This file is indexed.

/usr/share/scsh-0.6/rts/recnum.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.

; Rectangular complex arithmetic built on real arithmetic.

(define-extended-number-type :recnum (:complex)
  (make-recnum real imag)
  recnum?
  (real recnum-real-part)
  (imag recnum-imag-part))

(define (rectangulate x y)    ; Assumes (eq? (exact? x) (exact? y))
  (if (= y 0)
      x
      (make-recnum x y)))

(define (rectangular-real-part z)
  (if (recnum? z)
      (recnum-real-part z)
      (real-part z)))

(define (rectangular-imag-part z)
  (if (recnum? z)
      (recnum-imag-part z)
      (imag-part z)))

(define (rectangular+ a b)
  (rectangulate (+ (rectangular-real-part a) (rectangular-real-part b))
		(+ (rectangular-imag-part a) (rectangular-imag-part b))))

(define (rectangular- a b)
  (rectangulate (- (rectangular-real-part a) (rectangular-real-part b))
		(- (rectangular-imag-part a) (rectangular-imag-part b))))

(define (rectangular* a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (rectangulate (- (* a1 b1) (* a2 b2))
		  (+ (* a1 b2) (* a2 b1)))))

(define (rectangular/ a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (let ((d (+ (* b1 b1) (* b2 b2))))
      (rectangulate (/ (+ (* a1 b1) (* a2 b2)) d)
		    (/ (- (* a2 b1) (* a1 b2)) d)))))

(define (rectangular= a b)
  (let ((a1 (rectangular-real-part a))
	(a2 (rectangular-imag-part a))
	(b1 (rectangular-real-part b))
	(b2 (rectangular-imag-part b)))
    (and (= a1 b1) (= a2 b2))))


; Methods

(define-method &complex? ((z :recnum)) #t)

(define-method &real-part ((z :recnum)) (recnum-real-part z))
(define-method &imag-part ((z :recnum)) (recnum-imag-part z))

; Methods on complexes in terms of real-part and imag-part

(define-method &exact? ((z :recnum))
  (exact? (recnum-real-part z)))

(define-method &inexact->exact ((z :recnum))
  (make-recnum (inexact->exact (recnum-real-part z))
	       (inexact->exact (recnum-imag-part z))))

(define-method &exact->inexact ((z :recnum))
  (make-recnum (exact->inexact (recnum-real-part z))
	       (exact->inexact (recnum-imag-part z))))

(define (define-recnum-method mtable proc)
  (define-method mtable ((m :recnum) (n :complex)) (proc m n))
  (define-method mtable ((m :complex) (n :recnum)) (proc m n)))

(define-recnum-method &+ rectangular+)
(define-recnum-method &- rectangular-)
(define-recnum-method &* rectangular*)
(define-recnum-method &/ rectangular/)
(define-recnum-method &= rectangular=)

(define-method &sqrt ((n :real))
  (if (< n 0)
      (make-rectangular 0 (sqrt (- 0 n)))
      (next-method)))			; not that we have to

; Gleep!  Can we do quotient and remainder on Gaussian integers?
; Can we do numerator and denominator on complex rationals?

(define-method &number->string ((z :recnum) radix)
  (let ((x (real-part z))
	(y (imag-part z)))
    (let ((r (number->string x radix))
	  (i (number->string (abs y) radix))
	  (& (if (< y 0) "-" "+")))
      (if (and (inexact? y)		;gross
	       (char=? (string-ref i 0) #\#))
	  (string-append (if (char=? (string-ref r 0) #\#)
			     ""
			     "#i")
			 r &
			 (substring i 2 (string-length i))
			 "i")
	  (string-append r & i "i")))))

(define-method &make-rectangular ((x :real) (y :real))
  (if (eq? (exact? x) (exact? y))
      (rectangulate x y)
      (rectangulate (if (exact? x) (exact->inexact x) x)
		    (if (exact? y) (exact->inexact y) y))))