This file is indexed.

/usr/share/scsh-0.6/srfi/srfi-42.scm is in scsh-common-0.6 0.6.7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
; <PLAINTEXT>
; Eager Comprehensions in [outer..inner|expr]-Convention
; ======================================================
;
; sebastian.egner@philips.com, Eindhoven, The Netherlands, Feb-2003.
; Scheme R5RS (incl. macros), SRFI-23 (error).
; 
; Loading the implementation into Scheme48 0.57:
;   ,open srfi-23
;   ,load ec.scm
;
; Loading the implementation into PLT/DrScheme 202:
;   ; File > Open ... "ec.scm", click Execute
;
; Loading the implementation into SCM 5d7:
;   (require 'macro) (require 'record) 
;   (load "ec.scm")
;
; Implementation comments:
;   * All local (not exported) identifiers are named ec-<something>.
;   * This implementation focuses on portability, performance, 
;     readability, and simplicity roughly in this order. Design
;     decisions related to performance are taken for Scheme48.
;   * Alternative implementations, Comments and Warnings are 
;     mentioned after the definition with a heading.


; ==========================================================================
; The fundamental comprehension do-ec
; ==========================================================================
;
; All eager comprehensions are reduced into do-ec and
; all generators are reduced to :do. 
;
; We use the following short names for syntactic variables
;   q    - qualifier
;   cc   - current continuation, thing to call at the end;
;          the CPS is (m (cc ...) arg ...) -> (cc ... expr ...)
;   cmd  - an expression being evaluated for its side-effects
;   expr - an expression
;   gen  - a generator of an eager comprehension
;   ob   - outer binding
;   oc   - outer command
;   lb   - loop binding
;   ne1? - not-end1? (before the payload)
;   ib   - inner binding
;   ic   - inner command
;   ne2? - not-end2? (after the payload)
;   ls   - loop step
;   etc  - more arguments of mixed type


; (do-ec q ... cmd)
;   handles nested, if/not/and/or, begin, :let, and calls generator 
;   macros in CPS to transform them into fully decorated :do.
;   The code generation for a :do is delegated to do-ec:do.

(define-syntax do-ec
  (syntax-rules (nested if not and or begin :do let)

    ; explicit nesting -> implicit nesting
    ((do-ec (nested q ...) etc ...)
     (do-ec q ... etc ...) )

    ; implicit nesting -> fold do-ec
    ((do-ec q1 q2 etc1 etc ...)
     (do-ec q1 (do-ec q2 etc1 etc ...)) )

    ; no qualifiers at all -> evaluate cmd once
    ((do-ec cmd)
     (begin cmd (if #f #f)) )

; now (do-ec q cmd) remains

    ; filter -> make conditional
    ((do-ec (if test) cmd)
     (if test (do-ec cmd)) )
    ((do-ec (not test) cmd)
     (if (not test) (do-ec cmd)) )
    ((do-ec (and test ...) cmd)
     (if (and test ...) (do-ec cmd)) )
    ((do-ec (or test ...) cmd)
     (if (or test ...) (do-ec cmd)) )

    ; begin -> make a sequence
    ((do-ec (begin etc ...) cmd)
     (begin etc ... (do-ec cmd)) )

    ; fully decorated :do-generator -> delegate to do-ec:do
    ((do-ec (:do olet lbs ne1? ilet ne2? lss) cmd)
     (do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss)) )

; anything else -> call generator-macro in CPS; reentry at (*)

    ((do-ec (g arg1 arg ...) cmd)
     (g (do-ec:do cmd) arg1 arg ...) )))


; (do-ec:do cmd (:do olet lbs ne1? ilet ne2? lss)
;   generates code for a single fully decorated :do-generator
;   with cmd as payload, taking care of special cases.

(define-syntax do-ec:do
  (syntax-rules (:do let)

    ; reentry point (*) -> generate code
    ((do-ec:do cmd 
               (:do (let obs oc ...) 
                    lbs 
                    ne1? 
                    (let ibs ic ...) 
                    ne2? 
                    (ls ...) ))
     (ec-simplify
       (let obs
         oc ...
         (let loop lbs
           (ec-simplify
             (if ne1?
                 (ec-simplify
                   (let ibs
                      ic ...
                      cmd
                      (ec-simplify
                        (if ne2?
                            (loop ls ...) )))))))))) ))

    
; (ec-simplify <expression>)
;   generates potentially more efficient code for <expression>.
;   The macro handles if, (begin <command>*), and (let () <command>*)
;   and takes care of special cases.

(define-syntax ec-simplify
  (syntax-rules (if not let begin)

; one- and two-sided if

    ; literal <test>
    ((ec-simplify (if #t consequent))
     consequent )
    ((ec-simplify (if #f consequent))
     (if #f #f) )
    ((ec-simplify (if #t consequent alternate))
     consequent )
    ((ec-simplify (if #f consequent alternate))
     alternate )

    ; (not (not <test>))
    ((ec-simplify (if (not (not test)) consequent))
     (ec-simplify (if test consequent)) )
    ((ec-simplify (if (not (not test)) consequent alternate))
     (ec-simplify (if test consequent alternate)) )

; (let () <command>*) 

    ; empty <binding spec>*
    ((ec-simplify (let () command ...))
     (ec-simplify (begin command ...)) )

; begin 

    ; flatten use helper (ec-simplify 1 done to-do)
    ((ec-simplify (begin command ...))
     (ec-simplify 1 () (command ...)) )
    ((ec-simplify 1 done ((begin to-do1 ...) to-do2 ...))
     (ec-simplify 1 done (to-do1 ... to-do2 ...)) )
    ((ec-simplify 1 (done ...) (to-do1 to-do ...))
     (ec-simplify 1 (done ... to-do1) (to-do ...)) )

    ; exit helper
    ((ec-simplify 1 () ())
     (if #f #f) )
    ((ec-simplify 1 (command) ())
     command )
    ((ec-simplify 1 (command1 command ...) ())
     (begin command1 command ...) )

; anything else

    ((ec-simplify expression)
     expression )))


; ==========================================================================
; The special generators :do, :let, :parallel, :while, and :until
; ==========================================================================

(define-syntax :do
  (syntax-rules ()

    ; full decorated -> continue with cc, reentry at (*)
    ((:do (cc ...) olet lbs ne1? ilet ne2? lss)
     (cc ... (:do olet lbs ne1? ilet ne2? lss)) )

    ; short form -> fill in default values
    ((:do cc lbs ne1? lss)
     (:do cc (let ()) lbs ne1? (let ()) #t lss) )))
    

(define-syntax :let
  (syntax-rules (index)
    ((:let cc var (index i) expression)
     (:do cc (let ((var expression) (i 0))) () #t (let ()) #f ()) )
    ((:let cc var expression)
     (:do cc (let ((var expression))) () #t (let ()) #f ()) )))


(define-syntax :parallel
  (syntax-rules (:do)
    ((:parallel cc)
     cc )
    ((:parallel cc (g arg1 arg ...) gen ...)
     (g (:parallel-1 cc (gen ...)) arg1 arg ...) )))

; (:parallel-1 cc (to-do ...) result [ next ] )
;    iterates over to-do by converting the first generator into 
;    the :do-generator next and merging next into result.

(define-syntax :parallel-1  ; used as 
  (syntax-rules (:do let)

    ; process next element of to-do, reentry at (**)
    ((:parallel-1 cc ((g arg1 arg ...) gen ...) result)
     (g (:parallel-1 cc (gen ...) result) arg1 arg ...) )

    ; reentry point (**) -> merge next into result
    ((:parallel-1 
       cc 
       gens 
       (:do (let (ob1 ...) oc1 ...) 
            (lb1 ...) 
            ne1?1 
            (let (ib1 ...) ic1 ...) 
            ne2?1 
            (ls1 ...) )
       (:do (let (ob2 ...) oc2 ...) 
            (lb2 ...) 
            ne1?2 
            (let (ib2 ...) ic2 ...) 
            ne2?2 
            (ls2 ...) ))
     (:parallel-1 
       cc 
       gens 
       (:do (let (ob1 ... ob2 ...) oc1 ... oc2 ...) 
            (lb1 ... lb2 ...) 
            (and ne1?1 ne1?2) 
            (let (ib1 ... ib2 ...) ic1 ... ic2 ...) 
            (and ne2?1 ne2?2) 
            (ls1 ... ls2 ...) )))

    ; no more gens -> continue with cc, reentry at (*)
    ((:parallel-1 (cc ...) () result)
     (cc ... result) )))


(define-syntax :while
  (syntax-rules ()
    ((:while cc (g arg1 arg ...) test)
     (g (:while-1 cc test) arg1 arg ...) )))

(define-syntax :while-1
  (syntax-rules (:do)
    ((:while-1 cc test (:do olet lbs ne1? ilet ne2? lss))
     (:do cc olet lbs (and ne1? test) ilet ne2? lss) )))


(define-syntax :until
  (syntax-rules ()
    ((:until cc (g arg1 arg ...) test)
     (g (:until-1 cc test) arg1 arg ...) )))

(define-syntax :until-1
  (syntax-rules (:do)
    ((:until-1 cc test (:do olet lbs ne1? ilet ne2? lss))
     (:do cc olet lbs ne1? ilet (and ne2? (not test)) lss) )))


; ==========================================================================
; The typed generators :list :string :vector etc.
; ==========================================================================

(define-syntax :list
  (syntax-rules (index)
    ((:list cc var (index i) arg ...)
     (:parallel cc (:list var arg ...) (:integers i)) )
    ((:list cc var arg1 arg2 arg ...)
     (:list cc var (append arg1 arg2 arg ...)) )
    ((:list cc var arg)
     (:do cc
          (let ())
          ((t arg))
          (not (null? t))
          (let ((var (car t))))
          #t
          ((cdr t)) ))))


(define-syntax :string
  (syntax-rules (index)
    ((:string cc var (index i) arg)
     (:do cc
          (let ((str arg) (len 0)) 
            (set! len (string-length str)))
          ((i 0))
          (< i len)
          (let ((var (string-ref str i))))
          #t
          ((+ i 1)) ))
    ((:string cc var (index i) arg1 arg2 arg ...)
     (:string cc var (index i) (string-append arg1 arg2 arg ...)) )
    ((:string cc var arg1 arg ...)
     (:string cc var (index i) arg1 arg ...) )))

; Alternative: An implementation in the style of :vector can also
;   be used for :string. However, it is less interesting as the
;   overhead of string-append is much less than for 'vector-append'.


(define-syntax :vector
  (syntax-rules (index)
    ((:vector cc var arg)
     (:vector cc var (index i) arg) )
    ((:vector cc var (index i) arg)
     (:do cc
          (let ((vec arg) (len 0)) 
            (set! len (vector-length vec)))
          ((i 0))
          (< i len)
          (let ((var (vector-ref vec i))))
          #t
          ((+ i 1)) ))

    ((:vector cc var (index i) arg1 arg2 arg ...)
     (:parallel cc (:vector cc var arg1 arg2 arg ...) (:integers i)) )
    ((:vector cc var arg1 arg2 arg ...)
     (:do cc
          (let ((vec #f)
                (len 0)
                (vecs (ec-:vector-filter (list arg1 arg2 arg ...))) ))
          ((k 0))
          (if (< k len)
              #t
              (if (null? vecs)
                  #f
                  (begin (set! vec (car vecs))
                         (set! vecs (cdr vecs))
                         (set! len (vector-length vec))
                         (set! k 0)
                         #t )))
          (let ((var (vector-ref vec k))))
          #t
          ((+ k 1)) ))))

(define (ec-:vector-filter vecs)
  (if (null? vecs)
      '()
      (if (zero? (vector-length (car vecs)))
          (ec-:vector-filter (cdr vecs))
          (cons (car vecs) (ec-:vector-filter (cdr vecs))) )))

; Alternative: A simpler implementation for :vector uses vector->list
;   append and :list in the multi-argument case. Please refer to the
;   'design.scm' for more details.


(define-syntax :integers
  (syntax-rules (index)
    ((:integers cc var (index i))
     (:do cc ((var 0) (i 0)) #t ((+ var 1) (+ i 1))) )
    ((:integers cc var)
     (:do cc ((var 0)) #t ((+ var 1))) )))


(define-syntax :range
  (syntax-rules (index)

    ; handle index variable and add optional args
    ((:range cc var (index i) arg1 arg ...)
     (:parallel cc (:range var arg1 arg ...) (:integers i)) )
    ((:range cc var arg1)
     (:range cc var 0 arg1 1) )
    ((:range cc var arg1 arg2)
     (:range cc var arg1 arg2 1) )

; special cases (partially evaluated by hand from general case)

    ((:range cc var 0 arg2 1)
     (:do cc
          (let ((b arg2))
            (if (not (and (integer? b) (exact? b)))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" 0 b 1 )))
          ((var 0))
          (< var b)
          (let ())
          #t
          ((+ var 1)) ))

    ((:range cc var 0 arg2 -1)
     (:do cc
          (let ((b arg2))
            (if (not (and (integer? b) (exact? b)))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" 0 b 1 )))
          ((var 0))
          (> var b)
          (let ())
          #t
          ((- var 1)) ))

    ((:range cc var arg1 arg2 1)
     (:do cc
          (let ((a arg1) (b arg2))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b 1 )) )
          ((var a))
          (< var b)
          (let ())
          #t
          ((+ var 1)) ))

    ((:range cc var arg1 arg2 -1)
     (:do cc
          (let ((a arg1) (b arg2) (s -1) (stop 0))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b -1 )) )
          ((var a))
          (> var b)
          (let ())
          #t
          ((- var 1)) ))

; the general case

    ((:range cc var arg1 arg2 arg3)
     (:do cc
          (let ((a arg1) (b arg2) (s arg3) (stop 0))
            (if (not (and (integer? a) (exact? a)
                          (integer? b) (exact? b)
                          (integer? s) (exact? s) ))
                (error 
                   "arguments of :range are not exact integer "
                   "(use :real-range?)" a b s ))
            (if (zero? s)
                (error "step size must not be zero in :range") )
            (set! stop (+ a (* (max 0 (ceiling (/ (- b a) s))) s))) )
          ((var a))
          (not (= var stop))
          (let ())
          #t
          ((+ var s)) ))))

; Comment: The macro :range inserts some code to make sure the values
;   are exact integers. This overhead has proven very helpful for 
;   saving users from themselves.


(define-syntax :real-range
  (syntax-rules (index)

    ; add optional args and index variable
    ((:real-range cc var arg1)
     (:real-range cc var (index i) 0 arg1 1) )
    ((:real-range cc var (index i) arg1)
     (:real-range cc var (index i) 0 arg1 1) )
    ((:real-range cc var arg1 arg2)
     (:real-range cc var (index i) arg1 arg2 1) )
    ((:real-range cc var (index i) arg1 arg2)
     (:real-range cc var (index i) arg1 arg2 1) )
    ((:real-range cc var arg1 arg2 arg3)
     (:real-range cc var (index i) arg1 arg2 arg3) )

    ; the fully qualified case
    ((:real-range cc var (index i) arg1 arg2 arg3)
     (:do cc
          (let ((a arg1) (b arg2) (s arg3) (istop 0))
            (if (not (and (real? a) (real? b) (real? s)))
                (error "arguments of :real-range are not real" a b s) )
            (if (and (exact? a) (or (not (exact? b)) (not (exact? s))))
                (set! a (exact->inexact a)) )
            (set! istop (/ (- b a) s)) )
          ((i 0))
          (< i istop)
          (let ((var (+ a (* s i)))))
          #t
          ((+ i 1)) ))))

; Comment: The macro :real-range adapts the exactness of the start
;   value in case any of the other values is inexact. This is a
;   precaution to avoid (list-ec (: x 0 3.0) x) => '(0 1.0 2.0).

    
(define-syntax :char-range
  (syntax-rules (index)
    ((:char-range cc var (index i) arg1 arg2)
     (:parallel cc (:char-range var arg1 arg2) (:integers i)) )
    ((:char-range cc var arg1 arg2)
     (:do cc
          (let ((imax (char->integer arg2))))
          ((i (char->integer arg1)))
          (<= i imax)
          (let ((var (integer->char i))))
          #t
          ((+ i 1)) ))))

; Warning: There is no R5RS-way to implement the :char-range generator 
;   because the integers obtained by char->integer are not necessarily 
;   consecutive. We simply assume this anyhow for illustration.


(define-syntax :port
  (syntax-rules (index)
    ((:port cc var (index i) arg1 arg ...)
     (:parallel cc (:port var arg1 arg ...) (:integers i)) )
    ((:port cc var arg)
     (:port cc var arg read) )
    ((:port cc var arg1 arg2)
     (:do cc
          (let ((port arg1) (read-proc arg2)))
          ((var (read-proc port)))
          (not (eof-object? var))
          (let ())
          #t
          ((read-proc port)) ))))


; ==========================================================================
; The typed generator :dispatched and utilities for constructing dispatchers
; ==========================================================================

(define-syntax :dispatched
  (syntax-rules (index)
    ((:dispatched cc var (index i) dispatch arg1 arg ...)
     (:parallel cc 
                (:integers i)
                (:dispatched var dispatch arg1 arg ...) ))
    ((:dispatched cc var dispatch arg1 arg ...)
     (:do cc
          (let ((d dispatch) 
                (args (list arg1 arg ...)) 
                (g #f) 
                (empty (list #f)) )
            (set! g (d args))
            (if (not (procedure? g))
                (error "unrecognized arguments in dispatching" 
                       args 
                       (d '()) )))
          ((var (g empty)))
          (not (eq? var empty))
          (let ())
          #t
          ((g empty)) ))))

; Comment: The unique object empty is created as a newly allocated
;   non-empty list. It is compared using eq? which distinguishes
;   the object from any other object, according to R5RS 6.1.


(define-syntax :generator-proc
  (syntax-rules (:do let)

    ; call g with a variable, reentry at (**)
    ((:generator-proc (g arg ...))
     (g (:generator-proc var) var arg ...) )

    ; reentry point (**) -> make the code from a single :do
    ((:generator-proc
       var 
       (:do (let obs oc ...) 
            ((lv li) ...) 
            ne1? 
            (let ((i v) ...) ic ...) 
            ne2? 
            (ls ...)) )
     (ec-simplify 
      (let obs
          oc ...
          (let ((lv li) ... (ne2 #t))
            (ec-simplify
             (let ((i #f) ...) ; v not yet valid
               (lambda (empty)
                 (if (and ne1? ne2)
                     (ec-simplify
                      (begin 
                        (set! i v) ...
                        ic ...
                        (let ((value var))
                          (ec-simplify
                           (if ne2?
                               (ec-simplify 
                                (begin (set! lv ls) ...) )
                               (set! ne2 #f) ))
                          value )))
                     empty ))))))))

    ; silence warnings of some macro expanders
    ((:generator-proc var)
     (error "illegal macro call") )))


(define (dispatch-union d1 d2)
  (lambda (args)
    (let ((g1 (d1 args)) (g2 (d2 args)))
      (if g1
          (if g2 
              (if (null? args)
                  (append (if (list? g1) g1 (list g1)) 
                          (if (list? g2) g2 (list g2)) )
                  (error "dispatching conflict" args (d1 '()) (d2 '())) )
              g1 )
          (if g2 g2 #f) ))))


; ==========================================================================
; The dispatching generator :
; ==========================================================================

(define (make-initial-:-dispatch)
  (lambda (args)
    (case (length args)
      ((0) 'SRFI42)
      ((1) (let ((a1 (car args)))
             (cond
              ((list? a1)
               (:generator-proc (:list a1)) )
              ((string? a1)
               (:generator-proc (:string a1)) )
              ((vector? a1)
               (:generator-proc (:vector a1)) )
              ((and (integer? a1) (exact? a1))
               (:generator-proc (:range a1)) )
              ((real? a1)
               (:generator-proc (:real-range a1)) )
              ((input-port? a1)
               (:generator-proc (:port a1)) )
              (else
               #f ))))
      ((2) (let ((a1 (car args)) (a2 (cadr args)))
             (cond
              ((and (list? a1) (list? a2))
               (:generator-proc (:list a1 a2)) )
              ((and (string? a1) (string? a1))
               (:generator-proc (:string a1 a2)) )
              ((and (vector? a1) (vector? a2))
               (:generator-proc (:vector a1 a2)) )
              ((and (integer? a1) (exact? a1) (integer? a2) (exact? a2))
               (:generator-proc (:range a1 a2)) )
              ((and (real? a1) (real? a2))
               (:generator-proc (:real-range a1 a2)) )
              ((and (char? a1) (char? a2))
               (:generator-proc (:char-range a1 a2)) )
              ((and (input-port? a1) (procedure? a2))
               (:generator-proc (:port a1 a2)) )
              (else
               #f ))))
      ((3) (let ((a1 (car args)) (a2 (cadr args)) (a3 (caddr args)))
             (cond
              ((and (list? a1) (list? a2) (list? a3))
               (:generator-proc (:list a1 a2 a3)) )
              ((and (string? a1) (string? a1) (string? a3))
               (:generator-proc (:string a1 a2 a3)) )
              ((and (vector? a1) (vector? a2) (vector? a3))
               (:generator-proc (:vector a1 a2 a3)) )
              ((and (integer? a1) (exact? a1) 
                    (integer? a2) (exact? a2)
                    (integer? a3) (exact? a3))
               (:generator-proc (:range a1 a2 a3)) )
              ((and (real? a1) (real? a2) (real? a3))
               (:generator-proc (:real-range a1 a2 a3)) )
              (else
               #f ))))
      (else
       (letrec ((every? 
                 (lambda (pred args)
                   (if (null? args)
                       #t
                       (and (pred (car args))
                            (every? pred (cdr args)) )))))
         (cond
          ((every? list? args)
           (:generator-proc (:list (apply append args))) )
          ((every? string? args)
           (:generator-proc (:string (apply string-append args))) )
          ((every? vector? args)
           (:generator-proc (:list (apply append (map vector->list args)))) )
          (else
           #f )))))))

(define :-dispatch
  (make-initial-:-dispatch) )

(define (:-dispatch-ref)
  :-dispatch )

(define (:-dispatch-set! dispatch)
  (if (not (procedure? dispatch))
      (error "not a procedure" dispatch) )
  (set! :-dispatch dispatch) )

(define-syntax :
  (syntax-rules (index)
    ((: cc var (index i) arg1 arg ...)
     (:dispatched cc var (index i) :-dispatch arg1 arg ...) )
    ((: cc var arg1 arg ...)
     (:dispatched cc var :-dispatch arg1 arg ...) )))


; ==========================================================================
; The utility comprehensions fold-ec, fold3-ec
; ==========================================================================

(define-syntax fold3-ec
  (syntax-rules (nested)
    ((fold3-ec x0 (nested q1 ...) q etc1 etc2 etc3 etc ...)
     (fold3-ec x0 (nested q1 ... q) etc1 etc2 etc3 etc ...) )
    ((fold3-ec x0 q1 q2 etc1 etc2 etc3 etc ...)
     (fold3-ec x0 (nested q1 q2) etc1 etc2 etc3 etc ...) )
    ((fold3-ec x0 expression f1 f2)
     (fold3-ec x0 (nested) expression f1 f2) )

    ((fold3-ec x0 qualifier expression f1 f2)
     (let ((result #f) (empty #t))
       (do-ec qualifier
              (let ((value expression)) ; don't duplicate
                (if empty
                    (begin (set! result (f1 value))
                           (set! empty #f) )
                    (set! result (f2 value result)) )))
       (if empty x0 result) ))))


(define-syntax fold-ec
  (syntax-rules (nested)
    ((fold-ec x0 (nested q1 ...) q etc1 etc2 etc ...)
     (fold-ec x0 (nested q1 ... q) etc1 etc2 etc ...) )
    ((fold-ec x0 q1 q2 etc1 etc2 etc ...)
     (fold-ec x0 (nested q1 q2) etc1 etc2 etc ...) )
    ((fold-ec x0 expression f2)
     (fold-ec x0 (nested) expression f2) )

    ((fold-ec x0 qualifier expression f2)
     (let ((result x0))
       (do-ec qualifier (set! result (f2 expression result)))
       result ))))


; ==========================================================================
; The comprehensions list-ec string-ec vector-ec etc.
; ==========================================================================

(define-syntax list-ec
  (syntax-rules ()
    ((list-ec etc1 etc ...)
     (reverse (fold-ec '() etc1 etc ... cons)) )))

; Alternative: Reverse can safely be replaced by reverse! if you have it.
;
; Alternative: It is possible to construct the result in the correct order
;   using set-cdr! to add at the tail. This removes the overhead of copying
;   at the end, at the cost of more book-keeping.


(define-syntax append-ec
  (syntax-rules ()
    ((append-ec etc1 etc ...)
     (apply append (list-ec etc1 etc ...)) )))

(define-syntax string-ec
  (syntax-rules ()
    ((string-ec etc1 etc ...)
     (list->string (list-ec etc1 etc ...)) )))

; Alternative: For very long strings, the intermediate list may be a
;   problem. A more space-aware implementation collect the characters 
;   in an intermediate list and when this list becomes too large it is
;   converted into an intermediate string. At the end, the intermediate
;   strings are concatenated with string-append.


(define-syntax string-append-ec
  (syntax-rules ()
    ((string-append-ec etc1 etc ...)
     (apply string-append (list-ec etc1 etc ...)) )))

(define-syntax vector-ec
  (syntax-rules ()
    ((vector-ec etc1 etc ...)
     (list->vector (list-ec etc1 etc ...)) )))

; Comment: A similar approach as for string-ec can be used for vector-ec.
;   However, the space overhead for the intermediate list is much lower
;   than for string-ec and as there is no vector-append, the intermediate
;   vectors must be copied explicitly.

(define-syntax vector-of-length-ec
  (syntax-rules (nested)
    ((vector-of-length-ec k (nested q1 ...) q etc1 etc ...)
     (vector-of-length-ec k (nested q1 ... q) etc1 etc ...) )
    ((vector-of-length-ec k q1 q2             etc1 etc ...)
     (vector-of-length-ec k (nested q1 q2)    etc1 etc ...) )
    ((vector-of-length-ec k expression)
     (vector-of-length-ec k (nested) expression) )

    ((vector-of-length-ec k qualifier expression)
     (let ((len k))
       (let ((vec (make-vector len))
             (i 0) )
         (do-ec qualifier
                (if (< i len)
                    (begin (vector-set! vec i expression)
                           (set! i (+ i 1)) )
                    (error "vector is too short for the comprehension") ))
         (if (= i len)
             vec
             (error "vector is too long for the comprehension") ))))))


(define-syntax sum-ec
  (syntax-rules ()
    ((sum-ec etc1 etc ...)
     (fold-ec (+) etc1 etc ... +) )))

(define-syntax product-ec
  (syntax-rules ()
    ((product-ec etc1 etc ...)
     (fold-ec (*) etc1 etc ... *) )))

(define-syntax min-ec
  (syntax-rules ()
    ((min-ec etc1 etc ...)
     (fold3-ec (min) etc1 etc ... min min) )))

(define-syntax max-ec
  (syntax-rules ()
    ((max-ec etc1 etc ...)
     (fold3-ec (max) etc1 etc ... max max) )))

(define-syntax last-ec
  (syntax-rules (nested)
    ((last-ec default (nested q1 ...) q etc1 etc ...)
     (last-ec default (nested q1 ... q) etc1 etc ...) )
    ((last-ec default q1 q2             etc1 etc ...)
     (last-ec default (nested q1 q2)    etc1 etc ...) )
    ((last-ec default expression)
     (last-ec default (nested) expression) )

    ((last-ec default qualifier expression)
     (let ((result default))
       (do-ec qualifier (set! result expression))
       result ))))


; ==========================================================================
; The fundamental early-stopping comprehension first-ec
; ==========================================================================

(define-syntax first-ec
  (syntax-rules (nested)
    ((first-ec default (nested q1 ...) q etc1 etc ...)
     (first-ec default (nested q1 ... q) etc1 etc ...) )
    ((first-ec default q1 q2             etc1 etc ...)
     (first-ec default (nested q1 q2)    etc1 etc ...) )
    ((first-ec default expression)
     (first-ec default (nested) expression) )

    ((first-ec default qualifier expression)
     (let ((result default) (stop #f))
       (ec-guarded-do-ec 
         stop 
         (nested qualifier)
         (begin (set! result expression)
                (set! stop #t) ))
       result ))))

; (ec-guarded-do-ec stop (nested q ...) cmd)
;   constructs (do-ec q ... cmd) where the generators gen in q ... are
;   replaced by (:until gen stop).

(define-syntax ec-guarded-do-ec
  (syntax-rules (nested if not and or begin)

    ((ec-guarded-do-ec stop (nested (nested q1 ...) q2 ...) cmd)
     (ec-guarded-do-ec stop (nested q1 ... q2 ...) cmd) )

    ((ec-guarded-do-ec stop (nested (if test) q ...) cmd)
     (if test (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (not test) q ...) cmd)
     (if (not test) (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (and test ...) q ...) cmd)
     (if (and test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )
    ((ec-guarded-do-ec stop (nested (or test ...) q ...) cmd)
     (if (or test ...) (ec-guarded-do-ec stop (nested q ...) cmd)) )

    ((ec-guarded-do-ec stop (nested (begin etc ...) q ...) cmd)
     (begin etc ... (ec-guarded-do-ec stop (nested q ...) cmd)) )

    ((ec-guarded-do-ec stop (nested gen q ...) cmd)
     (do-ec 
       (:until gen stop) 
       (ec-guarded-do-ec stop (nested q ...) cmd) ))

    ((ec-guarded-do-ec stop (nested) cmd)
     (do-ec cmd) )))

; Alternative: Instead of modifying the generator with :until, it is
;   possible to use call-with-current-continuation:
;
;   (define-synatx first-ec 
;     ...same as above...
;     ((first-ec default qualifier expression)
;      (call-with-current-continuation 
;       (lambda (cc)
;        (do-ec qualifier (cc expression))
;        default ))) ))
;
;   This is much simpler but not necessarily as efficient.


; ==========================================================================
; The early-stopping comprehensions any?-ec every?-ec
; ==========================================================================

(define-syntax any?-ec
  (syntax-rules (nested)
    ((any?-ec (nested q1 ...) q etc1 etc ...)
     (any?-ec (nested q1 ... q) etc1 etc ...) )
    ((any?-ec q1 q2             etc1 etc ...)
     (any?-ec (nested q1 q2)    etc1 etc ...) )
    ((any?-ec expression)
     (any?-ec (nested) expression) )

    ((any?-ec qualifier expression)
     (first-ec #f qualifier (if expression) #t) )))

(define-syntax every?-ec
  (syntax-rules (nested)
    ((every?-ec (nested q1 ...) q etc1 etc ...)
     (every?-ec (nested q1 ... q) etc1 etc ...) )
    ((every?-ec q1 q2             etc1 etc ...)
     (every?-ec (nested q1 q2)    etc1 etc ...) )
    ((every?-ec expression)
     (every?-ec (nested) expression) )

    ((every?-ec qualifier expression)
     (first-ec #t qualifier (if (not expression)) #f) )))