/usr/share/scsh-0.6/srfi/srfi-42.scm is in scsh-common-0.6 0.6.7-8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | ; <PLAINTEXT>
; Eager Comprehensions in [outer..inner|expr]-Convention
; ======================================================
;
; sebastian.egner@philips.com, Eindhoven, The Netherlands, Feb-2003.
; Scheme R5RS (incl. macros), SRFI-23 (error).
;
; Loading the implementation into Scheme48 0.57:
; ,open srfi-23
; ,load ec.scm
;
; Loading the implementation into PLT/DrScheme 202:
; ; File > Open ... "ec.scm", click Execute
;
; Loading the implementation into SCM 5d7:
; (require 'macro) (require 'record)
; (load "ec.scm")
;
; Implementation comments:
; * All local (not exported) identifiers are named ec-<something>.
; * This implementation focuses on portability, performance,
; readability, and simplicity roughly in this order. Design
; decisions related to performance are taken for Scheme48.
; * Alternative implementations, Comments and Warnings are
; mentioned after the definition with a heading.
; ==========================================================================
; The fundamental comprehension do-ec
; ==========================================================================
;
; All eager comprehensions are reduced into do-ec and
; all generators are reduced to :do.
;
; We use the following short names for syntactic variables
; q - qualifier
; cc - current continuation, thing to call at the end;
; the CPS is (m (cc ...) arg ...) -> (cc ... expr ...)
; cmd - an expression being evaluated for its side-effects
; expr - an expression
; gen - a generator of an eager comprehension
; ob - outer binding
; oc - outer command
; lb - loop binding
; ne1? - not-end1? (before the payload)
; ib - inner binding
; ic - inner command
; ne2? - not-end2? (after the payload)
; ls - loop step
; etc - more arguments of mixed type
; (do-ec q ... cmd)
; handles nested, if/not/and/or, begin, :let, and calls generator
; macros in CPS to transform them into fully decorated :do.
; The code generation for a :do is delegated to do-ec:do.
(define-syntax do-ec
(syntax-rules (nested if not and or begin :do let)
; explicit nesting -> implicit nesting
((do-ec (nested q ...) etc ...)
(do-ec q ... etc ...) )
; implicit nesting -> fold do-ec
((do-ec q1 q2 etc1 etc ...)
(do-ec q1 (do-ec q2 etc1 etc ...)) )
; no qualifiers at all -> evaluate cmd once
((do-ec cmd)
(begin cmd (if #f #f)) )
; now (do-ec q cmd) remains
; filter -> make conditional
((do-ec (if test) cmd)
(if test (do-ec cmd)) )
((do-ec (not test) cmd)
(if (not test) (do-ec cmd)) )
((do-ec (and test ...) cmd)
(if (and test ...) (do-ec cmd)) )
((do-ec (or test ...) cmd)
(if (or test ...) (do-ec cmd)) )
; begin -> make a sequence
((do-ec (begin etc ...) cmd)
(begin etc ... (do-ec cmd)) )
; fully decorated :do-generator -> delegate to do-ec:do
((do-ec (:do olet lbs ne1? ilet ne2? lss) cmd)
(do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss)) )
; anything else -> call generator-macro in CPS; reentry at (*)
((do-ec (g arg1 arg ...) cmd)
(g (do-ec:do cmd) arg1 arg ...) )))
; (do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss)
; generates code for a single fully decorated :do-generator
; with cmd as payload, taking care of special cases.
(define-syntax do-ec:do
(syntax-rules (:do let)
; reentry point (*) -> generate code
((do-ec:do cmd
(:do (let obs oc ...)
lbs
ne1?
(let ibs ic ...)
ne2?
(ls ...) ))
(ec-simplify
(let obs
oc ...
(let loop lbs
(ec-simplify
(if ne1?
(ec-simplify
(let ibs
ic ...
cmd
(ec-simplify
(if ne2?
(loop ls ...) )))))))))) ))
; (ec-simplify <expression>)
; generates potentially more efficient code for <expression>.
; The macro handles if, (begin <command>*), and (let () <command>*)
; and takes care of special cases.
(define-syntax ec-simplify
(syntax-rules (if not let begin)
; one- and two-sided if
; literal <test>
((ec-simplify (if #t consequent))
consequent )
((ec-simplify (if #f consequent))
(if #f #f) )
((ec-simplify (if #t consequent alternate))
consequent )
((ec-simplify (if #f consequent alternate))
alternate )
; (not (not <test>))
((ec-simplify (if (not (not test)) consequent))
(ec-simplify (if test consequent)) )
((ec-simplify (if (not (not test)) consequent alternate))
(ec-simplify (if test consequent alternate)) )
; (let () <command>*)
; empty <binding spec>*
((ec-simplify (let () command ...))
(ec-simplify (begin command ...)) )
; begin
; flatten use helper (ec-simplify 1 done to-do)
((ec-simplify (begin command ...))
(ec-simplify 1 () (command ...)) )
((ec-simplify 1 done ((begin to-do1 ...) to-do2 ...))
(ec-simplify 1 done (to-do1 ... to-do2 ...)) )
((ec-simplify 1 (done ...) (to-do1 to-do ...))
(ec-simplify 1 (done ... to-do1) (to-do ...)) )
; exit helper
((ec-simplify 1 () ())
(if #f #f) )
((ec-simplify 1 (command) ())
command )
((ec-simplify 1 (command1 command ...) ())
(begin command1 command ...) )
; anything else
((ec-simplify expression)
expression )))
; ==========================================================================
; The special generators :do, :let, :parallel, :while, and :until
; ==========================================================================
(define-syntax :do
(syntax-rules ()
; full decorated -> continue with cc, reentry at (*)
((:do (cc ...) olet lbs ne1? ilet ne2? lss)
(cc ... (:do olet lbs ne1? ilet ne2? lss)) )
; short form -> fill in default values
((:do cc lbs ne1? lss)
(:do cc (let ()) lbs ne1? (let ()) #t lss) )))
(define-syntax :let
(syntax-rules (index)
((:let cc var (index i) expression)
(:do cc (let ((var expression) (i 0))) () #t (let ()) #f ()) )
((:let cc var expression)
(:do cc (let ((var expression))) () #t (let ()) #f ()) )))
(define-syntax :parallel
(syntax-rules (:do)
((:parallel cc)
cc )
((:parallel cc (g arg1 arg ...) gen ...)
(g (:parallel-1 cc (gen ...)) arg1 arg ...) )))
; (:parallel-1 cc (to-do ...) result [ next ] )
; iterates over to-do by converting the first generator into
; the :do-generator next and merging next into result.
(define-syntax :parallel-1 ; used as
(syntax-rules (:do let)
; process next element of to-do, reentry at (**)
((:parallel-1 cc ((g arg1 arg ...) gen ...) result)
(g (:parallel-1 cc (gen ...) result) arg1 arg ...) )
; reentry point (**) -> merge next into result
((:parallel-1
cc
gens
(:do (let (ob1 ...) oc1 ...)
(lb1 ...)
ne1?1
(let (ib1 ...) ic1 ...)
ne2?1
(ls1 ...) )
(:do (let (ob2 ...) oc2 ...)
(lb2 ...)
ne1?2
(let (ib2 ...) ic2 ...)
ne2?2
(ls2 ...) ))
(:parallel-1
cc
gens
(:do (let (ob1 ... ob2 ...) oc1 ... oc2 ...)
(lb1 ... lb2 ...)
(and ne1?1 ne1?2)
(let (ib1 ... ib2 ...) ic1 ... ic2 ...)
(and ne2?1 ne2?2)
(ls1 ... ls2 ...) )))
; no more gens -> continue with cc, reentry at (*)
((:parallel-1 (cc ...) () result)
(cc ... result) )))
(define-syntax :while
(syntax-rules ()
((:while cc (g arg1 arg ...) test)
(g (:while-1 cc test) arg1 arg ...) )))
(define-syntax :while-1
(syntax-rules (:do)
((:while-1 cc test (:do olet lbs ne1? ilet ne2? lss))
(:do cc olet lbs (and ne1? test) ilet ne2? lss) )))
(define-syntax :until
(syntax-rules ()
((:until cc (g arg1 arg ...) test)
(g (:until-1 cc test) arg1 arg ...) )))
(define-syntax :until-1
(syntax-rules (:do)
((:until-1 cc test (:do olet lbs ne1? ilet ne2? lss))
(:do cc olet lbs ne1? ilet (and ne2? (not test)) lss) )))
; ==========================================================================
; The typed generators :list :string :vector etc.
; ==========================================================================
(define-syntax :list
(syntax-rules (index)
((:list cc var (index i) arg ...)
(:parallel cc (:list var arg ...) (:integers i)) )
((:list cc var arg1 arg2 arg ...)
(:list cc var (append arg1 arg2 arg ...)) )
((:list cc var arg)
(:do cc
(let ())
((t arg))
(not (null? t))
(let ((var (car t))))
#t
((cdr t)) ))))
(define-syntax :string
(syntax-rules (index)
((:string cc var (index i) arg)
(:do cc
(let ((str arg) (len 0))
(set! len (string-length str)))
((i 0))
(< i len)
(let ((var (string-ref str i))))
#t
((+ i 1)) ))
((:string cc var (index i) arg1 arg2 arg ...)
(:string cc var (index i) (string-append arg1 arg2 arg ...)) )
((:string cc var arg1 arg ...)
(:string cc var (index i) arg1 arg ...) )))
; Alternative: An implementation in the style of :vector can also
; be used for :string. However, it is less interesting as the
; overhead of string-append is much less than for 'vector-append'.
(define-syntax :vector
(syntax-rules (index)
((:vector cc var arg)
(:vector cc var (index i) arg) )
((:vector cc var (index i) arg)
(:do cc
(let ((vec arg) (len 0))
(set! len (vector-length vec)))
((i 0))
(< i len)
(let ((var (vector-ref vec i))))
#t
((+ i 1)) ))
((:vector cc var (index i) arg1 arg2 arg ...)
(:parallel cc (:vector cc var arg1 arg2 arg ...) (:integers i)) )
((:vector cc var arg1 arg2 arg ...)
(:do cc
(let ((vec #f)
(len 0)
(vecs (ec-:vector-filter (list arg1 arg2 arg ...))) ))
((k 0))
(if (< k len)
#t
(if (null? vecs)
#f
(begin (set! vec (car vecs))
(set! vecs (cdr vecs))
(set! len (vector-length vec))
(set! k 0)
#t )))
(let ((var (vector-ref vec k))))
#t
((+ k 1)) ))))
(define (ec-:vector-filter vecs)
(if (null? vecs)
'()
(if (zero? (vector-length (car vecs)))
(ec-:vector-filter (cdr vecs))
(cons (car vecs) (ec-:vector-filter (cdr vecs))) )))
; Alternative: A simpler implementation for :vector uses vector->list
; append and :list in the multi-argument case. Please refer to the
; 'design.scm' for more details.
(define-syntax :integers
(syntax-rules (index)
((:integers cc var (index i))
(:do cc ((var 0) (i 0)) #t ((+ var 1) (+ i 1))) )
((:integers cc var)
(:do cc ((var 0)) #t ((+ var 1))) )))
(define-syntax :range
(syntax-rules (index)
; handle index variable and add optional args
((:range cc var (index i) arg1 arg ...)
(:parallel cc (:range var arg1 arg ...) (:integers i)) )
((:range cc var arg1)
(:range cc var 0 arg1 1) )
((:range cc var arg1 arg2)
(:range cc var arg1 arg2 1) )
; special cases (partially evaluated by hand from general case)
((:range cc var 0 arg2 1)
(:do cc
(let ((b arg2))
(if (not (and (integer? b) (exact? b)))
(error
"arguments of :range are not exact integer "
"(use :real-range?)" 0 b 1 )))
((var 0))
(< var b)
(let ())
#t
((+ var 1)) ))
((:range cc var 0 arg2 -1)
(:do cc
(let ((b arg2))
(if (not (and (integer? b) (exact? b)))
(error
"arguments of :range are not exact integer "
"(use :real-range?)" 0 b 1 )))
((var 0))
(> var b)
(let ())
#t
((- var 1)) ))
((:range cc var arg1 arg2 1)
(:do cc
(let ((a arg1) (b arg2))
(if (not (and (integer? a) (exact? a)
(integer? b) (exact? b) ))
(error
"arguments of :range are not exact integer "
"(use :real-range?)" a b 1 )) )
((var a))
(< var b)
(let ())
#t
((+ var 1)) ))
((:range cc var arg1 arg2 -1)
(:do cc
(let ((a arg1) (b arg2) (s -1) (stop 0))
(if (not (and (integer? a) (exact? a)
(integer? b) (exact? b) ))
(error
"arguments of :range are not exact integer "
"(use :real-range?)" a b -1 )) )
((var a))
(> var b)
(let ())
#t
((- var 1)) ))
; the general case
((:range cc var arg1 arg2 arg3)
(:do cc
(let ((a arg1) (b arg2) (s arg3) (stop 0))
(if (not (and (integer? a) (exact? a)
(integer? b) (exact? b)
(integer? s) (exact? s) ))
(error
"arguments of :range are not exact integer "
"(use :real-range?)" a b s ))
(if (zero? s)
(error "step size must not be zero in :range") )
(set! stop (+ a (* (max 0 (ceiling (/ (- b a) s))) s))) )
((var a))
(not (= var stop))
(let ())
#t
((+ var s)) ))))
; Comment: The macro :range inserts some code to make sure the values
; are exact integers. This overhead has proven very helpful for
; saving users from themselves.
(define-syntax :real-range
(syntax-rules (index)
; add optional args and index variable
((:real-range cc var arg1)
(:real-range cc var (index i) 0 arg1 1) )
((:real-range cc var (index i) arg1)
(:real-range cc var (index i) 0 arg1 1) )
((:real-range cc var arg1 arg2)
(:real-range cc var (index i) arg1 arg2 1) )
((:real-range cc var (index i) arg1 arg2)
(:real-range cc var (index i) arg1 arg2 1) )
((:real-range cc var arg1 arg2 arg3)
(:real-range cc var (index i) arg1 arg2 arg3) )
; the fully qualified case
((:real-range cc var (index i) arg1 arg2 arg3)
(:do cc
(let ((a arg1) (b arg2) (s arg3) (istop 0))
(if (not (and (real? a) (real? b) (real? s)))
(error "arguments of :real-range are not real" a b s) )
(if (and (exact? a) (or (not (exact? b)) (not (exact? s))))
(set! a (exact->inexact a)) )
(set! istop (/ (- b a) s)) )
((i 0))
(< i istop)
(let ((var (+ a (* s i)))))
#t
((+ i 1)) ))))
; Comment: The macro :real-range adapts the exactness of the start
; value in case any of the other values is inexact. This is a
; precaution to avoid (list-ec (: x 0 3.0) x) => '(0 1.0 2.0).
(define-syntax :char-range
(syntax-rules (index)
((:char-range cc var (index i) arg1 arg2)
(:parallel cc (:char-range var arg1 arg2) (:integers i)) )
((:char-range cc var arg1 arg2)
(:do cc
(let ((imax (char->integer arg2))))
((i (char->integer arg1)))
(<= i imax)
(let ((var (integer->char i))))
#t
((+ i 1)) ))))
; Warning: There is no R5RS-way to implement the :char-range generator
; because the integers obtained by char->integer are not necessarily
; consecutive. We simply assume this anyhow for illustration.
(define-syntax :port
(syntax-rules (index)
((:port cc var (index i) arg1 arg ...)
(:parallel cc (:port var arg1 arg ...) (:integers i)) )
((:port cc var arg)
(:port cc var arg read) )
((:port cc var arg1 arg2)
(:do cc
(let ((port arg1) (read-proc arg2)))
((var (read-proc port)))
(not (eof-object? var))
(let ())
#t
((read-proc port)) ))))
; ==========================================================================
; The typed generator :dispatched and utilities for constructing dispatchers
; ==========================================================================
(define-syntax :dispatched
(syntax-rules (index)
((:dispatched cc var (index i) dispatch arg1 arg ...)
(:parallel cc
(:integers i)
(:dispatched var dispatch arg1 arg ...) ))
((:dispatched cc var dispatch arg1 arg ...)
(:do cc
(let ((d dispatch)
(args (list arg1 arg ...))
(g #f)
(empty (list #f)) )
(set! g (d args))
(if (not (procedure? g))
(error "unrecognized arguments in dispatching"
args
(d '()) )))
((var (g empty)))
(not (eq? var empty))
(let ())
#t
((g empty)) ))))
; Comment: The unique object empty is created as a newly allocated
; non-empty list. It is compared using eq? which distinguishes
; the object from any other object, according to R5RS 6.1.
(define-syntax :generator-proc
(syntax-rules (:do let)
; call g with a variable, reentry at (**)
((:generator-proc (g arg ...))
(g (:generator-proc var) var arg ...) )
; reentry point (**) -> make the code from a single :do
((:generator-proc
var
(:do (let obs oc ...)
((lv li) ...)
ne1?
(let ((i v) ...) ic ...)
ne2?
(ls ...)) )
(ec-simplify
(let obs
oc ...
(let ((lv li) ... (ne2 #t))
(ec-simplify
(let ((i #f) ...) ; v not yet valid
(lambda (empty)
(if (and ne1? ne2)
(ec-simplify
(begin
(set! i v) ...
ic ...
(let ((value var))
(ec-simplify
(if ne2?
(ec-simplify
(begin (set! lv ls) ...) )
(set! ne2 #f) ))
value )))
empty ))))))))
; silence warnings of some macro expanders
((:generator-proc var)
(error "illegal macro call") )))
(define (dispatch-union d1 d2)
(lambda (args)
(let ((g1 (d1 args)) (g2 (d2 args)))
(if g1
(if g2
(if (null? args)
(append (if (list? g1) g1 (list g1))
(if (list? g2) g2 (list g2)) )
(error "dispatching conflict" args (d1 '()) (d2 '())) )
g1 )
(if g2 g2 #f) ))))
; ==========================================================================
; The dispatching generator :
; ==========================================================================
(define (make-initial-:-dispatch)
(lambda (args)
(case (length args)
((0) 'SRFI42)
((1) (let ((a1 (car args)))
(cond
((list? a1)
(:generator-proc (:list a1)) )
((string? a1)
(:generator-proc (:string a1)) )
((vector? a1)
(:generator-proc (:vector a1)) )
((and (integer? a1) (exact? a1))
(:generator-proc (:range a1)) )
((real? a1)
(:generator-proc (:real-range a1)) )
((input-port? a1)
(:generator-proc (:port a1)) )
(else
#f ))))
((2) (let ((a1 (car args)) (a2 (cadr args)))
(cond
((and (list? a1) (list? a2))
(:generator-proc (:list a1 a2)) )
((and (string? a1) (string? a1))
(:generator-proc (:string a1 a2)) )
((and (vector? a1) (vector? a2))
(:generator-proc (:vector a1 a2)) )
((and (integer? a1) (exact? a1) (integer? a2) (exact? a2))
(:generator-proc (:range a1 a2)) )
((and (real? a1) (real? a2))
(:generator-proc (:real-range a1 a2)) )
((and (char? a1) (char? a2))
(:generator-proc (:char-range a1 a2)) )
((and (input-port? a1) (procedure? a2))
(:generator-proc (:port a1 a2)) )
(else
#f ))))
((3) (let ((a1 (car args)) (a2 (cadr args)) (a3 (caddr args)))
(cond
((and (list? a1) (list? a2) (list? a3))
(:generator-proc (:list a1 a2 a3)) )
((and (string? a1) (string? a1) (string? a3))
(:generator-proc (:string a1 a2 a3)) )
((and (vector? a1) (vector? a2) (vector? a3))
(:generator-proc (:vector a1 a2 a3)) )
((and (integer? a1) (exact? a1)
(integer? a2) (exact? a2)
(integer? a3) (exact? a3))
(:generator-proc (:range a1 a2 a3)) )
((and (real? a1) (real? a2) (real? a3))
(:generator-proc (:real-range a1 a2 a3)) )
(else
#f ))))
(else
(letrec ((every?
(lambda (pred args)
(if (null? args)
#t
(and (pred (car args))
(every? pred (cdr args)) )))))
(cond
((every? list? args)
(:generator-proc (:list (apply append args))) )
((every? string? args)
(:generator-proc (:string (apply string-append args))) )
((every? vector? args)
(:generator-proc (:list (apply append (map vector->list args)))) )
(else
#f )))))))
(define :-dispatch
(make-initial-:-dispatch) )
(define (:-dispatch-ref)
:-dispatch )
(define (:-dispatch-set! dispatch)
(if (not (procedure? dispatch))
(error "not a procedure" dispatch) )
(set! :-dispatch dispatch) )
(define-syntax :
(syntax-rules (index)
((: cc var (index i) arg1 arg ...)
(:dispatched cc var (index i) :-dispatch arg1 arg ...) )
((: cc var arg1 arg ...)
(:dispatched cc var :-dispatch arg1 arg ...) )))
; ==========================================================================
; The utility comprehensions fold-ec, fold3-ec
; ==========================================================================
(define-syntax fold3-ec
(syntax-rules (nested)
((fold3-ec x0 (nested q1 ...) q etc1 etc2 etc3 etc ...)
(fold3-ec x0 (nested q1 ... q) etc1 etc2 etc3 etc ...) )
((fold3-ec x0 q1 q2 etc1 etc2 etc3 etc ...)
(fold3-ec x0 (nested q1 q2) etc1 etc2 etc3 etc ...) )
((fold3-ec x0 expression f1 f2)
(fold3-ec x0 (nested) expression f1 f2) )
((fold3-ec x0 qualifier expression f1 f2)
(let ((result #f) (empty #t))
(do-ec qualifier
(let ((value expression)) ; don't duplicate
(if empty
(begin (set! result (f1 value))
(set! empty #f) )
(set! result (f2 value result)) )))
(if empty x0 result) ))))
(define-syntax fold-ec
(syntax-rules (nested)
((fold-ec x0 (nested q1 ...) q etc1 etc2 etc ...)
(fold-ec x0 (nested q1 ... q) etc1 etc2 etc ...) )
((fold-ec x0 q1 q2 etc1 etc2 etc ...)
(fold-ec x0 (nested q1 q2) etc1 etc2 etc ...) )
((fold-ec x0 expression f2)
(fold-ec x0 (nested) expression f2) )
((fold-ec x0 qualifier expression f2)
(let ((result x0))
(do-ec qualifier (set! result (f2 expression result)))
result ))))
; ==========================================================================
; The comprehensions list-ec string-ec vector-ec etc.
; ==========================================================================
(define-syntax list-ec
(syntax-rules ()
((list-ec etc1 etc ...)
(reverse (fold-ec '() etc1 etc ... cons)) )))
; Alternative: Reverse can safely be replaced by reverse! if you have it.
;
; Alternative: It is possible to construct the result in the correct order
; using set-cdr! to add at the tail. This removes the overhead of copying
; at the end, at the cost of more book-keeping.
(define-syntax append-ec
(syntax-rules ()
((append-ec etc1 etc ...)
(apply append (list-ec etc1 etc ...)) )))
(define-syntax string-ec
(syntax-rules ()
((string-ec etc1 etc ...)
(list->string (list-ec etc1 etc ...)) )))
; Alternative: For very long strings, the intermediate list may be a
; problem. A more space-aware implementation collect the characters
; in an intermediate list and when this list becomes too large it is
; converted into an intermediate string. At the end, the intermediate
; strings are concatenated with string-append.
(define-syntax string-append-ec
(syntax-rules ()
((string-append-ec etc1 etc ...)
(apply string-append (list-ec etc1 etc ...)) )))
(define-syntax vector-ec
(syntax-rules ()
((vector-ec etc1 etc ...)
(list->vector (list-ec etc1 etc ...)) )))
; Comment: A similar approach as for string-ec can be used for vector-ec.
; However, the space overhead for the intermediate list is much lower
; than for string-ec and as there is no vector-append, the intermediate
; vectors must be copied explicitly.
(define-syntax vector-of-length-ec
(syntax-rules (nested)
((vector-of-length-ec k (nested q1 ...) q etc1 etc ...)
(vector-of-length-ec k (nested q1 ... q) etc1 etc ...) )
((vector-of-length-ec k q1 q2 etc1 etc ...)
(vector-of-length-ec k (nested q1 q2) etc1 etc ...) )
((vector-of-length-ec k expression)
(vector-of-length-ec k (nested) expression) )
((vector-of-length-ec k qualifier expression)
(let ((len k))
(let ((vec (make-vector len))
(i 0) )
(do-ec qualifier
(if (< i len)
(begin (vector-set! vec i expression)
(set! i (+ i 1)) )
(error "vector is too short for the comprehension") ))
(if (= i len)
vec
(error "vector is too long for the comprehension") ))))))
(define-syntax sum-ec
(syntax-rules ()
((sum-ec etc1 etc ...)
(fold-ec (+) etc1 etc ... +) )))
(define-syntax product-ec
(syntax-rules ()
((product-ec etc1 etc ...)
(fold-ec (*) etc1 etc ... *) )))
(define-syntax min-ec
(syntax-rules ()
((min-ec etc1 etc ...)
(fold3-ec (min) etc1 etc ... min min) )))
(define-syntax max-ec
(syntax-rules ()
((max-ec etc1 etc ...)
(fold3-ec (max) etc1 etc ... max max) )))
(define-syntax last-ec
(syntax-rules (nested)
((last-ec default (nested q1 ...) q etc1 etc ...)
(last-ec default (nested q1 ... q) etc1 etc ...) )
((last-ec default q1 q2 etc1 etc ...)
(last-ec default (nested q1 q2) etc1 etc ...) )
((last-ec default expression)
(last-ec default (nested) expression) )
((last-ec default qualifier expression)
(let ((result default))
(do-ec qualifier (set! result expression))
result ))))
; ==========================================================================
; The fundamental early-stopping comprehension first-ec
; ==========================================================================
(define-syntax first-ec
(syntax-rules (nested)
((first-ec default (nested q1 ...) q etc1 etc ...)
(first-ec default (nested q1 ... q) etc1 etc ...) )
((first-ec default q1 q2 etc1 etc ...)
(first-ec default (nested q1 q2) etc1 etc ...) )
((first-ec default expression)
(first-ec default (nested) expression) )
((first-ec default qualifier expression)
(let ((result default) (stop #f))
(ec-guarded-do-ec
stop
(nested qualifier)
(begin (set! result expression)
(set! stop #t) ))
result ))))
; (ec-guarded-do-ec stop (nested q ...) cmd)
; constructs (do-ec q ... cmd) where the generators gen in q ... are
; replaced by (:until gen stop).
(define-syntax ec-guarded-do-ec
(syntax-rules (nested if not and or begin)
((ec-guarded-do-ec stop (nested (nested q1 ...) q2 ...) cmd)
(ec-guarded-do-ec stop (nested q1 ... q2 ...) cmd) )
((ec-guarded-do-ec stop (nested (if test) q ...) cmd)
(if test (ec-guarded-do-ec stop (nested q ...) cmd)) )
((ec-guarded-do-ec stop (nested (not test) q ...) cmd)
(if (not test) (ec-guarded-do-ec stop (nested q ...) cmd)) )
((ec-guarded-do-ec stop (nested (and test ...) q ...) cmd)
(if (and test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )
((ec-guarded-do-ec stop (nested (or test ...) q ...) cmd)
(if (or test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )
((ec-guarded-do-ec stop (nested (begin etc ...) q ...) cmd)
(begin etc ... (ec-guarded-do-ec stop (nested q ...) cmd)) )
((ec-guarded-do-ec stop (nested gen q ...) cmd)
(do-ec
(:until gen stop)
(ec-guarded-do-ec stop (nested q ...) cmd) ))
((ec-guarded-do-ec stop (nested) cmd)
(do-ec cmd) )))
; Alternative: Instead of modifying the generator with :until, it is
; possible to use call-with-current-continuation:
;
; (define-synatx first-ec
; ...same as above...
; ((first-ec default qualifier expression)
; (call-with-current-continuation
; (lambda (cc)
; (do-ec qualifier (cc expression))
; default ))) ))
;
; This is much simpler but not necessarily as efficient.
; ==========================================================================
; The early-stopping comprehensions any?-ec every?-ec
; ==========================================================================
(define-syntax any?-ec
(syntax-rules (nested)
((any?-ec (nested q1 ...) q etc1 etc ...)
(any?-ec (nested q1 ... q) etc1 etc ...) )
((any?-ec q1 q2 etc1 etc ...)
(any?-ec (nested q1 q2) etc1 etc ...) )
((any?-ec expression)
(any?-ec (nested) expression) )
((any?-ec qualifier expression)
(first-ec #f qualifier (if expression) #t) )))
(define-syntax every?-ec
(syntax-rules (nested)
((every?-ec (nested q1 ...) q etc1 etc ...)
(every?-ec (nested q1 ... q) etc1 etc ...) )
((every?-ec q1 q2 etc1 etc ...)
(every?-ec (nested q1 q2) etc1 etc ...) )
((every?-ec expression)
(every?-ec (nested) expression) )
((every?-ec qualifier expression)
(first-ec #t qualifier (if (not expression)) #f) )))
|