This file is indexed.

/usr/share/scsh-0.6/scsh/fr.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
;;; Field and record parsing utilities for scsh.
;;; Copyright (c) 1994 by Olin Shivers. See file COPYING.

;;; Notes:
;;; - Comment on the dependencies here...
;;; - Awk should deal with case-insensitivity.
;;; - Should I change the field-splitters to return lists? It's the
;;;   right thing, and costs nothing in terms of efficiency.

;;; Looping primitives:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; It is nicer for loops that loop over a bunch of different things
;;; if you can encapsulate the idea of iterating over a data structure
;;; with a 
;;;     (next-element state) -> elt next-state
;;;     (more-elements? state) -? #t/#f
;;; generator/termination-test pair. You can use the generator with REDUCE
;;; to make a list; you can stick it into a loop macro to loop over the 
;;; elements. For example, if we had an extensible Yale-loop style loop macro,
;;; we could have a loop clause like
;;; 
;;;     (loop (for field in-infix-delimited-string ":" path)
;;;           (do (display field) (newline)))
;;; 
;;; and it would be simple to expand this into code using the generator.
;;; With procedural inlining, you can get pretty optimal loops over data
;;; structures this way.
;;;
;;; As of now, you are forced to parse fields into a buffer, and loop
;;; over that. This is inefficient of time and space.  If I ever manage to do
;;; an extensible loop macro for Scheme 48, I'll have to come back to this
;;; package and rethink how to provide this functionality.

;;; Forward-progress guarantees and empty string matches.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; A loop that pulls text off a string by matching a regexp against
;;; that string can conceivably get stuck in an infinite loop if the
;;; regexp matches the empty string. For example, the regexps
;;; ^, $, .*, foo|[^f]* can all match the empty string.
;;; 
;;; The regexp-loop routines in this code are careful to handle this case. 
;;; If a regexp matches the empty string, the next search starts, not from
;;; the end of the match (which in the empty string case is also the 
;;; beginning -- there's the rub), but from the next character over.
;;; This is the correct behaviour. Regexps match the longest possible
;;; string at a given location, so if the regexp matched the empty string
;;; at location i, then it is guaranteed they could not have matched
;;; a longer pattern starting with character #i. So we can safely begin
;;; our search for the next match at char i+1.
;;; 
;;; So every iteration through the loop makes some forward progress,
;;; and the loop is guaranteed to terminate.
;;; 
;;; This has the effect you want with field parsing. For example, if you split
;;; a string with the empty pattern, you will explode the string into its
;;; individual characters:
;;;     ((suffix-splitter (rx "")) "foo") -> #("" "f" "o" "o")
;;; However, even though this boundary case is handled correctly, we don't
;;; recommend using it. Say what you mean -- just use a field splitter:
;;;     ((field-splitter (rx any)) "foo") -> #("f" "o" "o")


;;; FIELD PARSERS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This section defines routines to split a string into fields.
;;; You can parse by specifying a pattern that *separates* fields,
;;; a pattern that *terminates* fields, or a pattern that *matches*
;;; fields.

(define (->delim-matcher x)
  (if (procedure? x) x					; matcher proc
      (let ((re (cond ((string? x) (re-string x))
		      ((char-set? x) (re-char-set x))
		      ((char? x) (re-string (string x)))
		      ((regexp? x) x)
		      (else (error "Illegal field-reader delimiter value" x)))))
	(lambda (s i)
	  (cond ((regexp-search re s i) =>
		 (lambda (m) (values (match:start m 0) (match:end m 0))))
		(else (values #f #f)))))))

;;; (infix-splitter         [re num-fields handle-delim])	-> parser
;;; (suffix-splitter        [re num-fields handle-delim])	-> parser
;;; (sloppy-suffix-splitter [re num-fields handle-delim])	-> parser
;;; (field-splitter         [re num-fields])		  	-> parser
;;;
;;; (parser string [start]) -> string-list

(define (make-field-parser-generator default-delim-matcher loop-proc)
  ;; This is the parser-generator
  (lambda args
    (let-optionals args ((delim-spec default-delim-matcher)
			 (num-fields #f)
			 (handle-delim 'trim))
      ;; Process and error-check the args
      (let ((match-delim (->delim-matcher delim-spec))
	    (cons-field (case handle-delim	 	; Field     is s[i,j).
			  ((trim)			; Delimiter is s[j,k).
			   (lambda (s i j k fields)
			     (cons (substring s i j) fields)))
			  ((split)
			   (lambda (s i j k fields)
			     (cons (substring s j k)
				   (cons (substring s i j) fields))))
			  ((concat)
			   (lambda (s i j k fields)
			     (cons (substring s i k)
				   fields)))
			  (else
			   (error "Illegal handle-delim spec"
				  handle-delim)))))

	(receive (num-fields nfields-exact?)
	         (cond ((not num-fields) (values #f #f))
		       ((not (integer? num-fields))
			(error "Illegal NUM-FIELDS value" num-fields))
		       ((<= num-fields 0) (values (- num-fields) #f))
		       (else (values num-fields #t)))

	  ;; This is the parser.
	  (lambda (s . maybe-start)
	    (reverse (loop-proc s (:optional maybe-start 0)
				match-delim cons-field
				num-fields nfields-exact?))))))))

;;; Default field spec is runs of non-whitespace chars.
(define default-field-matcher (->delim-matcher (rx (+ (~ white)))))

;;; (field-splitter [field-spec num-fields])

(define (field-splitter . args)
  (let-optionals args ((field-spec default-field-matcher)
		       (num-fields #f))

    ;; Process and error-check the args
    (let ((match-field (->delim-matcher field-spec)))
      (receive (num-fields nfields-exact?)
	       (cond ((not num-fields) (values #f #f))
		     ((not (integer? num-fields))
		      (error "Illegal NUM-FIELDS value"
			     field-splitter num-fields))
		     ((<= num-fields 0) (values (- num-fields) #f))
		     (else (values num-fields #t)))

	;; This is the parser procedure.
	(lambda (s . maybe-start)
	  (reverse (fieldspec-field-loop s (:optional maybe-start 0)
					 match-field num-fields nfields-exact?)))))))


;;; These four procedures implement the guts of each parser
;;; (field, infix, suffix, and sloppy-suffix).
;;;
;;; The CONS-FIELD argument is a procedure that parameterises the
;;; HANDLE-DELIM action for the field parser.
;;; 
;;; The MATCH-DELIM argument is used to match a delimiter. 
;;; (MATCH-DELIM S I) returns two integers [start, end] marking
;;; the next delimiter after index I in string S. If no delimiter is
;;; found, it returns [#f #f].

;;; In the main loop of each parser, the loop variable LAST-NULL? tells if the
;;; previous delimiter-match matched the empty string. If it did, we start our
;;; next delimiter search one character to the right of the match, so we won't
;;; loop forever. This means that an empty delimiter regexp "" simply splits
;;; the string at each character, which is the correct thing to do.
;;;
;;; These routines return the answer as a reversed list.


(define (fieldspec-field-loop s start match-field num-fields nfields-exact?)
  (let ((end (string-length s)))
    (let lp ((i start) (nfields 0) (fields '()) (last-null? #f))
      (let ((j (if last-null? (+ i 1) i)) ; Where to start next delim search.

	    ;; Check to see if we made our quota before returning answer.
	    (finish-up (lambda ()
			 (if (and num-fields (< nfields num-fields))
			     (error "Too few fields in record." num-fields s)
			     fields))))

	(cond ((> j end) (finish-up))	; We are done. Finish up.

	      ;; Read too many fields. Bomb out.
	      ((and nfields-exact? (> nfields num-fields))
	       (error "Too many fields in record." num-fields s))

	      ;; Made our lower-bound quota. Quit early.
	      ((and num-fields (= nfields num-fields) (not nfields-exact?))
	       (if (= i end) fields	; Special case hackery.
		   (cons (substring s i end) fields)))

	      ;; Match off another field & loop.
	      (else (receive (m0 m1) (match-field s j)
	              (if m0 (lp m1 (+ nfields 1)
				 (cons (substring s m0 m1) fields)
				 (=  m0 m1))
			  (finish-up)))))))))	; No more matches. Finish up.


(define (infix-field-loop s start match-delim cons-field
			  num-fields nfields-exact?)
  (let ((end (string-length s)))
    (if (= start end) '() ; Specially hack empty string.

	(let lp ((i start) (nfields 0) (fields '()) (last-null? #f))
	  (let ((finish-up (lambda ()
			     ;; s[i,end) is the last field. Terminate the loop.
			     (cond ((and num-fields (< (+ nfields 1) num-fields))
				    (error "Too few fields in record."
					   num-fields s))
			      
				   ((and nfields-exact?
					 (>= nfields num-fields))
				    (error "Too many fields in record."
					   num-fields s))

				   (else
				    (cons (substring s i end) fields)))))

		(j (if last-null? (+ i 1) i))) ; Where to start next search.

	    (cond
		  ;; If we've read NUM-FIELDS fields, quit early .
	          ((and num-fields (= nfields num-fields))
		   (if nfields-exact?
		       (error "Too many fields in record." num-fields s)
		       (cons (substring s i end) fields)))

	    
		  ((<= j end)		; Match off another field.
		   (receive (m0 m1) (match-delim s j)
		     (if m0
			 (lp m1 (+ nfields 1)
			     (cons-field s i m0 m1 fields)
			     (= m0 m1))
			 (finish-up)))) ; No more delimiters - finish up.

		  ;; We've run off the end of the string. This is a weird
		  ;; boundary case occuring with empty-string delimiters.
		  (else (finish-up))))))))



;;; Match off an optional initial delimiter,
;;; then jump off to the suffix parser.

(define (sloppy-suffix-field-loop s start match-delim cons-field
				  num-fields nfields-exact?)
  ;; If sloppy-suffix, skip an initial delimiter if it's there.
  (let ((start (receive (i j) (match-delim s start)
                 (if (and i (zero? i)) j start))))
    (suffix-field-loop s start match-delim cons-field
		       num-fields nfields-exact?)))


(define (suffix-field-loop s start match-delim cons-field
			   num-fields nfields-exact?)
  (let ((end (string-length s)))

    (let lp ((i start) (nfields 0) (fields '()) (last-null? #f))
      (let ((j (if last-null? (+ i 1) i))) ; Where to start next delim search.
	(cond ((= i end) ; We are done.
	       (if (and num-fields (< nfields num-fields)) ; Didn't make quota.
		   (error "Too few fields in record." num-fields s)
		   fields))

	      ;; Read too many fields. Bomb out.
	      ((and nfields-exact? (= nfields num-fields))
	       (error "Too many fields in record." num-fields s))

              ;; Made our lower-bound quota. Quit early.
	      ((and num-fields (= nfields num-fields) (not nfields-exact?))
	       (cons (substring s i end) fields))

	      (else ; Match off another field.
	       (receive (m0 m1) (match-delim s j)
		 (if m0 (lp m1 (+ nfields 1)
			    (cons-field s i m0 m1 fields)
			    (= m0 m1))
		     (error "Missing field terminator" s)))))))))


;;; Now, build the exported procedures: {infix,suffix,sloppy-suffix}-splitter.

(define default-suffix-matcher (->delim-matcher (rx (| (+ white) eos))))
(define default-infix-matcher  (->delim-matcher (rx (+ white))))

(define infix-splitter
  (make-field-parser-generator default-infix-matcher  infix-field-loop))
(define suffix-splitter
  (make-field-parser-generator default-suffix-matcher suffix-field-loop))
(define sloppy-suffix-splitter
  (make-field-parser-generator default-suffix-matcher sloppy-suffix-field-loop))



;;; Reading records
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define default-record-delims (char-set #\newline))

;;; (record-reader [delims elide? handle-delim]) -> reader
;;; (reader [port]) -> string or eof

(define (record-reader . args)
  (let-optionals args ((delims default-record-delims)
		      (elide? #f)
		      (handle-delim 'trim))
    (let ((delims (x->char-set delims)))

      (case handle-delim
	((trim)			; TRIM-delimiter reader.
	 (lambda maybe-port
	   (let ((s (apply read-delimited delims maybe-port)))
	     (if (and (not (eof-object? s)) elide?)
		 (apply skip-char-set delims maybe-port)) ; Snarf extra delims.
	     s)))

	((concat)		; CONCAT-delimiter reader.
	 (let ((not-delims (char-set-complement delims)))
	   (lambda maybe-port
	     (let* ((p (:optional maybe-port (current-input-port)))
		    (s (read-delimited delims p 'concat)))
	       (if (or (not elide?) (eof-object? s)) s
		   (let ((extra-delims (read-delimited not-delims p 'peek)))
		     (if (eof-object? extra-delims) s
			 (string-append s extra-delims))))))))

	((split)		; SPLIT-delimiter reader.
	 (let ((not-delims (char-set-complement delims)))
	   (lambda maybe-port
	     (let ((p (:optional maybe-port (current-input-port))))
	       (receive (s delim) (read-delimited delims p 'split)
		 (if (eof-object? s) (values s s)
		     (values s
			     (if (or (not elide?) (eof-object? delim))
				 delim
				 ;; Elide: slurp in extra delims.
				 (let ((delim (string delim))
				       (extras (read-delimited not-delims
							       p 'peek)))
				   (if (eof-object? extras) delim
				       (string-append delim extras)))))))))))

	(else
	 (error "Illegal delimiter-action" handle-delim))))))


;;; Reading and parsing records
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (field-reader [field-parser rec-reader]) -> reader
;;; (reader [port]) -> [raw-record parsed-record] or [eof '()]
;;; 
;;; This is the field reader, which is basically just a composition of
;;; RECORD-READER and FIELD-PARSER.

(define default-field-parser (field-splitter))

(define (field-reader . args)
  (let-optionals args ((parser    default-field-parser)
		       (rec-reader read-line))
    (lambda maybe-port
      (let ((record (apply rec-reader maybe-port)))
	(if (eof-object? record)
	    (values record '())
	    (values record (parser record)))))))



;;; Parse fields by regexp
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This code parses up a record into fields by matching a regexp specifying
;;; the field against the record. The regexp describes the *field*. In the
;;; other routines, the regexp describes the *delimiters*. They are
;;; complimentary.

;;; Repeatedly do (APPLY PROC M STATE) to generate new state values,
;;; where M is a regexp match structure made from matching against STRING.

;(define (regexp-fold string start regexp proc . state)
;  (let ((end (string-length string)))
;    (let lp ((i start) (state state) (last-null? #f))
;      (let ((j (if last-null? (+ i 1) i)))
;	(cond ((and (<= j end) (regexp-search regexp string j)) =>
;               (lambda (m)
;		 (receive state (apply proc m state)
;		   (lp (match:end m) state (= (match:start m) (match:end m))))))
;	      (else (apply values state)))))))
;
;(define (all-regexp-matches regexp string)
;  (reverse (regexp-fold string 0 regexp
;			 (lambda (m ans) (cons (match:substring m 0) ans))
;			 '())))