This file is indexed.

/usr/share/scsh-0.6/big/bigbit.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.

; Bitwise logical operators on bignums.


(define-opcode-extension bitwise-not &bitwise-not)
(define-opcode-extension bitwise-and &bitwise-and)
(define-opcode-extension bitwise-ior &bitwise-ior)
(define-opcode-extension bitwise-xor &bitwise-xor)
(define-opcode-extension arithmetic-shift &arithmetic-shift)


(define (integer-bitwise-not m)
  ;; (integer+ (integer-negate m) -1)
  (integer- -1 m))

(define (integer-bitwise-and m n)
  (if (or (integer= 0 m) (integer= 0 n))
      0
      (integer-bitwise-op bitwise-and m n)))

(define (integer-bitwise-ior m n)
  (cond ((integer= 0 m) n)
	((integer= 0 n) m)
	(else
	 (integer-bitwise-op bitwise-ior m n))))

(define (integer-bitwise-xor m n)
  (cond ((integer= 0 m) n)
	((integer= 0 n) m)
	(else
	 (integer-bitwise-op bitwise-xor m n))))

(define (integer-bitwise-op op m n)
  (let ((m (integer->bignum m))
	(n (integer->bignum n)))
    (let ((finish (lambda (sign-bit mag-op)
		    (let ((mag (mag-op op
				       (bignum-magnitude m)
				       (bignum-magnitude n))))
		      (make-integer (if (= 0 sign-bit) 1 -1)
				    (if (= 0 sign-bit)
					mag
					(negate-magnitude mag)))))))
      (if (>= (bignum-sign m) 0)
	  (if (>= (bignum-sign n) 0)
	      (finish (op 0 0) magnitude-bitwise-binop-pos-pos)
	      (finish (op 0 1) magnitude-bitwise-binop-pos-neg))
	  (if (>= (bignum-sign n) 0)
	      (finish (op 0 1) magnitude-bitwise-binop-neg-pos)
	      (finish (op 1 1) magnitude-bitwise-binop-neg-neg))))))

(define radix-mask (- radix 1))

(define (magnitude-bitwise-binop-pos-pos op m n)
  (let recur ((m m) (n n))
    (if (and (zero-magnitude? m) (zero-magnitude? n))
	m
	(adjoin-digit (bitwise-and (op (low-digit m) (low-digit n)) radix-mask)
		      (recur (high-digits m) (high-digits n))))))

; Same as the above, except that one magnitude is that of a negative number.

(define (magnitude-bitwise-binop-neg-pos op m n)
  (magnitude-bitwise-binop-pos-neg op n m))

(define (magnitude-bitwise-binop-pos-neg op m n)
  (let recur ((m m) (n n) (carry 1))
    (if (and (zero-magnitude? n) (zero-magnitude? m))
	(integer->magnitude (op 0 carry))
	(call-with-values
	 (lambda ()
	   (negate-low-digit n carry))
	 (lambda (n-digit carry)
	   (adjoin-digit (op (low-digit m) n-digit)
			 (recur (high-digits m)
				(high-digits n)
				carry)))))))

; Now both M and N are magnitudes of negative numbers.

(define (magnitude-bitwise-binop-neg-neg op m n)
  (let recur ((m m) (n n) (m-carry 1) (n-carry 1))
    (if (and (zero-magnitude? n) (zero-magnitude? m))
	(integer->magnitude (op m-carry n-carry))
	(call-with-values
	 (lambda ()
	   (negate-low-digit m m-carry))
	 (lambda (m-digit m-carry)
	   (call-with-values
	    (lambda ()
	      (negate-low-digit n n-carry))
	    (lambda (n-digit n-carry)
	      (adjoin-digit (op m-digit n-digit)
			    (recur (high-digits m)
				   (high-digits n)
				   m-carry
				   n-carry)))))))))

(define (negate-low-digit m carry)
  (let ((m (+ (bitwise-and (bitwise-not (low-digit m))
			   radix-mask)
	      carry)))
    (if (>= m radix)
	(values (- m radix) 1)
	(values m 0))))

(define (negate-magnitude m)
  (let recur ((m m) (carry 1))
    (if (zero-magnitude? m)
	(integer->magnitude carry)
	(call-with-values
	 (lambda ()
	   (negate-low-digit m carry))
	 (lambda (next carry)
	   (adjoin-digit next
			 (recur (high-digits m) carry)))))))

; arithmetic-shift

(define (integer-arithmetic-shift m n)
  (let ((m (integer->bignum m)))
    (make-integer (bignum-sign m)
		  (cond ((> n 0)
			 (shift-left-magnitude (bignum-magnitude m) n))
			((= 1 (bignum-sign m))
			 (shift-right-pos-magnitude (bignum-magnitude m) n))
			(else
			 (shift-right-neg-magnitude (bignum-magnitude m) n))))))

(define (shift-left-magnitude mag n)
  (if (< n log-radix)
      (let ((mask (- (arithmetic-shift 1 (- log-radix n)) 1)))
	(let recur ((mag mag)
		    (low 0))
	  (if (zero-magnitude? mag)
	      (adjoin-digit low zero-magnitude)
	      ;; Split the low digit into left and right parts, and shift
	      (let ((left (arithmetic-shift (low-digit mag)
					    (- n log-radix))) ;shift right
		    (right (arithmetic-shift (bitwise-and (low-digit mag) mask)
					     n)))
		(adjoin-digit (bitwise-ior low right)
			      (recur (high-digits mag)
				     left))))))
      (adjoin-digit 0 (shift-left-magnitude mag (- n log-radix)))))

(define (shift-right-pos-magnitude mag n)
  (if (> n (- 0 log-radix))
      (let ((mask (- (arithmetic-shift 1 (- 0 n)) 1)))
	(let recur ((mag mag))
	  (let ((low (low-digit mag))
		(high (high-digits mag)))
	    (adjoin-digit
	     (bitwise-ior (arithmetic-shift low n)
			  (arithmetic-shift (bitwise-and mask (low-digit high))
					    (+ n log-radix)))
	     (if (zero-magnitude? high)
		 zero-magnitude
		 (recur high))))))
      (shift-right-pos-magnitude (high-digits mag) (+ n log-radix))))
      
(define (shift-right-neg-magnitude mag n)
  (negate-magnitude
   (let digit-recur ((mag mag) (n n) (carry 1))
     (call-with-values
      (lambda ()
	(negate-low-digit mag carry))
      (lambda (digits carry)
	(if (<= n (- 0 log-radix))
	    (digit-recur (high-digits mag) (+ n log-radix) carry)
	    (let ((mask (- (arithmetic-shift 1 (- 0 n)) 1)))
	      (let recur ((mag mag) (low digits) (carry carry))
		(let ((high-digits (high-digits mag)))
		  (call-with-values
		   (lambda ()
		     (negate-low-digit high-digits carry))
		   (lambda (high carry)
		     (adjoin-digit
		      (bitwise-ior (arithmetic-shift low n)
				   (arithmetic-shift (bitwise-and mask high)
						     (+ n log-radix)))
		      (if (zero-magnitude? high-digits)
			  (integer->magnitude carry)
			  (recur high-digits high carry))))))))))))))

;(define (tst)
;  (let* ((m (random))
;         (n (bitwise-and m 63))
;         (m1 (integer-arithmetic-shift
;              (integer-arithmetic-shift m n)
;              (- 0 n))))
;    (list n m m1 (= m m1))))
;(define random (make-random 17))


(define-method &bitwise-not ((n :integer)) (integer-bitwise-not n))

(define-method &bitwise-and ((n1 :exact-integer) (n2 :exact-integer))
  (integer-bitwise-and n1 n2))
(define-method &bitwise-ior ((n1 :exact-integer) (n2 :exact-integer))
  (integer-bitwise-ior n1 n2))
(define-method &bitwise-xor ((n1 :exact-integer) (n2 :exact-integer))
  (integer-bitwise-xor n1 n2))

(define-method &arithmetic-shift ((n1 :exact-integer) (n2 :exact-integer))
  (integer-arithmetic-shift n1 n2))