD mp3 = m1*p;
    ok &= VerifyMatrixIdentity(m,mp3,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Check to see UU' = U'U = E when U is the Haar matrix" << endl;
    const Int_t order = 5;
    const Int_t no_sub_cols = (1<<order)-5;
    TMatrixD haar_sub = THaarMatrixD(5,no_sub_cols);
    TMatrixD haar_sub_t(TMatrixD::kTransposed,haar_sub);
    TMatrixD hsths(haar_sub_t,TMatrixD::kMult,haar_sub);
    TMatrixD hsths1(TMatrixD::kZero,hsths); hsths1.Mult(haar_sub_t,haar_sub);
    TMatrixD hsths_eth(TMatrixD::kUnit,hsths);
    ok &= ( hsths.GetNrows() == no_sub_cols && hsths.GetNcols() == no_sub_cols );
    ok &= VerifyMatrixIdentity(hsths,hsths_eth,gVerbose,EPSILON);
    ok &= VerifyMatrixIdentity(hsths1,hsths_eth,gVerbose,EPSILON);
    TMatrixD haar = THaarMatrixD(5);
    TMatrixD unit(TMatrixD::kUnit,haar);
    TMatrixD haar_t(TMatrixD::kTransposed,haar);
    TMatrixD hth(haar,TMatrixD::kTransposeMult,haar);
    TMatrixD hht(haar,TMatrixD::kMult,haar_t);
    TMatrixD hht1 = haar; hht1 *= haar_t;
    TMatrixD hht2(TMatrixD::kZero,haar); hht2.Mult(haar,haar_t);
    ok &= VerifyMatrixIdentity(unit,hth,gVerbose,EPSILON);
    ok &= VerifyMatrixIdentity(unit,hht,gVerbose,EPSILON);
    ok &= VerifyMatrixIdentity(unit,hht1,gVerbose,EPSILON);
    ok &= VerifyMatrixIdentity(unit,hht2,gVerbose,EPSILON);
  }
  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(10,"General Matrix Multiplications",ok);
}

//
//------------------------------------------------------------------------
//               Verify symmetric matrix multiplications
//
void stress_sym_mm_multiplications(Int_t msize)
{
  if (gVerbose)
    cout << "\n---> Verify symmetric matrix multiplications "
            "for matrices of the characteristic size " << msize << endl;

  Bool_t ok = kTRUE;

  Int_t i,j;
  const Double_t epsilon = EPSILON*msize/100;

  {
    if (gVerbose)
      cout << "\nTest inline multiplications of the UnitMatrix" << endl;
    TMatrixD m = THilbertMatrixD(-1,msize,-1,msize);
    TMatrixDSym m_sym(-1,msize,m.GetMatrixArray());
    TMatrixDSym u(TMatrixDSym::kUnit,m_sym);
    TMatrixD u2 = u * m_sym;
    ok &= VerifyMatrixIdentity(u2,m_sym,gVerbose,epsilon);
  }

  if (ok)
  {
    if (gVerbose)
      cout << "\nTest symmetric multiplications" << endl;
    {
      if (gVerbose)
        cout << "\n  Test m * m_sym == m_sym * m == m_sym * m_sym  multiplications" << endl;
      TMatrixD m = THilbertMatrixD(-1,msize,-1,msize);
      TMatrixDSym m_sym(-1,msize,m.GetMatrixArray());
      TMatrixD mm      = m * m;
      TMatrixD mm_sym1 = m_sym * m_sym;
      TMatrixD mm_sym2 = m     * m_sym;
      TMatrixD mm_sym3 = m_sym * m;
      ok &= VerifyMatrixIdentity(mm,mm_sym1,gVerbose,epsilon);
      ok &= VerifyMatrixIdentity(mm,mm_sym2,gVerbose,epsilon);
      ok &= VerifyMatrixIdentity(mm,mm_sym3,gVerbose,epsilon);
    }

    {
      if (gVerbose)
        cout << "\n  Test n * m_sym == n * m multiplications" << endl;
      TMatrixD n = THilbertMatrixD(-1,msize,-1,msize);
      TMatrixD m = n;
      n(1,3) = TMath::Pi();
      n(3,1) = TMath::Pi();
      TMatrixDSym m_sym(-1,msize,m.GetMatrixArray());
      TMatrixD nm1 = n * m_sym;
      TMatrixD nm2 = n * m;
      ok &= VerifyMatrixIdentity(nm1,nm2,gVerbose,epsilon);
    }
  }

  if (ok)
  {
    if (gVerbose)
      cout << "Test inline multiplications by a DiagMatrix" << endl;
    TMatrixDSym m = THilbertMatrixDSym(msize);
    m(1,3) = TMath::Pi();
    m(3,1) = TMath::Pi();
    TVectorD v(msize);
    for (i = v.GetLwb(); i <= v.GetUpb(); i++)
      v(i) = 1+i;
    TMatrixDSym diag(msize);
    TMatrixDDiag d(diag); d = v;
    TMatrixDSym eth = m;
    for (i = eth.GetRowLwb(); i <= eth.GetRowUpb(); i++)
      for (j = eth.GetColLwb(); j <= eth.GetColUpb(); j++)
        eth(i,j) *= v(j);
    TMatrixD m2 = m * diag;
    ok &= VerifyMatrixIdentity(m2,eth,gVerbose,epsilon);
  }

  if (ok)
  {
    if (gVerbose)
      cout << "Test XPP = X where P is a permutation matrix" << endl;
    TMatrixDSym m = THilbertMatrixDSym(msize);
    m(2,3) = TMath::Pi();
    m(3,2) = TMath::Pi();
    TMatrixDSym eth = m;
    TMatrixDSym p(msize);
    for (i = p.GetRowLwb(); i <= p.GetRowUpb(); i++)
      p(p.GetRowUpb()+p.GetRowLwb()-i,i) = 1;
    TMatrixD m2 = m * p;
    m2 *= p;
    ok &= VerifyMatrixIdentity(m2,eth,gVerbose,epsilon);
  }

  if (ok)
  {
    if (gVerbose)
      cout << "Test general matrix multiplication through inline mult" << endl;
    TMatrixDSym m = THilbertMatrixDSym(msize);
    m(2,3) = TMath::Pi();
    m(3,2) = TMath::Pi();
    TMatrixDSym mt(TMatrixDSym::kTransposed,m);
    TMatrixDSym p = THilbertMatrixDSym(msize);
    TMatrixDDiag(p) += 1;
    TMatrixD mp(m,TMatrixD::kMult,p);
    TMatrixDSym m1 = m;
    TMatrixD m3(m,TMatrixD::kMult,p);
    memcpy(m.GetMatrixArray(),m3.GetMatrixArray(),msize*msize*sizeof(Double_t));
    ok &= VerifyMatrixIdentity(m,mp,gVerbose,epsilon);
    TMatrixD mp1(mt,TMatrixD::kTransposeMult,p);
    ok &= VerifyMatrixIdentity(m,mp1,gVerbose,epsilon);
    ok &= ( !(m1 == m) ) ? kTRUE : kFALSE;
    TMatrixDSym mp2(TMatrixDSym::kZero,m);
    ok &= ( mp2 == 0 ) ? kTRUE : kFALSE;

    if (gVerbose)
      cout << "Test XP=X*P  vs XP=X;XP*=P" << endl;
    TMatrixD mp3 = m1*p;
    ok &= VerifyMatrixIdentity(m,mp3,gVerbose,epsilon);
  }

  if (ok)
  {
    if (gVerbose)
      cout << "Check to see UU' = U'U = E when U is the Haar matrix" << endl;
    {
      const Int_t order = 5;
      const Int_t no_sub_cols = (1<<order)-5;
      TMatrixD haarb = THaarMatrixD(5,no_sub_cols);
      TMatrixD haarb_t(TMatrixD::kTransposed,haarb);
      TMatrixD hth(haarb_t,TMatrixD::kMult,haarb);
      TMatrixDSym  hth1(TMatrixDSym::kAtA,haarb);
      ok &= VerifyMatrixIdentity(hth,hth1,gVerbose,epsilon);
    }

    {
      TMatrixD haar = THaarMatrixD(5);
      TMatrixD unit(TMatrixD::kUnit,haar);
      TMatrixD haar_t(TMatrixD::kTransposed,haar);
      TMatrixDSym  hth(TMatrixDSym::kAtA,haar);
      TMatrixD hht(haar,TMatrixD::kMult,haar_t);
      TMatrixD hht1 = haar; hht1 *= haar_t;
      ok &= VerifyMatrixIdentity(unit,hth,gVerbose,epsilon);
      ok &= VerifyMatrixIdentity(unit,hht,gVerbose,epsilon);
      ok &= VerifyMatrixIdentity(unit,hht1,gVerbose,epsilon);
    }
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(11,"Symmetric Matrix Multiplications",ok);
}

//
//------------------------------------------------------------------------
//               Verify vector-matrix multiplications
//
void stress_vm_multiplications(Int_t msize)
{
  if (gVerbose)
    cout << "\n---> Verify vector-matrix multiplications "
           "for matrices of the characteristic size " << msize << endl;

  const Double_t epsilon = EPSILON*msize/100;

  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\nCheck shrinking a vector by multiplying by a non-sq unit matrix" << endl;
    TVectorD vb(-2,msize);
    for (Int_t i = vb.GetLwb(); i <= vb.GetUpb(); i++)
      vb(i) = TMath::Pi()-i;
    ok &= ( vb != 0 ) ? kTRUE : kFALSE;
    TMatrixD mc(1,msize-2,-2,msize);       // contracting matrix
    mc.UnitMatrix();
    TVectorD v1 = vb;
    TVectorD v2 = vb;
    v1 *= mc;
    v2.ResizeTo(1,msize-2);
    ok &= VerifyVectorIdentity(v1,v2,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Check expanding a vector by multiplying by a non-sq unit matrix" << endl;
    TVectorD vb(msize);
    for (Int_t i = vb.GetLwb(); i <= vb.GetUpb(); i++)
      vb(i) = TMath::Pi()+i;
    ok &= ( vb != 0 ) ? kTRUE : kFALSE;
    TMatrixD me(2,msize+5,0,msize-1);    // expanding matrix
    me.UnitMatrix();
    TVectorD v1 = vb;
    TVectorD v2 = vb;
    v1 *= me;
    v2.ResizeTo(v1);
    ok &= VerifyVectorIdentity(v1,v2,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Check general matrix-vector multiplication" << endl;
    TVectorD vb(msize);
    for (Int_t i = vb.GetLwb(); i <= vb.GetUpb(); i++)
      vb(i) = TMath::Pi()+i;
    TMatrixD vm(msize,1);
    TMatrixDColumn(vm,0) = vb;
    TMatrixD m = THilbertMatrixD(0,msize,0,msize-1);
    vb *= m;
    ok &= ( vb.GetLwb() == 0 ) ? kTRUE : kFALSE;
    TMatrixD mvm(m,TMatrixD::kMult,vm);
    TMatrixD mvb(msize+1,1);
    TMatrixDColumn(mvb,0) = vb;
    ok &= VerifyMatrixIdentity(mvb,mvm,gVerbose,epsilon);
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(12,"Matrix Vector Multiplications",ok);
}

//
//------------------------------------------------------------------------
//               Verify matrix inversion
//
void stress_inversion(Int_t msize)
{
  if (gVerbose)
    cout << "\n---> Verify matrix inversion for square matrices of size " << msize << endl;

  const Double_t epsilon = EPSILON*msize/10;

  Bool_t ok = kTRUE;
  {
    if (gVerbose)
      cout << "\nTest inversion of a diagonal matrix" << endl;
    TMatrixD m(-1,msize,-1,msize);
    TMatrixD mi(TMatrixD::kZero,m);
    for (Int_t i = m.GetRowLwb(); i <= m.GetRowUpb(); i++)
      mi(i,i) = 1/(m(i,i)=i-m.GetRowLwb()+1);
    TMatrixD mi1(TMatrixD::kInverted,m);
    m.Invert();
    ok &= VerifyMatrixIdentity(m,mi,gVerbose,epsilon);
    ok &= VerifyMatrixIdentity(mi1,mi,gVerbose,epsilon);
  }

  {
    if (gVerbose)
      cout << "Test inversion of an orthonormal (Haar) matrix" << endl;
    TMatrixD m = THaarMatrixD(3);
    TMatrixD morig = m;
    TMatrixD mt(TMatrixD::kTransposed,m);
    double det = -1;         // init to a wrong val to see if it's changed
    m.Invert(&det);
    ok &= ( TMath::Abs(det-1) <= msize*epsilon ) ? kTRUE : kFALSE;
    ok &= VerifyMatrixIdentity(m,mt,gVerbose,epsilon);
    TMatrixD mti(TMatrixD::kInverted,mt);
    ok &= VerifyMatrixIdentity(mti,morig,gVerbose,msize*epsilon);
  }

  {
    if (gVerbose)
      cout << "Test inversion of a good matrix with diagonal dominance" << endl;
    TMatrixD m = THilbertMatrixD(msize,msize);
    TMatrixDDiag(m) += 1;
    TMatrixD morig = m;
    Double_t det_inv = 0;
    const Double_t det_comp = m.Determinant();
    m.Invert(&det_inv);
    if (gVerbose) {
      cout << "\tcomputed determinant             " << det_comp << endl;
      cout << "\tdeterminant returned by Invert() " << det_inv << endl;
    }

    if (gVerbose)
      cout << "\tcheck to see M^(-1) * M is E" << endl;
    TMatrixD mim(m,TMatrixD::kMult,morig);
    TMatrixD unit(TMatrixD::kUnit,m);
    ok &= VerifyMatrixIdentity(mim,unit,gVerbose,epsilon);

    if (gVerbose)
      cout << "\tcheck to see M * M^(-1) is E" << endl;
    TMatrixD mmi = morig; mmi *= m;
    ok &= VerifyMatrixIdentity(mmi,unit,gVerbose,epsilon);
  }

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(13,"Matrix Inversion",ok);
}

//
//------------------------------------------------------------------------
//           Test matrix I/O
//
void stress_matrix_io()
{
  if (gVerbose)
    cout << "\n---> Test matrix I/O" << endl;

  Bool_t ok = kTRUE;
  const double pattern = TMath::Pi();

  TMatrixD m(40,40);
  m = pattern;

  if (gVerbose)
    cout << "\nWrite matrix m to database" << endl;

  TFile *f = new TFile("vmatrix.root", "RECREATE");

  m.Write("m");

  if (gVerbose)
    cout << "\nClose database" << endl;
  delete f;

  if (gVerbose)
    cout << "\nOpen database in read-only mode and read matrix" << endl;
  TFile *f1 = new TFile("vmatrix.root");

  TMatrixD *mr = (TMatrixD*) f1->Get("m");

  if (gVerbose)
    cout << "\nRead matrix should be same as original still in memory" << endl;
  ok &= ((*mr) == m) ? kTRUE : kFALSE;

  delete f1;

  if (gVerbose)
    cout << "\nDone\n" << endl;

  StatusPrint(14,"Matrix Persistence",ok);
}