This file is indexed.

/usr/share/scsh-0.6/rts/ratnum.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.

; This is file ratnum.scm.

; Rational arithmetic
; Assumes that +, -, etc. perform integer arithmetic.

(define-simple-type :exact-rational (:rational :exact)
  (lambda (n) (and (rational? n) (exact? n))))

(define-extended-number-type :ratnum (:exact-rational :exact) ;?
  (make-ratnum num den)
  ratnum?
  (num ratnum-numerator)
  (den ratnum-denominator))

(define (integer/ m n)
  (cond ((< n 0)
	 (integer/ (- 0 m) (- 0 n)))
	((= n 0)
	  (error "rational division by zero" m))
	((and (exact? m) (exact? n))
	 (let ((g (gcd m n)))
	   (let ((m (quotient m g))
		 (n (quotient n g)))
	     (if (= n 1)
		 m
		 (make-ratnum m n)))))
	(else (/ m n))))    ;In case we get flonums

(define (rational-numerator p)
  (if (ratnum? p)
      (ratnum-numerator p)
      (numerator p)))

(define (rational-denominator p)
  (if (ratnum? p)
      (ratnum-denominator p)
      (denominator p)))

; a/b * c/d = a*c / b*d

(define (rational* p q)
  (integer/ (* (rational-numerator p) (rational-numerator q))
	    (* (rational-denominator p) (rational-denominator q))))

; a/b / c/d = a*d / b*c

(define (rational/ p q)
  (integer/ (* (rational-numerator p) (rational-denominator q))
	    (* (rational-denominator p) (rational-numerator q))))

; a/b + c/d = (a*d + b*c)/(b*d)

(define (rational+ p q)
  (let ((b (rational-denominator p))
	(d (rational-denominator q)))
    (integer/ (+ (* (rational-numerator p) d)
		 (* b (rational-numerator q)))
	      (* b d))))

; a/b - c/d = (a*d - b*c)/(b*d)

(define (rational- p q)
  (let ((b (rational-denominator p))
	(d (rational-denominator q)))
    (integer/ (- (* (rational-numerator p) d)
		 (* b (rational-numerator q)))
	      (* b d))))

; a/b < c/d  when  a*d < b*c

(define (rational< p q)
  (< (* (rational-numerator p) (rational-denominator q))
     (* (rational-denominator p) (rational-numerator q))))

; a/b = c/d  when a = b and c = d  (always lowest terms)

(define (rational= p q)
  (and (= (rational-numerator p) (rational-numerator q))
       (= (rational-denominator p) (rational-denominator q))))

; (rational-truncate p) = integer of largest magnitude <= (abs p)

(define (rational-truncate p)
  (quotient (rational-numerator p) (rational-denominator p)))

; (floor p) = greatest integer <= p

(define (rational-floor p)
  (let* ((n (numerator p))
	 (q (quotient n (denominator p))))
    (if (>= n 0)
	q
	(- q 1))))


; Extend the generic number procedures

(define-method &rational? ((n :ratnum)) #t)

(define-method &numerator   ((n :ratnum)) (ratnum-numerator n))
(define-method &denominator ((n :ratnum)) (ratnum-denominator n))

(define-method &exact? ((n :ratnum)) #t)

;(define-method &exact->inexact ((n :ratnum))
;  (/ (exact->inexact (numerator n))
;     (exact->inexact (denominator n))))

;(define-method &inexact->exact ((n :rational))  ;?
;  (/ (inexact->exact (numerator n))
;     (inexact->exact (denominator n))))

(define-method &/ ((m :exact-integer) (n :exact-integer))
  (integer/ m n))

(define (define-ratnum-method mtable proc)
  (define-method mtable ((m :ratnum) (n :exact-rational)) (proc m n))
  (define-method mtable ((m :exact-rational) (n :ratnum)) (proc m n)))

(define-ratnum-method &+ rational+)
(define-ratnum-method &- rational-)
(define-ratnum-method &* rational*)
(define-ratnum-method &/ rational/)
(define-ratnum-method &= rational=)
(define-ratnum-method &< rational<)

(define-method &floor ((m :ratnum)) (rational-floor m))

;(define-method &sqrt ((p :ratnum))
;  (if (< p 0)
;      (next-method)
;      (integer/ (sqrt (numerator p))
;                (sqrt (denominator p)))))


(define-method &number->string ((p :ratnum) radix)
  (string-append (number->string (ratnum-numerator p) radix)
		 "/"
		 (number->string (ratnum-denominator p) radix)))