This file is indexed.

/usr/share/scsh-0.6/big/array.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; copyright (c) 1993, 1994 Richard Kelsey and Jonathan Rees.  See file COPYING.


; (make-array <initial-value> <bound1> ...)
; (array-shape <array>)
; (array-ref <array> <index1> ...)
; (array-set! <array> <value> <index1> ...)
; (make-shared-array <array> <linear-map> <bound1> ...)
; (copy-array <array>)
; (array->vector <array>)
; (array <bounds> . <elements>)
;
; All arrays are zero based.
;
; The <linear-map> argument to MAKE-SHARED-ARRAY is a linear function
; that maps indices into the shared array into a list of indices into
; the original array.  The array returned by MAKE-SHARED-ARRAY shares
; storage with the original array.
;
; (array-ref (make-shared-array a f i1 i2 ... iN) j1 j2 ... jM)
;   <==>
; (apply array-ref a (f j1 j2 ... jM))
;
; ARRAY->VECTOR returns a vector containing the elements of an array
; in row-major order.

; An array consists of a vector containing the bounds of the array,
; a vector containing the elements of the array, and a linear map
; expressed as a vector of coefficients and one constant.
; If the map is #(c1 c2 ... cN C0) then the index into the vector of
; elements for (array-ref a i1 i2 ... iN) is
; (+ (* i1 c1) (* i2 c2) ... (* iN cN) C0).

; Interface due to Alan Bawden (except for requiring zero-based arrays)
; Implementation by Richard Kelsey.

(define-record-type array :array
  (really-make-array bounds map elements)
  array?
  (bounds   array-bounds)       ; vector of array bounds
  (map      array-map)          ; vector of coefficients + one constant
  (elements array-elements))    ; vector of actual elements

(define-record-discloser :array
  (lambda (array)
    (cons 'array (array-shape array))))

(define (array-shape array)
  (vector->list (array-bounds array)))

; Calculate the index into an array's element vector that corresponds to
; INDICES.  MAP is the array's linear map.

(define (fast-array-index indices map)
  (let ((size (- (vector-length map) 1)))
    (do ((i 0 (+ i 1))
	 (j (vector-ref map size)
	    (+ j (* (vector-ref indices i)
		    (vector-ref map i)))))
	((>= i size) j))))

; The same thing with bounds checking added.

(define (array-index array indices)
  (let ((bounds       (array-bounds array))
	(coefficients (array-map array)))
    (let loop ((is indices)
	       (i 0)
	       (index (vector-ref coefficients (vector-length bounds))))
      (cond ((null? is)
	     (if (= i (vector-length bounds))
		 index
		 (error "wrong number of array indices" array indices)))
	    ((>= i (vector-length bounds))
	     (error "wrong number of array indices" array indices))
	    (else
	     (let ((j (car is)))
	       (if (and (>= j 0)
			(< j (vector-ref bounds i)))
		   (loop (cdr is)
			 (+ i 1)
			 (+ index (* j (vector-ref coefficients i))))
		   (error "array index out of range" array indices))))))))

(define (array-ref array . indices)
  (vector-ref (array-elements array) (array-index array indices)))

(define (array-set! array value . indices)
  (vector-set! (array-elements array) (array-index array indices) value))

; This is mostly error checking.

(define (make-array initial bound1 . bounds)
  (let* ((all-bounds (cons bound1 bounds))
	 (bounds (make-vector (length all-bounds)))
	 (size (do ((bs all-bounds (cdr bs))
		    (i 0 (+ i 1))
		    (s 1 (* s (car bs))))
		   ((null? bs) s)
		 (let ((b (car bs)))
		   (vector-set! bounds i b)
		   (if (not (and (integer? b)
				 (exact? b)
				 (< 0 b)))
		       (error "illegal array bounds" all-bounds))))))
    (really-make-array bounds
		       (bounds->map bounds)
		       (make-vector size initial))))

(define (array bounds . elts)
  (let* ((array (apply make-array #f bounds))
	 (elements (array-elements array))
	 (size (vector-length elements)))
    (if (not (= (length elts) size))
	(error "ARRAY got the wrong number of elements" bounds elts))
    (do ((i 0 (+ i 1))
	 (elts elts (cdr elts)))
	((null? elts))
      (vector-set! elements i (car elts)))
    array))

; Determine the linear map that corresponds to a simple array with the
; given bounds.

(define (bounds->map bounds)
  (do ((i (- (vector-length bounds) 1) (- i 1))
       (s 1 (* s (vector-ref bounds i)))
       (l '() (cons s l)))
      ((< i 0)
       (list->vector (reverse (cons 0 (reverse l)))))))

; This is mostly error checking.  Two different procedures are used to
; check that the shared array does not extend past the original.  The
; full check does a complete check, but, because it must check every corner
; of the shared array, it gets very slow as the number of dimensions
; goes up.  The simple check just verifies that the all elements of
; the shared array map to elements in the vector of the original.

(define (make-shared-array array linear-map . bounds)
  (let ((map (make-shared-array-map array linear-map bounds)))
    (if (if (<= (length bounds) maximum-full-bounds-check)
	    (full-array-bounds-okay? linear-map bounds (array-bounds array))
	    (simple-array-bounds-okay? map bounds (vector-length
						   (array-elements array))))
	(really-make-array (list->vector bounds)
			   map
			   (array-elements array))
	(error "shared array out of bounds" array linear-map bounds))))

(define maximum-full-bounds-check 5)

; Check that every corner of the array specified by LINEAR and NEW-BOUNDS
; is within OLD-BOUNDS.  This checks every corner of the new array.

(define (full-array-bounds-okay? linear new-bounds old-bounds)
  (let ((old-bounds (vector->list old-bounds)))
    (let label ((bounds (reverse new-bounds)) (args '()))
      (if (null? bounds)
	  (let loop ((res (apply linear args)) (bounds old-bounds))
	    (cond ((null? res)
		   (null? bounds))
		  ((and (not (null? bounds))
			(<= 0 (car res))
			(< (car res) (car bounds)))
		   (loop (cdr res) (cdr bounds)))
		  (else #f)))
	  (and (label (cdr bounds) (cons 0 args))
	       (label (cdr bounds) (cons (- (car bounds) 1) args)))))))

; Check that the maximum and minimum possible vector indices possible with
; the given bounds and map would fit in an array of the given size.

(define (simple-array-bounds-okay? map bounds size)
  (do ((map (vector->list map) (cdr map))
       (bounds bounds (cdr bounds))
       (min 0 (if (> 0 (car map))
		  (+ min (* (car map) (- (car bounds) 1)))
		  min))
       (max 0 (if (< 0 (car map))
		  (+ max (* (car map) (- (car bounds) 1)))
		  max)))
      ((null? bounds)
       (and (>= 0 (+ min (car map)))
	    (< size (+ max (car map)))))))

; Determine the coefficients and constant of the composition of
; LINEAR-MAP and the linear map of ARRAY.  BOUNDS is used only to
; determine the rank of LINEAR-MAP's domain.
;
; The coefficients are determined by applying first LINEAR-MAP and then
; ARRAY's map to the vectors (1 0 0 ... 0), (0 1 0 ... 0), ..., (0 ... 0 1).
; Applying them to (0 ... 0) gives the constant of the composition.

(define (make-shared-array-map array linear-map bounds)
  (let* ((zero (map (lambda (ignore) 0) bounds))
	 (do-vector (lambda (v)
		      (or (apply-map array (apply linear-map v))
			  (error "bad linear map for shared array"
				 linear-map array bounds))))
	 (base (do-vector zero)))
    (let loop ((bs bounds) (ces '()) (unit (cons 1 (cdr zero))))
      (if (null? bs)
	  (list->vector (reverse (cons base ces)))
	  (loop (cdr bs)
		(cons (- (do-vector unit) base) ces)
		(rotate unit))))))

; Apply ARRAY's linear map to the indices in the list VALUES and
; return the resulting vector index.  #F is returned if VALUES is not
; the correct length or if any of its elements are out of range.

(define (apply-map array values)
  (let ((map (array-map array))
	(bounds (array-bounds array)))
    (let loop ((values values)
	       (i 0)
	       (index (vector-ref map (vector-length bounds))))
      (cond ((null? values)
	     (if (= i (vector-length bounds))
		 index
		 #f))
	    ((>= i (vector-length bounds))
	     #f)
	    (else
	     (let ((j (car values)))
	       (if (and (>= j 0)
			(< j (vector-ref bounds i)))
		   (loop (cdr values)
			 (+ i 1)
			 (+ index (* j (vector-ref map i))))
		   #f)))))))

; Return LIST with its last element moved to the front.

(define (rotate list)
  (let ((l (reverse list)))
    (cons (car l) (reverse (cdr l)))))

; Copy an array, shrinking the vector if this is subarray that does not
; use all of the original array's elements.

(define (copy-array array)
  (really-make-array (array-bounds array)
		     (bounds->map (array-bounds array))
		     (array->vector array)))

; Make a new vector and copy the elements into it.  If ARRAY's map is
; the simple map for its bounds, then the elements are already in the
; appropriate order and we can just copy the element vector.

(define (array->vector array)
  (let* ((size (array-element-count array))
	 (new (make-vector size)))
    (if (and (= size (vector-length (array-elements array)))
	     (equal? (array-map array) (bounds->map (array-bounds array))))
	(copy-vector (array-elements array) new)
	(copy-elements array new))
    new))

(define (array-element-count array)
  (let ((bounds (array-bounds array)))
    (do ((i 0 (+ i 1))
	 (s 1 (* s (vector-ref bounds i))))
	((>= i (vector-length bounds))
	 s))))
  
(define (copy-vector from to)
  (do ((i (- (vector-length to) 1) (- i 1)))
      ((< i 0))
    (vector-set! to i (vector-ref from i))))

; Copy the elements of ARRAY into the vector TO.  The copying is done one
; row at a time.  POSN is a vector containing the index of the row that
; we are currently copying.  After the row is copied, POSN is updated so
; that the next row can be copied.  A little more cleverness would make
; this faster by replacing the call to FAST-ARRAY-INDEX with some simple
; arithmetic on J.

(define (copy-elements array to)
  (let ((bounds   (array-bounds array))
	(elements (array-elements array))
	(map      (array-map array)))
    (let* ((size (vector-length bounds))
	   (posn (make-vector size 0))
	   (step-size (vector-ref bounds (- size 1)))
	   (delta (vector-ref map (- size 1))))
      (let loop ((i 0))
	(do ((i2 i (+ i2 1))
	     (j (fast-array-index posn map) (+ j delta)))
	    ((>= i2 (+ i step-size)))
	  (vector-set! to i2 (vector-ref elements j)))
	(cond ((< (+ i step-size) (vector-length to))
	       (let loop2 ((k (- size 2)))
		 (cond ((= (+ (vector-ref posn k) 1) (vector-ref bounds k))
			(vector-set! posn k 0)
			(loop2 (- k 1)))
		       (else
			(vector-set! posn k (+ 1 (vector-ref posn k))))))
	       (loop (+ i step-size))))))))

; Testing.
; (define a1 (make-array 0 4 5))
;  0  1  2  3
;  4  5  6  7
;  8  9 10 11
; 12 13 14 15
; 16 17 18 19
; (make-shared-array-map a1 (lambda (x) (list x x)) '(3))
; 0 5 10, #(5 0)
; (make-shared-array-map a1 (lambda (x) (list 2 (- 4 x))) '(3))
; 18 14 10 #(-4 18)
; (make-shared-array-map a1 (lambda (x y) (list (+ x 1) y)) '(2 4))
;  1  2
;  5  6
;  9 10
; 13 14
; #(1 4 1)