This file is indexed.

/usr/share/scsh-0.6/rts/xnum.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.

; This is file xnum.scm.

;;;; Extended number support

(define-simple-type :extended-number (:number) extended-number?)

(define-record-type extended-number-type :extended-number-type
  (really-make-extended-number-type field-names supers priority predicate id)
  extended-number-type?
  (field-names extended-number-type-field-names)
  (supers      extended-number-type-supers)
  (priority    extended-number-type-priority)
  (predicate   extended-number-predicate)
  (id	       extended-number-type-identity))

(define-record-discloser :extended-number-type
  (lambda (e-n-t)
    (list 'extended-number-type (extended-number-type-identity e-n-t))))

(define (make-extended-number-type field-names supers id)
  (letrec ((t (really-make-extended-number-type
	       field-names
	       supers
	       (+ (apply max
			 (map type-priority
			      (cons :extended-number supers)))
		  10)
	       (lambda (x)
		 (and (extended-number? x)
		      (eq? (extended-number-type x) t)))
	       id)))
    t))

(define (extended-number-type x) (extended-number-ref x 0))


; DEFINE-EXTENDED-NUMBER-TYPE macro

(define-syntax define-extended-number-type
  (syntax-rules ()
    ((define-extended-number-type ?type (?super ...)
       (?constructor ?arg1 ?arg ...)
       ?predicate
       (?field ?accessor)
       ...)
     (begin (define ?type
	      (make-extended-number-type '(?field ...)
					 (list ?super ...)
					 '?type))
	    (define ?constructor
	      (let ((args '(?arg1 ?arg ...)))
		(if (equal? args
			    (extended-number-type-field-names ?type))
		    (let ((k (+ (length args) 1)))
		      (lambda (?arg1 ?arg ...)
			(let ((n (make-extended-number k #f))
			      (i 1))
			  (extended-number-set! n 0 ?type)
			  (extended-number-set! n 1 ?arg1)
			  (begin (set! i (+ i 1))
				 (extended-number-set! n i ?arg))
			  ...
			  n)))
		    (error "ill-formed DEFINE-EXTENDED-NUMBER-TYPE" '?type))))
	    (define (?predicate x)
	      (and (extended-number? x)
		   (eq? (extended-number-type x) ?type)))
	    (define-extended-number-accessors ?accessor ...)))))

(define-syntax define-extended-number-accessors
  (syntax-rules ()
    ((define-extended-number-accessors ?accessor)
     (define (?accessor n) (extended-number-ref n 1)))
    ((define-extended-number-accessors ?accessor1 ?accessor2)
     (begin (define (?accessor1 n) (extended-number-ref n 1))
	    (define (?accessor2 n) (extended-number-ref n 2))))
    ((define-extended-number-accessors ?accessor1 ?accessor2 ?accessor3)
     (begin (define (?accessor1 n) (extended-number-ref n 1))
	    (define (?accessor2 n) (extended-number-ref n 2))
	    (define (?accessor3 n) (extended-number-ref n 3))))))

(define-method &type-priority ((t :extended-number-type))
  (extended-number-type-priority t))

(define-method &type-predicate ((t :extended-number-type))
  (extended-number-predicate t))

; Make all the numeric instructions be extensible.

(define (make-opcode-generic! opcode mtable)
  (let ((perform (method-table-get-perform mtable)))
    (extend-opcode! opcode
		    (lambda (lose)
		      (set-final-method! mtable
					 (lambda (next-method . args)
					   (apply lose args)))
		      (lambda args
			((perform) args))))))
		      
(define-syntax define-opcode-extension
  (syntax-rules ()
    ((define-opcode-extension ?name ?table-name)
     (begin (define ?table-name (make-method-table '?name))
	    (make-opcode-generic! (enum op ?name) ?table-name)))))

(define-opcode-extension +              &+)
(define-opcode-extension -              &-)
(define-opcode-extension *              &*)
(define-opcode-extension /              &/)
(define-opcode-extension =              &=)
(define-opcode-extension <              &<)
(define-opcode-extension quotient       &quotient)
(define-opcode-extension remainder      &remainder)
  
(define-opcode-extension integer?       &integer?)
(define-opcode-extension rational?      &rational?)
(define-opcode-extension real?          &real?)
(define-opcode-extension complex?       &complex?)
(define-opcode-extension number?        &number?)
(define-opcode-extension exact?         &exact?)

(define-opcode-extension exact->inexact &exact->inexact)
(define-opcode-extension inexact->exact &inexact->exact)
(define-opcode-extension real-part      &real-part)
(define-opcode-extension imag-part      &imag-part)

(define-opcode-extension floor          &floor)
(define-opcode-extension numerator      &numerator)
(define-opcode-extension denominator    &denominator)

(define-opcode-extension make-rectangular &make-rectangular)

(define-opcode-extension exp  &exp)
(define-opcode-extension log  &log)
(define-opcode-extension sin  &sin)
(define-opcode-extension cos  &cos)
(define-opcode-extension tan  &tan)
(define-opcode-extension asin &asin)
(define-opcode-extension acos &acos)
(define-opcode-extension atan &atan)
(define-opcode-extension sqrt &sqrt)

; >, <=, and >= are all extended using the table for <.

(let ((perform (method-table-get-perform &<)))
  (extend-opcode! (enum op >)
		  (lambda (lose)
		    (lambda (x y)
		      ((perform) (list y x)))))
  (extend-opcode! (enum op <=)
		  (lambda (lose)
		    (lambda (x y)
		      (not ((perform) (list y x))))))
  (extend-opcode! (enum op >=)
		  (lambda (lose)
		    (lambda (x y)
		      (not ((perform) (list x y)))))))
		      
; Default methods.

(define-method &integer?  (x) #f)
(define-method &rational? (x) (integer? x))
(define-method &real?     (x) (rational? x))
(define-method &complex?  (x) (real? x))
(define-method &number?   (x) (complex? x))

(define-method &real-part ((x :real)) x)

(define-method &imag-part ((x :real))
  (if (exact? x) 0 (exact->inexact 0)))

(define-method &floor ((n :integer)) n)

(define-method &numerator ((n :integer)) n)

(define-method &denominator ((n :integer))
  (if (exact? n) 1 (exact->inexact 1)))

; Make sure this has very low priority, so that it's only tried as a
; last resort.

(define-method &/ (m n)
  (if (and (integer? m) (integer? n))
      (if (= 0 (remainder m n))
	  (quotient m n)
	  (let ((z (abs (quotient n 2))))
	    (set-exactness (quotient (if (< m 0)
					 (- m z)
					 (+ m z))
				     n)
			   #f)))
      (next-method)))

(define-method &sqrt ((n :integer))
  (if (>= n 0)
      (non-negative-integer-sqrt n)	;Dubious
      (next-method)))

(define (non-negative-integer-sqrt n)
  (cond ((<= n 1)    ; for both 0 and 1
	 n)
	;; ((< n 0)
	;;  (make-rectangular 0 (integer-sqrt (- 0 n))))
	(else
	 (let loop ((m (quotient n 2)))
	   (let ((m1 (quotient n m)))
	     (cond ((< m1 m)
		    (loop (quotient (+ m m1) 2)))
		   ((= n (* m m))
		    m)
		   (else
		    (exact->inexact m))))))))

(define-simple-type :exact (:number)
  (lambda (n) (and (number? n) (exact? n))))

(define-simple-type :inexact (:number)
  (lambda (n) (and (number? n) (inexact? n))))


; Whattakludge.

; Replace the default method (which in the initial image always returns #f).

(define-method &really-string->number (s radix xact?)
  (let ((len (string-length s)))
    (cond ((<= len 1) #f)
	  ((char=? (string-ref s (- len 1)) #\i)
	   (parse-rectangular s radix xact?))
	  ((string-position #\@ s)
	   => (lambda (at)
		(let ((r (really-string->number (substring s 0 at)
						radix xact?))
		      (theta (really-string->number (substring s (+ at 1) len)
						    radix xact?)))
		  (if (and (real? r) (real? theta))
		      (make-polar r theta)))))
	  ((string-position #\/ s)
	   => (lambda (slash)
		(let ((m (string->integer (substring s 0 slash) radix))
		      (n (string->integer (substring s (+ slash 1) len)
					  radix)))
		  (if (and m n)
		      (set-exactness (/ m n) xact?)
		      #f))))
	  ((string-position #\# s)
	   (if xact?
	       #f
	       (really-string->number
		   (list->string (map (lambda (c) (if (char=? c #\#) #\5 c))
				      (string->list s)))
		   radix
		   xact?)))
	  ((string-position #\. s)
	   => (lambda (dot)
		(parse-decimal s radix xact? dot)))
	  (else #f))))

(define (parse-decimal s radix xact? dot)
  ;; Talk about kludges.  This is REALLY kludgey.
  (let* ((len (string-length s))
	 (j (if (or (char=? (string-ref s 0) #\+)
		    (char=? (string-ref s 0) #\-))
		1
		0))
	 (m (if (= dot j)
		0
		(string->integer (substring s j dot)
				 radix)))
	 (n (if (= dot (- len 1))
		0
		(string->integer (substring s (+ dot 1) len)
				 radix))))
    (if (and m n)
	(let ((n (+ m (/ n (expt radix
				 (- len (+ dot 1)))))))
	  (set-exactness (if (char=? (string-ref s 0) #\-)
			     (- 0 n)
			     n)
			 xact?))
	#f)))

(define (parse-rectangular s radix xact?)
  (let ((len (string-length s)))
    (let loop ((i (- len 2)))
      (if (< i 0)
	  #f
	  (let ((c (string-ref s i)))
	    (if (or (char=? c #\+)
		    (char=? c #\-))
		(let ((x (if (= i 0)
			     0
			     (really-string->number (substring s 0 i)
						    radix xact?)))
		      (y (if (= i (- len 2))
			     (if (char=? c #\+) 1 -1)
			     (really-string->number (substring s i (- len 1))
						    radix xact?))))
		  (if (and (real? x) (real? y))
		      (make-rectangular x y)
		      #f))
		(loop (- i 1))))))))

(define (set-exactness n xact?)
  (if (exact? n)
      (if xact? n (exact->inexact n))
      ;; ?what to do? (if xact? (inexact->exact n) n)
      n))

; Utility

(define (string-position c s)
  (let loop ((i 0))
    (if (>= i (string-length s))
	#f
	(if (char=? c (string-ref s i))
	    i
	    (loop (+ i 1))))))