/usr/share/scsh-0.6/rts/floatnum.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | ; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; Inexact rational arithmetic using hacked-in floating point numbers.
(define floatnum? double?)
(define-enumeration flop
(+ - * / = <
fixnum->float
string->float
float->string
exp log sin cos tan asin acos atan sqrt
floor
integer?
float->fixnum
quotient
remainder))
(define-syntax floperate
(syntax-rules ()
((floperate ?which ?x)
(vm-extension (+ ?which 100) ?x))
((floperate ?which ?x ?y)
(vm-extension (+ ?which 100) (cons ?x ?y)))
((floperate ?which ?x ?y ?z)
(vm-extension (+ ?which 100) (vector ?x ?y ?z)))))
(define (float&float->float op)
(lambda (a b)
(let ((res (make-double)))
(floperate op (x->float a) (x->float b) res)
res)))
(define (float&float->boolean op)
(lambda (a b)
(floperate op (x->float a) (x->float b))))
(define (float1 op)
(lambda (float)
(floperate op float)))
(define (float->float op)
(lambda (a)
(let ((res (make-double)))
(floperate op (x->float a) res)
res)))
(define (string->float string)
(let ((res (make-double)))
(floperate (enum flop string->float) string res)
res))
; Call the OS to get a string and then add a `.' if necessary (so that
; it will be inexact).
(define (float->string float)
(let* ((res (make-string 40 #\space))
(len (floperate (enum flop float->string)
float
res))
(str (substring res 0 len)))
(let loop ((i 0))
(cond ((>= i (string-length str))
(string-append str "."))
((char=? (string-ref str i) #\.)
str)
((char=? (string-ref str i) #\e)
(string-append (substring str 0 i)
"."
(substring str i (string-length str))))
(else
(loop (+ i 1)))))))
(define (x->float x)
(cond ((double? x)
x)
((integer? x)
(exact-integer->float (if (exact? x)
x
(inexact->exact x))))
((rational? x)
;; This loses when num or den overflows flonum range
;; but x doesn't.
(float/ (numerator x) (denominator x)))
(else
(error "cannot coerce to a float" x))))
; Conversion to/from exact integer
(define (exact-integer->float k)
(or (fixnum->float k)
(float+ (float* (fixnum->float definitely-a-fixnum)
(quotient k definitely-a-fixnum))
(fixnum->float (remainder k definitely-a-fixnum)))))
(define (fixnum->float k) ;Returns #f is k is a bignum
(let ((res (make-double)))
(if (floperate (enum flop fixnum->float) k res)
res
#f)))
(define (float->exact-integer x)
(or (float->fixnum x)
(let ((d (fixnum->float definitely-a-fixnum)))
(+ (* definitely-a-fixnum
(float->exact-integer (float-quotient x d)))
(float->fixnum (loophole :double ; outsmarted ourselves
(float-remainder x d)))))))
(define definitely-a-fixnum (expt 2 23)) ;Be conservative
(define integral-floatnum? (float1 (enum flop integer?)))
(define float->fixnum (float1 (enum flop float->fixnum)))
(define float+ (float&float->float (enum flop +)))
(define float- (float&float->float (enum flop -)))
(define float* (float&float->float (enum flop *)))
(define float/ (float&float->float (enum flop /)))
(define float-quotient (float&float->float (enum flop quotient)))
(define float-remainder (float&float->float (enum flop remainder)))
(define float-atan (float&float->float (enum flop atan)))
(define float= (float&float->boolean (enum flop =)))
(define float< (float&float->boolean (enum flop <)))
(define float-exp (float->float (enum flop exp)))
(define float-log (float->float (enum flop log)))
(define float-sin (float->float (enum flop sin)))
(define float-cos (float->float (enum flop cos)))
(define float-tan (float->float (enum flop tan)))
(define float-asin (float->float (enum flop asin)))
(define float-acos (float->float (enum flop acos)))
(define float-sqrt (float->float (enum flop sqrt)))
(define float-floor (float->float (enum flop floor)))
; This lets you do ,open floatnum to get faster invocation
(begin
(define exp float-exp)
(define log float-log)
(define sin float-sin)
(define cos float-cos)
(define tan float-tan)
(define asin float-asin)
(define acos float-acos)
(define atan float-atan)
(define sqrt float-sqrt))
(define (float-fraction-length x)
(let ((two (exact-integer->float 2)))
(do ((x x (float* x two))
(i 0 (+ i 1)))
((integral-floatnum? x) i)
(if (> i 1000) (error "I'm bored." x)))))
(define (float-denominator x)
(expt (exact-integer->float 2) (float-fraction-length x)))
(define (float-numerator x)
(float* x (float-denominator x)))
(define (float->exact x)
(if (integral-floatnum? x)
(float->exact-integer x) ;+++
(let ((lose (lambda ()
(call-error "no exact representation"
inexact->exact x)))
(q (expt 2 (float-fraction-length x))))
(if (exact? q)
(let ((e (/ (float->exact-integer
(float* x (exact-integer->float q)))
q)))
(if (exact? e)
e
(lose)))
(lose)))))
; Methods on floatnums
(define-method &integer? ((x :double))
(integral-floatnum? x))
(define-method &rational? ((n :double)) #t)
(define-method &exact? ((x :double)) #f)
(define-method &inexact->exact ((x :double))
(float->exact x))
(define-method &exact->inexact ((x :rational))
(x->float x)) ;Should do this only if the number is within range.
(define-method &floor ((x :double)) (float-floor x))
; beware infinite regress
(define-method &numerator ((x :double)) (float-numerator x))
(define-method &denominator ((x :double)) (float-denominator x))
(define (define-floatnum-method mtable proc)
(define-method mtable ((m :rational) (n :rational)) (proc m n)))
(define-floatnum-method &+ float+)
(define-floatnum-method &- float-)
(define-floatnum-method &* float*)
(define-floatnum-method &/ float/)
(define-floatnum-method "ient float-quotient)
(define-floatnum-method &remainder float-remainder)
(define-floatnum-method &= float=)
(define-floatnum-method &< float<)
(define-method &numerator ((x :rational)) (float-numerator x))
(define-method &denominator ((x :rational)) (float-denominator x))
(define-method &exp ((x :rational)) (float-exp x))
(define-method &log ((x :rational)) (float-log x))
(define-method &sqrt ((x :rational)) (float-sqrt x))
(define-method &sin ((x :rational)) (float-sin x))
(define-method &cos ((x :rational)) (float-cos x))
(define-method &tan ((x :rational)) (float-tan x))
(define-method &acos ((x :rational)) (float-acos x))
(define-floatnum-method &atan float-atan)
(define-method &number->string ((n :double) radix)
(if (= radix 10)
(float->string n)
(next-method)))
; Recognizing a floating point number. This doesn't know about `#'.
(define (float-string? s)
(let ((len (string-length s)))
(define (start)
(and (< 1 len)
(let ((first (string-ref s 0))
(second (string-ref s 1)))
(if (char-numeric? first)
(digits 1 #f #f)
(case first
((#\+ #\-)
(and (char-numeric? second)
(digits 2 #f #f)))
((#\.)
(and (char-numeric? second)
(digits 2 #t #f)))
(else #f))))))
; Read digits until the end or an `e' or a `.'. E-OR-DOT? is true if
; we have seen either, E? is true if we've seen an `e'.
(define (digits i e-or-dot? e?)
(if (= i len)
e-or-dot?
(let ((next (string-ref s i)))
(if (char-numeric? next)
(digits (+ i 1) e-or-dot? e?)
(case next
((#\e #\E)
(and (not e?)
(exponent (+ i 1) #f)))
((#\.)
(and (not e-or-dot?)
(digits (+ i 1) #t #f)))
(else #f))))))
; Read in an exponent. If SIGN? is true then we have already got the sign.
(define (exponent i sign?)
(and (< i len)
(let ((next (string-ref s i)))
(if (char-numeric? next)
(digits (+ i 1) #t #t)
(case next
((#\+ #\-)
(and (not sign?)
(exponent (+ i 1) #t)))
(else #f))))))
(start)))
(define-simple-type :float-string (:string) float-string?)
(define-method &really-string->number ((s :float-string) radix exact?)
(if (and (= radix 10)
(not exact?))
(string->float s)
(next-method)))
|