/usr/share/singular/LIB/alexpoly.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 | ////
version="version alexpoly.lib 4.0.0.0 Jun_2013 "; // $Id: 618e58dbd3c8aa362df31c396d982cdb691407c0 $
category="Singularities";
info="
LIBRARY: alexpoly.lib Resolution Graph and Alexander Polynomial
AUTHOR: Fernando Hernando Carrillo, hernando@agt.uva.es
Thomas Keilen, keilen@mathematik.uni-kl.de
OVERVIEW:
A library for computing the resolution graph of a plane curve singularity f,
the total multiplicities of the total transforms of the branches of f along
the exceptional divisors of a minimal good resolution of f, the Alexander
polynomial of f, and the zeta function of its monodromy operator.
PROCEDURES:
resolutiongraph(f); resolution graph f
totalmultiplicities(f); resolution graph, total multiplicities and strict multiplicities of f
alexanderpolynomial(f); Alexander polynomial of f
semigroup(f); calculates generators for the semigroup of f
proximitymatrix(f); calculates the proximity matrix of f
multseq2charexp(v); converts multiplicity sequence to characteristic exponents
charexp2multseq(v); converts characteristic exponents to multiplicity sequence
charexp2generators(v); converts characteristic exponents to generators of the semigroup
charexp2inter(c,e); converts contact matrix and charact. exp. to intersection matrix
charexp2conductor(v); converts characteristic exponents to conductor
charexp2poly(v,a); calculates a polynomial f with characteristic exponents v
tau_es2(f); equisingular Tjurina number of f
KEYWORDS: Hamburger-Noether expansion; Puiseux expansion; curve singularities;
topological invariants; Alexander polynomial; resolution graph;
total multiplicities; equisingular Tjurina number
";
///////////////////////////////////////////////////////////////////////////////////////////
LIB "hnoether.lib";
///////////////////////////////////////////////////////////////////////////////////////////
proc resolutiongraph (def INPUT,list #)
"USAGE: resolutiongraph(INPUT); INPUT poly or list
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing the
characteristic exponents of an irreducible plane curve singularity.
RETURN: intmat, the incidence matrix of the resolution graph of the plane curve
defined by INPUT, where the entries on the diagonal are the weights of the
vertices of the graph and a negative entry corresponds to the strict transform
of a branch of the curve.
NOTE: In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of @code{hnexpansion} and use it as input instead of
the polynomial itself.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
SEE ALSO: develop, hnexpansion, totalmultiplicities, alexanderpolynomial
EXAMPLE: example resolutiongraph; shows an example
"
{
return(totalmultiplicities(INPUT,#)[1]);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=(y2-x3)^2-4x5y-x7;
poly f2=y2-x3;
poly f3=y3-x2;
resolutiongraph(f1*f2*f3);
}
proc totalmultiplicities (def INPUT, list #)
"USAGE: totalmultiplicities(INPUT); INPUT poly or list
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing the
characteristic exponents of an irreducible plane curve singularity.
RETURN: list @code{L} of three integer matrices. @code{L[1]} is the incidence matrix of
the resolution graph of the plane curve defined by INPUT, where the entries on the
diagonal are the weights of the vertices of the graph and a negative entry corresponds
to the strict transform of a branch of the curve. @code{L[2]} is an integer matrix,
which has for each vertex in the graph a row and for each branch of the curve a column.
The entry in position [i,j] contains the total multiplicity of the j-th branch (i.e. the
branch with weight -j in @code{L[1]}) along the exceptional divisor corresponding
to the i-th row in @code{L[1]}. In particular, the i-th row contains
the total multiplicities of the branches of the plane curve (defined by INPUT) along
the exceptional divisor which corresponds to the i-th row in the incidence matrix
@code{L[1]}. @code{L[3]} is an integer matrix which contains the (strict) multiplicities
of the branches of the curve along the exceptional divisors in the same way as @code{L[2]}
contains the total multiplicities.
NOTE: The total multiplicty of a branch along an exceptional divisor is the multiplicity
with which this exceptional divisor occurs in the total transform of this branch
under the resolution corresponding to the resolution graph.
@*
In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of @code{hnexpansion} and use it as input instead of
the polynomial itself.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
SEE ALSO: develop, hnexpansion, alexanderpolynomial, resolutiongraph
EXAMPLE: example totalmultiplicities; shows an example
"
{
///////////////////////////////////////////////////////////////////////////////////////////////
/// The algorithm described in [JP] DeJong, Pfister, Local Analytic Geometry, Vieweg 2000,
/// is used for the implementation -- the missing case is included by appropriate sorting.
///////////////////////////////////////////////////////////////////////////////////////////////
/// If # is empty, then an additional sorting of the branches will be made, so that
/// the branches can be split with split_graph in order to get the graphs of the curves
/// separated on the first exceptional divisor. Otherwise split_graph should not be applied!
///////////////////////////////////////////////////////////////////////////////////////////////
/// If #[1]="tau", then totalmultiplicities is called for the use in tau_es2 - thus it returns
/// the prolonged resolutiongraphs of the branches, their multiplicity sequences and their
/// contact matrix - sorted appropriately.
///////////////////////////////////////////////////////////////////////////////////////////////
int i,j,s,e,ii;
intmat helpmati,helpmatii;
intvec helpvec;
/////////////////////////////////////////////////////////////////////////////////
// Decide, which kind of input we have, and define the contact matrix
/////////////////////////////////////////////////////////////////////////////////
// Input: a polynomial defining a plane curve singularity.
//////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT)=="poly")
{
/*
poly f=squarefree(INPUT);
if ( deg(f)!=deg(INPUT) )
{
dbprint(printlevel-voice+4,"// input polynomial was not reduced");
dbprint(printlevel-voice+4,"// we continue with its reduction");
}
list I@N@V=invariants(f);
*/
list I@N@V=invariants(INPUT);
}
else
{
///////////////////////////////////////////////////////////////////////////////////
// Input: the vector of characteristic exponents of an irreducible plane curve
///////////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT)=="intvec")
{
list charexp;
charexp[1]=INPUT;
intmat contact[1][1]=0;
}
else
{
if (typeof(INPUT)=="list")
{
/////////////////////////////////////////////////////////////////////////////////
// Input: intersection-matrix and characteristic exponents.
//////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT[1])=="intmat")
{
intmat contact=INPUT[1];
list charexp=INPUT[2];
}
else
{
/////////////////////////////////////////////////////////////////////////////////
// Input: output of hnexpansion or hne in the ring created by hnexpansion
//////////////////////////////////////////////////////////////////////////////
if ((typeof(INPUT[1])=="ring") or (typeof(INPUT[1])=="list"))
{
list I@N@V=invariants(INPUT);
}
else
{
////////////////////////////////////////////////////////////////////////////////////
// Input: output of reddevelop or extdevelop -- irreducible plane curve singularity
////////////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT[1])=="matrix")
{
list charexp=invariants(INPUT)[1];
intmat contact[1][1]=0;
}
else
{
ERROR("The input is invalid!");
}
}
}
}
else
{
ERROR("The input is invalid!");
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// If the input was a polynomial or a HN-Expansion, then calculate the contact matrix and char.exponents.
///////////////////////////////////////////////////////////////////////////////////////////////////
if (defined(I@N@V))
{
intmat contact=I@N@V[size(I@N@V)][1]; // contact numbers
list charexp; // characteristic exponents
for (i=1;i<=size(I@N@V)-1;i++)
{
charexp[i]=I@N@V[i][1];
}
}
//////////////////////////////////////////////////////////////////////////////
// Find the maximal contact numbers of the branches
//////////////////////////////////////////////////////////////////////////////
int r=ncols(contact); // number of branches
intvec maxcontact; // maximal contactnumber of branch i with other branches
for (i=1;i<=r;i++)
{
maxcontact[i]=max_in_intvec(intvec(contact[i,1..r]));
}
///////////////////////////////////////////////////////////////////////////////
// Define the graphs of the branches and prolong them if necessary.
///////////////////////////////////////////////////////////////////////////////
intmat gr,gr_red,grp; // a subgraph, a reduced subgraph, a prolonged subgraph
int omega; // point of highest weight in subgraph
list graphs; // contains the subgraphs of the C_i
list totmult; // contains the total multiplicities of the subgraphs
list multipl; // contains the multiplicities of the subgraphs
list gr_tm; // takes a single subgraph and tot.mult.
intvec tm,mt; // total multiplicities and multiplicities
for (i=1;i<=r;i++)
{
gr_tm=irred_resgraph_totmult(charexp[i]); // graph, total multipl. and multipl. of the ith branch
gr=gr_tm[1]; // the graph of the ith branch
tm=gr_tm[2]; // the total multiplicities of the ith branch
mt=gr_tm[3]; // the multiplicities of the ith branch
omega=nrows(gr)-1; // maximal weight in the graph of the ith branch
// If the maximal contact of the ith branch with some other branch is larger
// than the maximal weight omega, then the graph has to be polonged.
if (omega<maxcontact[i])
{
grp=intmat(intvec(0),maxcontact[i]+1,maxcontact[i]+1);
// save the graph without the point of the strict transform
if (omega>=1) // otherwise the graph consists only of the strict transform
{
grp[1..omega,1..omega]=gr[1..omega,1..omega];
}
// add the points of multiplicity 1 up to weight maxcontact[i] and the strict transform
// and connect them
for (j=omega+1;j<=maxcontact[i]+1;j++)
{
// adding the vertex to the graph and adding the total multiplicities
if (j<=maxcontact[i])
{
grp[j,j]=j;
if (j>1)
{
tm[j]=tm[j-1]+1;
mt[j]=1;
}
else // then there is no previous point in the graph
{
tm[j]=1;
mt[j]=1;
}
}
// connecting the vertex with the previous part of the graph
if (j>1) // otherwise there is nothing to connect to
{
grp[j-1,j]=1;
grp[j,j-1]=1;
}
}
gr=grp; // replace the subgraph by the prolonged subgraph
}
gr[nrows(gr),ncols(gr)]=-i; // give the strict transform in the ith branch weight -i
graphs[i]=gr;
totmult[i]=tm;
multipl[i]=mt;
}
///////////////////////////////////////////////////////////////////////////////
// Check, if the procedure is called from inside tau_es2.
int check_tau;
if (size(#)==1)
{
if (#[1]=="tau")
{
check_tau=1;
}
}
/////////////////////////////////////////////////////////////////////////////////
// The procedure tau_es2 expects the branches to be ordered according to their
// contact during the resolution process.
/////////////////////////////////////////////////////////////////////////////////
if ((size(#)==0) or (check_tau==1))
{
list SORT;
for (i=1;i<=ncols(contact)-2;i++)
{
SORT=sort_branches(contact,graphs,totmult,multipl,i,ncols(contact));
contact=SORT[1];
graphs=SORT[2];
totmult=SORT[3];
multipl=SORT[4];
}
}
///////////////////////////////////////////////////////////////////////////////////
/// If the procedure is called from inside tau_es2, the output will be the prolonged
/// resolutiongraphs of the branches, their multiplicity sequences and their contact matrix.
if (check_tau==1)
{
return(list(graphs,multipl,contact));
}
/////////////////////////////////////////////////////////////////////////////////////
// Sort the branches in such a way, that in the blowing up procedure whenever to branches
// C_i and C_j have contact k (i.e. after k steps they are separated) and one of the following
// situations occurs:
// A) some exceptional divisor E_l (l<k) still intersects C_i after k steps of blowing up
// and no such E_l intersects C_j
// OR
// B) some exceptional divisor E_l (l<k-1) still intersects C_i after k steps of blowing up
// and another one (necessarily E_k-1) intersects C_j,
// THEN: i<j!
/////////////////////////////////////////////////////////////////////////////////////////
// This means in the algorithm for glueing graphs together described in [JP] p.217-19
// the Case 3 never occurs -- and Case 1 only occurs, if it is unavoidable, that is when
// C_1 there meets an E_l with l<k.
// (Otherwise we say that (C_i,C_j) has "bad contact".)
////////////////////////////////////////////////////////////////////////////////////////
// We can detect this by looking at the graphs of C_i and C_j. If E_l stays together with
// C_i and not with C_j in the k-th step of blowing up, then in the graph of C_i
// k and l are NOT connected, while in the graph of C_j they are!
//////////////////////////////////////////////////////////////////////////////////////////
// Note also, that for a fixed pair (i,j) this situation can only occur for ONE l (in Case A: l<k
// and possibly l=k-1; in Case B: l<k-1).
//////////////////////////////////////////////////////////////////////////////////////////
// Our algorithm now works as follows. Start with i=1 and j=2.
// While (i<r=number of branches) do as follows: Check C_i with C_j.
// If a bad contact (C_i,C_j) occurs, then MOVE C_j to the position of C_i (and move all C_t
// with t>=i, t!=j one position further). Else do nothing particular.
// Then, if j<r set j=j+1. Else set j=i+2 and i=i+1. End of While.
// To see that this works we note that if (C_i,C_j) has bad contact for some j>i, then
// (C_j,C_t) does NOT have bad contact for t=i+1,...,j-1. For this we consider the 3 cases:
// 1) contact(C_t,C_j)=contact(C_i,C_j)=k: E_l stays with C_j in k-th step and C_t and C_j
// separate there, so (C_t,C_j) has bad contact
// and hence (C_j,C_t) does NOT have bad contact
// 2) contact(C_t,C_j)>contact(C_i,C_j)=k: CANNOT HAPPEN - C_i had no bad contact with C_t,
// hence E_l did not stay with C_t in the k-th step;
// however, E_l stays with C_j there, so C_t and C_j
// cannot have a contact higher than k
// 3) contact(C_t,C_j)<contact(C_i,C_j)=k: when C_t and C_j separate, C_j and C_i are still
// together; and since (C_i,C_t) did not have bad
// contact also (C_j,C_t) cannot have bad contact.
// This ensures that when we do the moving of the graphs, we do NOT create any new bad contacts.
//////////////////////////////////////////////////////////////////////////////
i=1;
j=2;
intvec connections_i,connections_j;
int n_i,n_j;
int bad_contact;
while (i<r)
{
// Test graphs[i] with graphs[j] for bad contact.
connections_i=find_lower_connection_points(graphs[i],contact[i,j]);
if (connections_i[1]==0) // no connection point of lower weight there
{
n_i=0;
}
else
{
n_i=size(connections_i);
}
connections_j=find_lower_connection_points(graphs[j],contact[i,j]);
if (connections_j[1]==0) // no connection point of lower weight there
{
n_j=0;
}
else
{
n_j=size(connections_j);
}
bad_contact=0;
ii=1;
// The points of weight k=contact(C_i,C_j) in C_i and C_j are connectd to n_i respectively
// n_j points of weight less than k, where n_i and n_j might take values among 0, 1 and 2.
// n_j=2: Then E_k is intersected by E_k-1 and E_l (l<k-1) in the k-th step, however
// C_j does not stay with anyone of those, so (C_i,C_j) does not have bad contact.
// n_i=0: Then C_i stays with E_k-1 and there is no E_l with l<k-1 in the k-th step,
// hence (C_i,C_j) does not have bad contact.
// n_i=1, n_j=0: Analogously, then C_j stays with E_k-1 and there is no E_l (l<k-1). This means
// (C_i,C_j) has bad contact.
// n_i=1, n_j=1: EITHER there is no E_l (l<k-1) and C_i and C_j both separate from E_k-1
// in the k-th step of blowing up (hence (C_i,C_j) does not have bad contact).
// OR there is an E_l (l<k-1) with which one stays and the other one stays
// with E_k-1 (bad contact, if E_l stays with C_j; good contact otherwise).
// n_i=2, E_k is intersected by E_k-1 and E_l in the k-th step and C_i does not
// stay together with any of those.
// n_j=0: This CANNOT occur, since then C_j would have to stay together with E_l
// and E_k-1, which is impossible.
// n_j=1: Then C_j stays together with either E_l or with E_k-1, however both cases
// imply that (C_i,C_j) has bad contact
// ALTERNATIVE CONSIDERATION FOR DISTINGUISHING THE CASES:
// n_i<n_j : C_i stays with "more" E's than C_j does (only one is possible of course!),
// hence (C_i,C_j) does not have bad contact.
// n_i>n_j : C_i stays with "less" E's than C_j does (i.e. with none) hence (C_i,C_j) has bad contact.
// n_i=n_j=0 : Not possible, since then both would stay with E_k-1.
// n_i=n_j=2 : Both separate from E_k-1 as well as from some E_l (l<k) - hence NO bad contact.
// n_i=n_j=1 : One stays with E_k-1 and one with E_l (l<k). Bad contact, if C_j stays with E_l,
// i.e. if in the graph of C_i the point k is connected to l, and no bad contact otherwise.
if ((n_i>n_j) or ((n_i==1) and (n_j==1) and (connections_i[1]<contact[i,j]-1)))
{
bad_contact=1;
// Move the graph (etc.) of C_j into the position i.
graphs=insert(graphs,graphs[j],i-1);
graphs=delete(graphs,j+1);
totmult=insert(totmult,totmult[j],i-1);
totmult=delete(totmult,j+1);
multipl=insert(multipl,multipl[j],i-1);
multipl=delete(multipl,j+1);
contact=move_row_col(contact,i,j);
}
if (j<r) // There are still some C_j against which C_i has to be tested.
{
j++;
}
else // Now C_i has been tested against all C_j, and we may continue with C_i+1.
{
j=i+2;
i=i+1;
}
}
/////////////////////////////////////////////////////////////////////////////////////
// Glue the graphs together.
//////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
intmat rgraph=graphs[1]; // keeps the resolution graph
intmat rtm=intmat(totmult[1],nrows(rgraph),1); // keeps the tot.mult. at the vertices of the graph as rows
intmat rmt=intmat(multipl[1],nrows(rgraph),1); // keeps the mult. at the vertices of the graph as rows
intvec stricttransforms=0,ncols(rgraph); // keeps the position of the ith strict
// transform in rgraph at position i+1 !!!
intvec k,kp,p,q,o; // highest contact numbers, num. of branch with hgt contact, separation points
int maxc,maxcp;
for (i=2;i<=r;i++)
{
//////////////////////////////////////////////////////////////////////////////////
// Find j<i minimal s.t. contact[i,j] is maximal.
maxcp=i;
for (j=1;j<i;j++)
{
if (contact[i,j]>contact[i,maxcp]){maxcp=j;}
}
kp[i]=maxcp; // the j such that C_i has its maximal contact to C_j
k[i]=contact[i,maxcp]; // the maximal contact of C_i with C_1,...,C_i-1
///////////////////////////////////////////////////////////////////////////////////
// Find in the graph of C_1,...,C_i-1 the points p of wgt k and q of wgt k-1
// connected to C_maxcp.
// Since non of C_j for j<maxcp has contact k with C_i, the point p lies in
// the remaining part of the graph of C_maxcp.
s=rgraph[stricttransforms[maxcp]+1,stricttransforms[maxcp]+1];
p[i]=stricttransforms[maxcp]+1+k[i]-s; // pt. to which reduced subgraph of C_i is glued
// If s<k[i], then q also lies in this part, otherwise it lies in the remaining part
// of the graph of the C_j to which C_maxcp is connected, i.e. j=kp[maxcp], since
// the contact of C_i and of C_maxcp to this C_j is strictly less than k.
// If s=k[i]=1, then p=1 and there is no q! We may thus set q=0.
if ((s<k[i]) or ((s==k[i]) and (s==1))) // i.e. q is on the same subgraph as p, or q does not exist
{
q[i]=p[i]-1;
}
else // i.e. q is on the subgraph to which the subgraph of p has been glued
{
s=rgraph[stricttransforms[kp[maxcp]]+1,stricttransforms[kp[maxcp]]+1];
q[i]=stricttransforms[kp[maxcp]]+k[i]-s;
}
//////////////////////////////////////////////////////////////////////////////////////
// Reduce the graph of C_i and add it to the graph of C_1,...,C_i-1.
gr=graphs[i];
s=nrows(rgraph);
// Delete in the graph of C_i everything of weight <=k.
gr_red=intmat(intvec(gr[k[i]+1..nrows(gr),k[i]+1..ncols(gr)]),nrows(gr)-k[i],ncols(gr)-k[i]);
// Add this part to the graph of C_1,...,C_i-1.
rgraph=addmat(rgraph,gr_red);
/////////////////////////////////////////////////////////////////////////////////////
// Connect the two parts of the graph.
/////////////////////////////////////////////////////////////////////////////////////
// Connect the points connected to the point of wgt k in the graph of C_i to p[i].
for (j=k[i]+1;j<=ncols(gr);j++)
{
if(gr[k[i],j]==1)
{
rgraph[s+j-k[i],p[i]]=1;
rgraph[p[i],s+j-k[i]]=1;
}
}
// If pt. of wgt k is not connected to pt of wgt k-1 in graph of C_i, then points
// connected to the one of wgt k-1 have to be connected to q[i].
if (k[i]>1)
{
if (gr[k[i],k[i]-1]!=1)
{
for (j=k[i]+1;j<=ncols(gr);j++)
{
if(gr[k[i]-1,j]==1)
{
rgraph[s+j-k[i],q[i]]=1;
rgraph[q[i],s+j-k[i]]=1;
}
}
// Cut the connection from p[i] to q[i].
rgraph[p[i],q[i]]=0;
rgraph[q[i],p[i]]=0;
}
}
stricttransforms[i+1]=ncols(rgraph);
////////////////////////////////////////////////////////////////////////////////
// Adjust the total multiplicities
////////////////////////////////////////////////////////////////////////////////
// Add the total multiplicities for the added subgraph to rtm
tm=totmult[i];
mt=multipl[i];
if (k[i]<size(tm)) // if the reduced subgraph of C_i has more than one point
{
rtm=addmat(rtm,intmat(intvec(tm[k[i]+1..size(tm)]),nrows(gr_red),1));
rmt=addmat(rmt,intmat(intvec(mt[k[i]+1..size(mt)]),nrows(gr_red),1));
}
else // if the reduced subgraph of C_i consists only of the strict transform
{
rtm=addmat(rtm,0);
rmt=addmat(rmt,0);
}
// Adjust the total multiplicities at the places where the subgraph has been glued.
e=k[i]; // the highest weight of a point that has not yet been assigned its tot. mult.
while(e>=1)
{
s=stricttransforms[maxcp]+1; // Line in the graph of the start. pt. of the subgraph of C_maxcp.
for (j=rgraph[s,s];j<=e;j++) // Adjust the multiplicities.
{
rtm[s+j-rgraph[s,s],i]=tm[j];
rmt[s+j-rgraph[s,s],i]=mt[j];
}
maxcp=kp[maxcp]; // To which subgraph has the subgraph of C_maxcp been glued?
e=rgraph[s,s]-1; // What is the highest weight of a pt. that has not yet been assigned its tot.mult.?
}
e=nrows(rtm); // Number of rows in the matrix of totalmultiplicities.
// The total multiplicities of the C_s for s=1,...,i-1 along the exceptional divisors
// which are introduced after the strict transform of C_s has separated (i.e. the entries
// in rows stricttransform[i]+1,...,stricttransform[i+1]-1 in the s-th column of the matrix
// of total multiplicities still have to be calculated.
for (s=1;s<i;s++)
{
rtm[1..e,s]=adjust_tot_mult(intvec(rtm[1..e,i]),intvec(rtm[1..e,s]),intvec(rmt[1..e,i]),intvec(rmt[1..e,s]),p,q,stricttransforms,i);
}
// The total multiplicities of the C_i along the exceptional divisors
// which are introduced for the sake of C_s, s=1,...,i-1, after the strict transform
// of C_i has separated (i.e. the entries in rows stricttransform[s]+1,...,stricttransform[s+1]-1
// in the i-th column of the matrix of total multiplicities still have to be calculated.
for (s=1;s<i;s++)
{
rtm[1..e,i]=adjust_tot_mult(intvec(rtm[1..e,s]),intvec(rtm[1..e,i]),intvec(rmt[1..e,s]),intvec(rmt[1..e,i]),p,q,stricttransforms,s);
}
}
list result=rgraph,rtm,rmt;
return(result);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=(y2-x3)^2-4x5y-x7;
poly f2=y2-x3;
poly f3=y3-x2;
totalmultiplicities(f1*f2*f3);
}
proc alexanderpolynomial (def INPUT)
"USAGE: alexanderpolynomial(INPUT); INPUT poly or list
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing the
characteristic exponents of an irreducible plane curve singularity.
CREATE: a ring with variables t, t(1), ..., t(r) (where r is the number of branches of
the plane curve singularity f defined by INPUT) and ordering ls over the
ground field of the basering. @*
Moreover, the ring contains the Alexander polynomial of f in variables t(1), ..., t(r)
(@code{alexpoly}), the zeta function of the monodromy operator of f in the variable t
(@code{zeta_monodromy}), and a list containing the factors of the Alexander
polynomial with multiplicities (@code{alexfactors}).
RETURN: a list, say @code{ALEX}, where @code{ALEX[1]} is the created ring
NOTE: to use the ring type: @code{def ALEXring=ALEX[i]; setring ALEXring;}.
@*
Alternatively you may use the procedure sethnering and type: sethnering(ALEX,\"ALEXring\");
@*
To access the Alexander polynomial resp. the zeta function resp. the
factors of the Alexander polynomial type: @code{alexpoly} resp. @code{zeta_monodromy}
resp. @code{alexfactors}.@*
In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of @code{hnexpansion} and use it as input instead of
the polynomial itself.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
SEE ALSO: resolutiongraph, totalmultiplicities
EXAMPLE: example alexanderpolynomial; shows an example
"
{
// Get the resolution graph and the total multiplicities.
list gr_tm=totalmultiplicities(INPUT);
intmat gr=gr_tm[1];
intmat tm=gr_tm[2];
int r=ncols(tm);
int e=ncols(gr);
// Define the Ring for the Alexander Polynomial and the Zeta Function of the Monodromy.
execute("ring ALEXring=("+charstr(basering)+"),(t,t(1..r)),dp;");
poly hilfspoly=1;
poly alexnumerator=1; // numerator of the Alexander polynomial
poly alexdenominator=1; // denominator of the Alexander polynomial
list alexfactors; // the factors of the Alexanderpolynomial with multiplicities
list alexfactor;
int chi=2;
int i,j,k;
int s=1;
// Consider every vertex of the resolution graph.
for (i=1;i<=e;i++)
{
if (gr[i,i]>0) // If it belongs to an exceptional curve.
{
for (j=1;j<=e;j++) // Calculate the Euler charateristik of the smooth locus of the exc. curve.
{
if ((gr[i,j]==1) and (i!=j))
{
chi=chi-1;
}
}
if (chi!=0) // If the Euler characteristik is not zero, then it gives a factor in the AP.
{
for (k=1;k<=r;k++)
{
hilfspoly=hilfspoly*t(k)^tm[i,k];
}
hilfspoly=1-hilfspoly;
if (chi<0) // ... either in the numerator ...
{
alexnumerator=alexnumerator * hilfspoly^-chi;
}
else // ... or in the denominator.
{
alexdenominator=alexdenominator * hilfspoly^chi;
}
alexfactor=hilfspoly,-chi;
alexfactors[s]=alexfactor;
s++;
}
chi=2;
hilfspoly=1;
}
}
// Calculate the Alexander Polynomial.
if (ncols(tm)==1) // If we have only one branch, then the numerator has to be multiplied by 1-t.
{
alexnumerator=alexnumerator*(1-t(1));
alexfactor=1-t(1),1;
alexfactors[size(alexfactors)+1]=alexfactor;
}
poly alexpoly=alexnumerator / alexdenominator;
// Calculate the Zeta Function of the Monodromy Operator.
poly zeta_monodromy=alexpoly;
for (i=1;i<=r;i++)
{
zeta_monodromy=subst(zeta_monodromy,t(i),t);
}
export zeta_monodromy;
export alexnumerator;
export alexdenominator;
export alexfactors;
export alexpoly;
list ALEX=ALEXring;
return(ALEX);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=(y2-x3)^2-4x5y-x7;
poly f2=y2-x3;
poly f3=y3-x2;
list ALEX=alexanderpolynomial(f1*f2*f3);
def ALEXring=ALEX[1];
setring ALEXring;
alexfactors;
alexpoly;
zeta_monodromy;
}
proc semigroup (def INPUT)
"USAGE: semigroup(INPUT); INPUT poly or list
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing
the characteristic exponents of an irreducible plane curve singularity.
RETURN: a list with three entries. The first and the second are lists @code{v_1,...,v_s}
and @code{w_1,...,w_r} respectively of integer vectors such that the semigroup
of the plane curve defined by the INPUT is generated by the vectors
@code{v_1,...,v_s,w_1+k*e_1,...,w_r+k*e_r}, where e_i denotes the i-th standard
basis vector and k runs through all non-negative integers. The thrid entry is the conductor
of the plane curve singularity. Note that r is the number of branches of the plane curve
singularity and integer vectors thus have size r.
NOTE: If the output is zero this means that the curve has one branch and is regular.
In the reducible case the set of generators may not be minimal.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
SEE ALSO: resolutiongraph, totalmultiplicities
EXAMPLE: example semigroup; shows an example
"
{
////////////////////////////////////////////////////////////////////////////////////////
// Uses the algorithm in [CDG99] A. Campillo, F. Delgado, S.M. Gusein-Zade, On the
// generators of the semigroup of a plane curve singularity,
// J. London Math. Soc. (2) 60 (1999), 420-430.
////////////////////////////////////////////////////////////////////////////////////////
intvec conductor; // conductor of the singularity
list charexp; // characteristic exponents of the singularity
int i,j;
/////////////////////////////////////////////////////////////////////////////////
// Decide, which kind of input we have, and define the contact matrix
/////////////////////////////////////////////////////////////////////////////////
// Input: a polynomial defining a plane curve singularity.
//////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT)=="poly")
{
/*
poly FFF=squarefree(INPUT);
if ( deg(FFF)!=deg(INPUT) )
{
dbprint(printlevel-voice+3,"// input polynomial was not reduced");
dbprint(printlevel-voice+3,"// we continue with its reduction");
}
list I@N@V=invariants(FFF);
*/
list I@N@V=invariants(INPUT);
}
else
{
///////////////////////////////////////////////////////////////////////////////////
// Input: the vector of characteristic exponents of an irreducible plane curve
///////////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT)=="intvec")
{
// Calculate the semigroup and the conductor directly.
conductor[1]=charexp2conductor(INPUT);
intvec gener=charexp2generators(INPUT);
list genera;
for (i=1;i<=size(gener);i++)
{
genera[i]=gener[i];
}
return(list(genera,list(),conductor));
}
else
{
if (typeof(INPUT)=="list")
{
/////////////////////////////////////////////////////////////////////////////////
// Input: intersection-matrix and characteristic exponents.
//////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT[1])=="intmat")
{
intmat contact=INPUT[1];
charexp=INPUT[2];
int n=ncols(contact); // to know how many branches we have
if (n==1) // Only one branch!
{
return(semigroup(charexp[1]));
}
intmat intersecmult=charexp2inter(contact,charexp);
for(i=1;i<=ncols(contact);i++)
{
conductor[i]=charexp2conductor(charexp[i]);//list with the characteristic exponents
}
}
else
{
/////////////////////////////////////////////////////////////////////////////////
// Input: output of hnexpansion or hne in the ring created by hnexpansion
//////////////////////////////////////////////////////////////////////////////
if ((typeof(INPUT[1])=="ring") or (typeof(INPUT[1])=="list"))
{
list I@N@V=invariants(INPUT);
}
else
{
////////////////////////////////////////////////////////////////////////////////////
// Input: output of develop or extdevelop -- irreducible plane curve singularity
////////////////////////////////////////////////////////////////////////////////////
if (typeof(INPUT[1])=="matrix")
{
return(semigroup(invariants(INPUT)[1]));
}
else
{
ERROR("The input is invalid!");
}
}
}
}
else
{
ERROR("The input is invalid!");
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// If the input was a poly or an HN-Expansion, then calculate the contact matrix and char.exponents.
///////////////////////////////////////////////////////////////////////////////////////////////////
if (defined(I@N@V))
{
int n =size(I@N@V)-1;// number of branches
// If the singularity is irreducible, then we calculate the semigroup directly.
if (n==1)
{
return(semigroup(I@N@V[1][1]));
}
// If the singularity is not irreducible, then we go on.
intmat contact=I@N@V[size(I@N@V)][1]; // contact matrix
intmat intersecmult=I@N@V[size(I@N@V)][2]; // intersection multiplicities
for(i=1;i<=n;i++)
{
conductor[i]=I@N@V[i][5];
charexp[i]=I@N@V[i][1];
}
}
/////////////////////////////////////////////////////////////////////////////////////
// If we have come so far, the curve is reducible!
/////////////////////////////////////////////////////////////////////////////////////
// Compute the conductor of the curve.
/////////////////////////////////////////////////////////////////////////////////////
for(i=1;i<=size(conductor);i++)
{
for(j=1;j<=size(conductor);j++)
{
conductor[i]=conductor[i]+intersecmult[i,j];
}
}
/////////////////////////////////////////////////////////////////////////////////////
/// The total multiplicity vectors of the exceptional divisors generate the semigroup,
/// however, this system of generators is not minimal. Theorem 2 in [CDG99] leads
/// to the following algorithm for minimizing the set of generators.
/////////////////////////////////////////////////////////////////////////////////////
list resgr_totmult=totalmultiplicities(list(contact,charexp)); // resolution graph and tot. mult.
intmat resgr=resgr_totmult[1]; // resolution graph
intmat totmult=resgr_totmult[2]; // total multiplicities
list conpts; // ith entry = points to which i is connected and their weights
intvec series; // ith entry = row in totmult which corresponds to w_i
intvec deadarc; // Star point and the point connected to the star point of a dead arc.
list deadarcs; // Saves deadarc for all dead arcs.
int stop,ctp,ctpstop;
list ordinary_generators, series_generators; // the v_i and the w_i from the description
// Find for each branch of the curve all the points in the graph to which it is connected
// and save the numbers of the corresponding rows in the graph as well as the weight of the point.
for (i=1;i<=ncols(resgr);i++)
{
conpts[i]=find_connection_points(resgr,i);
}
//////////////////////////////////////////////////////////////////////////////////
// Check for each point in the graph, whether it contributes to the semigroup.
// If it does not contribute to the semigroup, then set the weight of the point
// to zero, i.e. resgr[i,i]=0. Note that the vertex 1 always contributes!
//////////////////////////////////////////////////////////////////////////////////
// Find first all the points corresponding to the branches and the end points of dead arcs.
// The points to which the branch k is connected contributes to w_k. The end points of
// dead arcs contribute to the v_i, while the remaining points of the dead arcs are to be removed.
j=1; // Counter for dead arcs - the star points of dead arcs have to be saved for future use.
for (i=2;i<=ncols(resgr);i++)
{
// The end points of dead arcs and the end points corresponding to the branches are
// recognized by the fact that they are only connected to one other point.
if (size(conpts[i][1])==1) // row i in the graph corresponds to an end point
{
// For an end point corresponding to a branch k the last point E_alpha(k), to which it is
// connected, contributes to the generator w_k.
if (resgr[i,i]<0)
{
series[-resgr[i,i]]=conpts[i][1][1]; // Find E_alpha(k), where k=-resgr[i,i]
ctp=conpts[i][1][1];
resgr[ctp,ctp]=0; // So E_alph(k) does not contribute to the v_i.
}
// For an end point of a dead arc the end point contributes, but all the other points
// of the dead arc - including the star point = separation pt of the dead arc - do not contribute.
if (resgr[i,i]>0)
{
stop=0; // Stop checks whether the star point of the dead arc has been reached.
ctp=conpts[i][1][1]; // The point to which the end point is connected.
// Set the weights of all the other points in the dead arc to zero.
while ((stop==0) and (ctp!=1)) // If the star point or the vertex 1 has been reached, stop.
{
deadarc[2]=i; // i might be the point connected to the star point of the dead arc.
resgr[ctp,ctp]=0;
if (size(conpts[ctp][1])==2) // If ctp was an ordinary vertex, we go on.
{
deadarc[2]=ctp; // ctp might be the point connectd to the star point of the dead arc.
ctp=conpts[ctp][1][2]; // This is the second point (of higher weight) to which ctp is connected.
}
else // If ctp is the star point, we stop.
{
deadarc[1]=ctp; // Star point of this dead arc.
deadarcs[j]=deadarc; // Save the j-th dead arc.
j++;
stop=1;
}
}
}
}
}
//////////////////////////////////////////////////////////////////////////////////
// Points (!=1) which are on the geodesics of every branch don't contribute.
// (The geodesic of a branch is the shortest connection of the strict transform to 1 in the graph.)
stop=0; // Checks whether the points on all geodesics have been found.
ctp=1; // Point (=row in resgr) to be considered.
int prev_ctp; // Previous point in the graph, to which ctp was connected.
int dead_arc_ctp; // If ctp is the star pt of a dead arc, this is the connection pt of ctp in the d.a.
int dastarptcheck; // Checks whether a point is a star point of a dead arc.
if (size(conpts[1][1])>=2) // The graphs separate already at point 1.
{
stop=1;
}
else // The graphs do not separate at point 1.
{
prev_ctp=1;
ctp=conpts[1][1][1]; // Next point to be considered.
}
// Pass on along the graph until we reach the first point where some branches separate.
while (stop==0)
{
if (size(conpts[ctp][1])==2) // Point ctp is connected to 2 other points, hence is a normal vertex.
{
resgr[ctp,ctp]=0; // Point ctp is a normal vertex.
prev_ctp=ctp; // Save the position of ctp for future use.
ctp=conpts[ctp][1][2]; // Next point to which ctp is connected.
}
if (size(conpts[ctp][1])>3) // More than three points are connected to ctp.
{
resgr[ctp,ctp]=0;
stop=1; // The graphs separate at point ctp.
}
if (size(conpts[ctp][1])==3) // At ctp a dead arc might depart or some branch(es)!
{ // If a dead arc departs, then the branches stay together.
resgr[ctp,ctp]=0;
// Check if a dead arc departs at point ctp (i.e. if ctp is the star point of a dead arc),
// then the branches do not separate at ctp.
dastarptcheck=0;
i=1;
while ((i<=size(deadarcs)) and (dastarptcheck==0))
{
if (ctp==deadarcs[i][1]) // ctp is the star point of a dead arc.
{
dastarptcheck=1;
dead_arc_ctp=deadarcs[i][2]; // The point in the dead arc to which ctp is connected.
}
i++;
}
if (dastarptcheck==0) // ctp is not the star point of a dead arc, hence the graphs separate at ctp.
{
stop=1;
}
else
{
// Set ctp to the point connected to ctp which is not in the dead arc and is not prev_ctp.
i=1;
ctpstop=0;
while ((i<=3) and (ctpstop==0))
{
if ((conpts[ctp][1][i]!=prev_ctp) and (conpts[ctp][1][i]!=dead_arc_ctp))
{
prev_ctp=ctp;
ctp=conpts[ctp][1][i];
ctpstop=1;
}
i++;
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////
// Collect the generators v_j by checking which points in the graph still have
// a positive weight! These points contribute their total multiplicity vector as
// generator v_j.
j=1;
for (i=1;i<=ncols(resgr);i++)
{
if (resgr[i,i]>0)
{
ordinary_generators[j]=intvec(totmult[i,1..ncols(totmult)]);
j++;
}
}
// The "exceptional" generators w_i, for which we have to include w_i+ke_i (for all k)
// are the total multiplicity vectors of the points saved in series.
for (i=1;i<=ncols(totmult);i++)
{
series_generators[i]=intvec(totmult[series[i],1..ncols(totmult)]);
}
return(list(ordinary_generators,series_generators,conductor));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
// Irreducible Case
semigroup((x2-y3)^2-4x5y-x7);
// In the irreducible case, invariants() also calculates a minimal set of
// generators of the semigroup.
invariants((x2-y3)^2-4x5y-x7)[1][2];
// Reducible Case
poly f=(y2-x3)*(y2+x3)*(y4-2x3y2-4x5y+x6-x7);
semigroup(f);
}
proc charexp2generators (intvec charexp)
"USAGE: charexp2generators(v), v intvec
ASSUME: v contains the characteristic exponents of an irreducible plane
curve singularity
RETURN: intvec, the minimal set of generators of the semigroup of the plane curve singularity
SEE ALSO: invariants, resolutiongraph, totalmultiplicities, alexanderpolynomial
KEYWORDS: generators; semigroup; characteristic exponents; topological invariants
EXAMPLE: example charexp2generators; shows an example"
{
int end=size(charexp);
// If the singularity is smooth!
if (end==1)
{
return(1);
}
int i,j;
intvec gener;
intvec GGT;
for (i=1;i<=end;i++)
{
// Calculate the sequence of gcd's of the characteristic exponents.
if (i==1)
{
GGT[1]=charexp[1];
}
else
{
GGT[i]=gcd(GGT[i-1],charexp[i]);
}
// Calculate the generators.
gener[i]=charexp[i];
for (j=2;j<=i-1;j++)
{
gener[i]=gener[i]+((GGT[j-1]-GGT[j]) div GGT[i-1])*charexp[j];
}
}
return(gener);
}
example
{
"EXAMPLE:";
echo=2;
charexp2generators(intvec(28,64,66,77));
}
proc charexp2multseq (intvec charexp)
"USAGE: charexp2multseq(v), v intvec
ASSUME: v contains the characteristic exponents of an irreducible plane
curve singularity
RETURN: intvec, the multiplicity sequence of the plane curve singularity
NOTE: If the curve singularity is smooth, then the multiplicity sequence is empty.
This is expressed by returning zero.
SEE ALSO: invariants, resolutiongraph, totalmultiplicities, alexanderpolynomial
KEYWORDS: characteristic exponents; multiplicity sequence; topological invariants
EXAMPLE: example charexp2multseq; shows an example"
{
int end=size(charexp);
// If the singularity is smooth!
if (end==1)
{
return(1); // ERROR: Should be 0, but for the time being, Singular returns 1.
}
intvec multseq=euclidseq(charexp[2],charexp[1]);
for (int i=3;i<=end;i++)
{
multseq=multseq,euclidseq(charexp[i]-charexp[i-1],multseq[size(multseq)]);
}
return(multseq);
}
example
{
"EXAMPLE:";
echo=2;
charexp2multseq(intvec(28,64,66,77));
}
proc multseq2charexp(def v) // Procedure written by Fernando.
"USAGE: multseq2charexp(v), v intvec
ASSUME: The input is an intvec, which contains the mutiplicity sequence
of an irreducible plane curve singularity .
RETURN: An intvec, which contains the sequence of characteristic
exponents of the irreducible plane curve singularity defined by v.
EXAMPLE: example multseq2charexp; shows an example.
"
{
/////// Preamble which reduces the input of an intvec to /////////////
/////// the originally assumed input of a list of intvecs /////////////
/////// and tests the input. /////////////
if (typeof(v)=="intvec")
{
list RESULT=multseq2charexp(list(v));
return(RESULT[1]);
}
if (typeof(v)!="list")
{
ERROR("Invalid Input!");
}
if (typeof(v)=="list")
{
int TESTV;
for (int III=1;III<=size(v);III++)
{
if (typeof(v[III])!="intvec")
{
TESTV=1;
}
}
if (TESTV==1)
{
ERROR("Invalid Input!");
}
}
///////////////////////////////////////////////////////////
list L=v;
int n =size(L);
// ///////////////////////////////////////////////////////
// we look the size of each vector
intvec mm;
for(int j=1;j<=n;j++)
{
mm[j]=size(L[j]);
}
// ///////////////////////////////////////////////////////
// we define some variables
list LL;
int temp, temp1,temp2;
int ind,r,l,boolean;
int old,new;
int contador;
list EUCLI,EUCLI1;
intvec exponent,exponentes1;
int new1,old1;
int contador1;
int a,b,f;
//with the for we round each branch.
for(int k=1;k<=n;k++)
{
l=1;
old=L[k][l];
//if the vertor has more than one element
if(mm[k]<>1)
{
// ///////////////////////////////////////////////////////////////////////////////
// the first step is special because is easy to know the two first characteristic exponents
new=L[k][l+1];
contador=1;
while(old==new)//we check how many consecutives elements are equal, starting in the first.
{
contador=contador+1;
old=new;
new=L[k][contador+1];
}
exponent=L[k][l],contador*L[k][l]+L[k][l+contador];// those are the first two characteristic exponents.
LL[k]=exponent;// we insert them in the final matrix
EUCLI=euclides(LL[k][2],LL[k][1]);// compute the euclides algorithm for the two first characteristic exponents.
temp=size(EUCLI[1]);
// measure how many elements of the multiplicity sequence belong to the first euclidean algorithm.
for(ind=1;ind<=temp;ind=ind+1)
{
l=l+EUCLI[1][ind];
}
l=l-1;//this is the number we are looking for.
///////////////////////////////////////////////////////////////
r=1;
//repeat the same process until the end of the multiplicity sequence.
if(mm[k]-1>l)
{
while( l<mm[k]-1)
{
r=r+1;
old1=L[k][l];
new1=L[k][l+1];
contador1=0;
boolean=1;
if(old1==new1)
{
while(old1==new1 and boolean==1)
{
contador1=contador1+1;
old1=new1;
new1=L[k][l+contador1+1];
if(size(L[k])<=l+contador1+1)
{
boolean =0;
}
}
}
temp1=size(LL[k]);
exponentes1=LL[k],LL[k][temp1]+(contador1*L[k][l])+L[k][contador1+l+1];
LL[k]=exponentes1;
EUCLI1=euclides(LL[k][temp1+1]-LL[k][temp1],L[k][l]);
temp2=size(EUCLI1[1]);
for(ind=1;ind<=temp2;ind=ind+1)
{
l=l+EUCLI1[1][ind];
}
}
}
}
// if the vector has only one element then the charexp is only 1.
else
{
LL[k]=1;
}
}
return(LL);
}
example
{
"EXAMPLE:";echo=2;
intvec v=2,1,1;
multseq2charexp(v);
intvec v1=4,2,2,1,1;
multseq2charexp(v1);
}
proc charexp2inter (intmat contact, list charexp)
"USAGE: charexp2inter(contact,charexp), contact matrix, charexp list
ASSUME: charexp contains the integer vectors of characteristic exponents
of the branches of a plane curve singularity, and contact is their
contact matrix
RETURN: intmat, the matrix intersection multiplicities of the branches
SEE ALSO: invariants, resolutiongraph, totalmultiplicities, semigroup
KEYWORDS: contact matrix; characteristic exponents; intersection multiplicity; topological invariants
EXAMPLE: example charexp2inter; shows an example"
{
int n=ncols(contact);
int i,j,k;
list multpl;
int max=0;
intvec helpvect;
intmat inters[n][n];
// Calculate the multiplicity sequences of the branches.
for (i=1;i<=n;i++)
{
multpl[i]=charexp2multseq(charexp[i]);
// Find the maximal length of a multiplicity sequence.
if (max<size(multpl[i]))
{
max=size(multpl[i]);
}
}
// If the contact of certain branches is higher than the maximal length of the
// multiplicity sequence, then max should be the maximal contact!
helpvect=max,intvec(contact);
max=max_in_intvec(helpvect)[1];
// Prolong them by 1s, in order to take care of higher contact.
for (i=1;i<=n;i++)
{
helpvect=multpl[i];
for (j=size(multpl[i]+1);j<=max;j++)
{
helpvect[j]=1;
}
multpl[i]=helpvect;
}
// Calculate the intersection numbers of the branches: for two branches f_i and f_j
// this is the sum over mult_k(f_i)*mult_k(f_j), where k runs over all infinitely
// near points which f_i and f_j share, i.e. from 1 to contact[i,j].
for (i=1;i<=n;i++)
{
for (j=i+1;j<=n;j++)
{
for (k=1;k<=contact[i,j];k++)
{
inters[i,j]=inters[i,j]+multpl[i][k]*multpl[j][k];
}
inters[j,i]=inters[i,j];
}
}
return(inters);
}
example
{
"EXAMPLE:";echo=2;
ring r=0,(x,y),ds;
list INV=invariants((x2-y3)*(x3-y2)*((x2-y3)^2-4x5y-x7));
intmat contact=INV[4][1];
list charexp=INV[1][1],INV[2][1],INV[3][1];
// The intersection matrix is INV[4][2].
print(INV[4][2]);
// And it is calulated as ...
print(charexp2inter(contact,charexp));
}
proc charexp2conductor(intvec B) // Procedure written by Fernando
"USAGE: charexp2conductor(v), v intvec
ASSUME: v contains the characteristic exponents of an irreducible plane
curve singularity
RETURN: int, the conductor of the plane curve singularity
NOTE: If the curve singularity is smooth, the conductor is zero.
SEE ALSO: invariants, resolutiongraph, totalmultiplicities, semigroup
KEYWORDS: conductor; characteristic exponents; multiplicity sequence; topological invariants
EXAMPLE: example charexp2conductor; shows an example"
{
intvec E;
int i,conductor;
E[1]=B[1];
for(i=2;i<=size(B);i++)
{
E[i]=gcd(E[i-1],B[i]);
}
conductor=1-E[1];
for(i=2;i<=size(B);i++)
{
conductor=conductor+(B[i]*(E[i-1]-E[i]));
}
return(conductor);
}
example
{
"EXAMPLE:";
echo=2;
charexp2conductor(intvec(2,3)); // A1-Singularity
charexp2conductor(intvec(28,64,66,77));
}
proc charexp2poly(intvec v, vector a) // Procedure written by Fernando.
"USAGE: charexp2poly(v,a); intvec v, vector a.
ASSUME: v an intvec containing the characterictic exponents of an irreducible plane curve singularity.
a a vector containing the coefficients of a parametrization given by x(t)=x^v[1],
y(t)=a(1)t^v[2]+...+a[n-1]t^v[n], i.e. the entries of a are of type number.
RETURN: A polynomial f in the first two variables of the basering, such that f defines an
irreducible plane curve singularity with characteristic exponents v.
NOTE: The entries in a should be of type number and the vector v should be the sequence of
characteristic exponents of an irreducible plane curve singularity in order to
get a sensible result,
SEE ALSO: charexp2multseq, multseq2charexp.
EXAMPLE: example charexp2poly; shows an example
"
{
int n=size(v);
vector expo;
int i,j,s;
for(i=1;i<=v[1];i++)
{
expo[i]=0;//initialize to 0.
}
for(i=2;i<=n;i++)
{
s=v[i] mod v[1];//calculate the position.
expo=expo-a[i-1]*var(1)^((v[i]-s) div v[1])*gen(s+1);//save in expo -var(1) to the power the corresponding
//but only in the right positions
}
matrix M[v[1]][v[1]];
//construct the matrix that generates the polynomial
for(i=1;i<=v[1];i++)
{
M[i,i]=var(2)+expo[1];//The diagonal
for(j=1;j<=v[1]-i;j++)
{
M[j,j+i]=expo[i+1];//over diagonal
}
for(j=1;j<=v[1]-i;j++)
{
M[j+i,j]=var(1)*expo[1+v[1]-i];//under diagonal
}
}
//the poynomial is the determinant of the matrix
poly irredpoly=det(M);
return(irredpoly)
}
example
{
"EXAMPLE:";echo=2;
ring r=0,(x,y),dp;
intvec v=8,12,14,17;
vector a=[1,1,1];
poly f=charexp2poly(v,a);
f;
invariants(f)[1][1]; // The characteristic exponents of f.
}
proc tau_es2 (def INPUT, list #)
"USAGE: tau_es2(INPUT); INPUT poly or list
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing the
characteristic exponents of an irreducible plane curve singularity.
RETURN: int, the equisingular Tjurina number of f, i. e. the codimension of the mu-constant
stratum in the semiuniversal deformation of f, where mu is the Milnor number of f.
NOTE: The equisingular Tjurina number is calculated with the aid of a Hamburger-Noether
expansion, which is the hard part of the calculation.
In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of @code{hnexpansion} and use it as input instead of
the polynomial itself.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
SEE ALSO: tau_es, develop, hnexpansion, totalmultiplicities, equising_lib
EXAMPLE: example tau_es2; shows an example
"
{
// If the input is a weighted homogeneous polynomial, then use a direct algorithm to
// calculate the equisingular Tjurina number, by caluclating a K-basis of the
// Tjurina algebra and omitting those elements with weighted degree at least the
// weighted degree of the polynomial. -- If an additional input # is given (which is
// not just the number 1 !!!), the procedure always uses the recursive algorithm.
if ((typeof(INPUT)=="poly") and (size(#)==0))
{
if (qhweight(INPUT)[1]!=0)
{
/*
poly f=squarefree(INPUT);
if ( deg(f)!=deg(INPUT) )
{
dbprint(printlevel-voice+3,"// input polynomial was not reduced");
dbprint(printlevel-voice+3,"// we continue with its reduction");
}
return(tau_es_qh(f));
*/
return(tau_es_qh(INPUT));
}
}
// Else apply the recursive algorithm from Eugenii Shustin, On Manifolds of Singular
// Algebraic Curves, Selecta Math. Sov. Vol 10, No. 1 (1991), p. 31.
int i,j,k; // Laufvariablen
int tau,tau_i; // Variable for es-Tjurina no., multiplicitiy, and es-Tjurina at blow ups
intmat contact; // contact matrix
list graphs, multipl; // resolution graphs and multiplicity sequences
list graphs_ed, multipl_ed; // res.graphs and mult.seq. of one curve on 1st ex. div.
intmat contact_ed; // contact matrix of one curve on 1st exceptional divisor
int d_i; // correction term
intvec connections;
intmat graph;
intvec multseq;
int s,e;
int multi; // multiplicity of the curve defined by the input.
/////////////////////////////////////////////////////////
// Check what type the input is, and act accordingly.
if (typeof(INPUT)=="list")
{
if (size(INPUT)==3)
{
// If the INPUT is the output of totalmultiplicities(INPUT,"tau")
if ((typeof(INPUT[1])=="list") and (typeof(INPUT[2])=="list") and (typeof(INPUT[3])=="intmat"))
{
graphs=INPUT[1];
multipl=INPUT[2];
contact=INPUT[3];
}
// Otherwise call the procedure with the output of totalmultiplicities(INPUT,"tau").
else
{
return(tau_es2(totalmultiplicities(INPUT,"tau")));
}
}
else
{
return(tau_es2(totalmultiplicities(INPUT,"tau")));
}
}
// Otherwise call the procedure with the output of totalmultiplicities(INPUT,"tau").
else
{
return(tau_es2(totalmultiplicities(INPUT,"tau")));
}
/// End of checking the input
///////////////////////////////////////////////////////
// If the singularity is smooth, the equisingular Tjurina number is zero.
if ((ncols(contact)==1) and (multipl[1][1]<=1))
{
return(0);
}
// Otherwise calculate the multiplicity of the singularity.
for (i=1;i<=size(multipl);i++)
{
multi=multi+multipl[i][1];
}
// Find the branches which stay together after blowing up once, and group them together.
k=0;
intvec curves_on_first_ex_div=k; // If this is 0=i_0,i_1,...i_s=ncols(contact), then the branches
while (k<ncols(contact)) // (i_j)+1,...,i_(j+1) stay together after the first blowing up,
{ // and s is the number of infinitely near points of first order.
k=find_last_non_one(intvec(contact[k+1,1..ncols(contact)]),k+2);
curves_on_first_ex_div=curves_on_first_ex_div,k;
}
// And then calculate the equisingular Tjurina numbers in the infinitely near points of
// first order plus some correction term (= the number of blow ups needed to separate the
// strict transform from the exceptional divisor in the corresponding infinitely near point)
// and add them.
for (i=1;i<=size(curves_on_first_ex_div)-1;i++)
{
s=curves_on_first_ex_div[i]+1;
e=curves_on_first_ex_div[i+1];
graphs_ed=list(graphs[s..e]);
multipl_ed=list(multipl[s..e]);
contact_ed=intmat_minus_one(intmat(intvec(contact[s..e,s..e]),e-s+1,e-s+1));
connections=0;
// Adjust the graphs and multiplicity sequences by cutting the first level.
// And find in each graph the point to which the point 1 is connected = 1 + number of
// blow ups needed to separate the strict transform from the first exceptional divisor.
for (j=1;j<=size(graphs_ed);j++)
{
// Adjust the graphs and find the connection points.
graph=graphs_ed[j];
connections[j]=find_connection_point(intvec(graph[1,1..ncols(graph)]),1);
graph=delete_row(delete_col(graph,1),1);
graphs_ed[j]=graph;
// Adjust the multiplicity sequences.
multseq=multipl_ed[j];
if (size(multseq)==1) // If multseq has only one entry, then their is only
{ // one branch left and it is smooth! So set multipl_ed[j]=1.
multipl_ed[j]=intvec(1);
}
else // Otherwise just cut the first entry.
{
multipl_ed[j]=intvec(multseq[2..size(multseq)]);
}
}
// Calculate the equisingular Tjurina number of the strict transform at the i-th
// intersection point with the first exceptional divisor.
tau_i=tau_es2(list(graphs_ed,multipl_ed,contact_ed));
// Calculate the number no. of blow ups needed to separate the strict transform of
// the curve defined by the input from the first exceptional divisor at their i-th
// intersection point.
d_i=max_in_intvec(connections)-1;
// If d_i is negative, then there was only one branch left and it was smooth, so d_i should be 1.
if (d_i<0)
{
d_i=1;
}
// If the curve defined by graphs_ed was smooth, then the summand has to be reduced by 1.
if (tau_i==0)
{
tau_i=-1;
}
tau=tau+tau_i+d_i;
}
// The equisingular Tjurina number is then calculated by adding the following term.
tau=tau+((multi*(multi+1)) div 2)-2;
return(tau);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=y2-x3;
poly f2=(y2-x3)^2-4x5y-x7;
poly f3=y3-x2;
tau_es2(f1);
tau_es2(f2);
tau_es2(f1*f2*f3);
}
///////////////////////////////////////////////////////////////////////////////////////////
// Static procedures.
///////////////////////////////////////////////////////////////////////////////////////////
static proc euclidseq(int a,int b)
"USAGE: euclidseq(a,b), a,b integers
RETURN: intvec, the divisors in the euclidean alogrithm with multiplicities
KEYWORDS: Euclidean algorithm; multiplicity sequence
NOTE : This procedure is for internal use only; it is called by charexp2multseq.
"
{
int i;
// multseq saves in each step of the Euclidean algorithm q-times the divisor b
intvec multseq;
int q=a div b;
int r=a mod b;
for (i=1;i<=q;i++)
{
multseq[i]=b;
}
int s=q; // size of multseq
a=b;
b=r;
while(r<>0)
{
q=a div b;
r=a mod b;
for (i=1;i<=q;i++)
{
multseq[s+i]=b;
}
s=s+q; // size of multseq
a=b;
b=r;
}
return(multseq);
}
static proc puiseuxchainpart (int piij, int muij, intvec multpl, int initial_tm, int end_tm, int j)
"USAGE: puiseuxchainpart(piij,muiij,multpl,initial_tm,end_tm,j);
RETURN: list L, L[1] incidence matrix of a part of the Puiseux chain, L[2] the total
multiplicities of this part of the Puiseux chain.
NOTE: This procedure is only for internal use; it is called by puiseuxchain.
"
{
int delta=1;
if (j==1){delta=0;} // Delta measures whether j is 1 or not.
intvec totalmultiplicity; // Keeps the total multiplicities.
intmat pcp[muij][muij]; // Keeps the incidence matrix of the Puiseuxchainpart S_i,j.
// Calculate the total multiplicities and the Puiseuxchainpart S_i,j.
totalmultiplicity[1]=initial_tm+end_tm+multpl[1];
pcp[1,1]=piij+1;
for (int k=2;k<=muij;k++)
{
pcp[k,k]=piij+k;
pcp[k-1,k]=1;
pcp[k,k-1]=1;
totalmultiplicity[k]=totalmultiplicity[k-1]+delta*initial_tm+multpl[k];
}
list result=pcp,totalmultiplicity;
return(result);
}
static proc puiseuxchain (int initial, intvec divseq, intvec multpl, int initial_tm)
"USAGE: puiseuxchain(initial,divseq,multpl,initial_tm); int initial, initial_tm, intvec divseq, multpl
RETURN: list L, L[1] incidence matrix of a Puiseux chain, L[2] the weight of the point to which the
previous Puiseux chain has to be connected, L[3] the sequence of total multiplicities of
the points in this Puiseux chain.
NOTE: This procedure is only for internal use; it is called by irred_resgraph_totmult.
"
{
int j,k,l,connectpoint;
intvec multpli;
int pc_tm=initial_tm; // Keeps the total multipl. of the endpoint of P_i-1.
int end_tm=0;
int start=1;
int omega=size(divseq);
// Keep the endpoints of the puiseuxchainparts (minus initial) s_i,j in divseq_sum.
intvec divseq_sum=divseq[1];
for (j=2;j<=omega;j++)
{
divseq_sum[j]=divseq_sum[j-1]+divseq[j];
}
// Define the connecting point of the Puiseuxchain P_i-1 with P_i.
if (divseq[1]==0)
{
// If divseq[1]=mu_i,1=0, then the Puiseuxchainpart S_i,1 is empty.
// We may start building the Puiseuxchain with part 2, i.e. set start=2.
start=2;
if (omega>=3)
{
connectpoint=initial+divseq_sum[2]+1; // startpoint of s_i+1,3
}
else
{
connectpoint=initial+divseq_sum[2]; // endpoint of s_i+1,2
}
}
else
{
connectpoint=initial+1;
}
// Build the Puiseuxchainparts s_i,j and put them as blocks into pc=P_i.
multpli=multpl[initial+1..initial+divseq_sum[start]];
list pcp=puiseuxchainpart(initial,divseq[start],multpli,initial_tm,end_tm,start);
intmat pc=pcp[1];
intvec tm=pcp[2];
for (j=start+1;j<=omega;j++)
{
// Keep the final total multipl. of the puiseuxchainpart S_i,j-2 resp. P_i-1, if S_i,1 empty.
if (j>2){end_tm=initial_tm;}
// Calculate the endpoint of S_i,j-1.
initial=initial+divseq[j-1];
// Keep the total multiplicity of the endpoint of S_i,j-1
initial_tm=pcp[2][size(pcp[2])];
// Build the new puiseuxchainpart S_i,j
multpli=multpl[initial+1..initial+divseq[j]];
pcp=puiseuxchainpart(initial,divseq[j],multpli,initial_tm,end_tm,j);
pc=addmat(pc,pcp[1]);
tm=tm,pcp[2];
}
// Connect the Puiseuxchainparts s_i,j.
for (j=start;j<=omega-2;j++)
{
k=divseq_sum[j]; // endpoint of s_i,j
l=divseq_sum[j+1]+1; // startpoint of s_i,j+2
pc[k,l]=1; // connecting these
pc[l,k]=1;
}
if (omega>=start+1) // If there are at least two non-empty s_i,j.
{
k=divseq_sum[omega-1]; // endpoint of s_i,omega-1
l=divseq_sum[omega]; // endpoint of s_i,omega
pc[k,l]=1; // connecting these
pc[l,k]=1;
}
list ergebnis=pc,connectpoint,tm;
return(ergebnis);
}
static proc irred_resgraph_totmult (intvec charexp)
"USAGE: irred_resgraph_totmult(charexp); charexp intvec
ASSUME: charexp is an integer vector containg the characteristic exponents of
an irreducible plane curve singularity
RETURN: list L, L[1] is the incidence matrix of the resolution graph of the plane curve
singularity defined by INPUT, and L[2] is its sequence of total multiplicities
NOTE: This procedure is only for internal use; it is called by resgraph.
"
{
int k,l;
intvec multpl=charexp2multseq(charexp); // multiplicity sequence of the singularity
// Do first the case where the singularity is actually smooth.
if (size(charexp)==1)
{
intmat resgraph[1][1]=0;
intvec tm=1; // there is no exceptional divisor in the resolution - ERROR: should be 0,
// but for the time being, Singular returns 1 as multiplicity of smooth curves
list result=resgraph,tm,multpl;
return(result);
}
// End of the smooth case
int initial_tm=0; // total multipl. of the endpoint of Puiseux chain P_i-1
int g=size(charexp);
list es=divsequence(charexp[2],charexp[1]); // keeps the lengths of the Puiseuxchainparts s_i,j
intvec divseq=es[1];
int r=es[2];
int initial=0;
// Build the Puiseuxchains P_i and put them as blocks into a matrix.
list pc=puiseuxchain(initial,divseq,multpl,initial_tm);
intmat resgraph=pc[1];
intvec endpoints=resgraph[nrows(resgraph),ncols(resgraph)];
intvec connectpoints=pc[2];
intvec tm=pc[3];
for (int i=3;i<=g;i++)
{
initial_tm=tm[size(tm)];
es=divsequence(charexp[i]-charexp[i-1],r);
divseq=es[1];
r=es[2];
initial=endpoints[size(endpoints)];
pc=puiseuxchain(initial,divseq,multpl,initial_tm);
resgraph=addmat(resgraph,pc[1]);
endpoints=endpoints,resgraph[nrows(resgraph),ncols(resgraph)];
connectpoints=connectpoints,pc[2];
tm=tm,pc[3];
}
// Adding the * for the strict transform to the Graph.
resgraph=addmat(resgraph,0);
// The connecting point of the * with the graph.
connectpoints=connectpoints,nrows(resgraph);
// Connect the P_i with each other and with *.
for (i=2;i<=g;i++)
{
k=endpoints[i-1]; // endpoint of P_i-1
l=connectpoints[i]; // conncting point of P_i resp. of *
resgraph[k,l]=1; // connecting these
resgraph[l,k]=1;
}
list result=resgraph,tm,multpl; //HIER GEAENDERT!!!!
return(result);
}
static proc max_in_intvec (intvec v, list #)
"USAGE: max_in_intvec(v); v intvec
RETURN: int m, maximum of the integers in v
USAGE: max_in_intvec(v,1); v intvec
RETURN: intvec m, m[1] maximum of the integers in v, m[2] position of the
last occurence of the maximum in v
NOTE: This procedure is only for internal use; this procedure is called by
totalmultiplicities and semigroup.
"
{
int max=v[1];
int maxpos=1;
for (int i=2;i<=size(v);i++)
{
if (v[i]>max)
{
max=v[i];
maxpos=i;
}
}
if (size(#)==0)
{
return(max);
}
else
{
return(intvec(max,maxpos));
}
}
static proc addmat (intmat A,intmat B)
"USAGE: max_in_intvec(A,B); A, B integer matrices
RETURN: intmat C, block matrix with left-upper block A, right-lower block B
NOTE: This procedure is only for internal use; this procedure is called several times.
"
{
int nc=ncols(A);
int nr=nrows(A);
int mc=ncols(B);
int mr=nrows(B);
int i,j;
intmat AB[nr+mr][nc+mc];
for (i=1;i<=nr;i++)
{
for (j=1;j<=nc;j++)
{
AB[i,j]=A[i,j];
}
}
for (i=1;i<=mr;i++)
{
for (j=1;j<=mc;j++)
{
AB[i+nr,j+nc]=B[i,j];
}
}
return(AB);
}
static proc divsequence(int a,int b)
"USAGE: divsequence(a,b); a,b integers
RETURN: list l, l[1] the multiplicities of the divisors in the Euclidean algorithm
and l[2] the last non-zero remainder in the Euclidean algorithm
NOTE: This procedure is only for internal use; it is called in irred_res_graph.
"
{
int q=a div b;
int r=a mod b;
intvec divseq=q;
while(r<>0)
{
a=b;
b=r;
q=a div b;
r=a mod b;
divseq = divseq,q;
}
list result=divseq,b;
return(result);
}
static proc adjust_tot_mult (intvec rtm_fix, intvec rtm_var, intvec rmt_fix, intvec rmt_var, def p, def q, def stricttransforms, int k)
"USAGE: adjust_tot_mult(v1,v2,v3,v4,p,q,st,k); v1,...,st intvecs and k an integer
RETURN: intvec rtm_var, adjusted total multiplicities
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
int j,l,store; // Help variables.
// Recalculate the entries in rtm_var from stricttransforms[k]+1,...,stricttransforms[k+1]-1.
for (j=stricttransforms[k]+1;j<stricttransforms[k+1];j++)
{
if (rtm_var[j]==0) // If the entry is non-zero, we know that it is already correct.
{
// Check if the vertex in the fixed part is connected to one or to two vertices of lower weight.
if (j==stricttransforms[k]+1) // The vertex of weight 1 less is p[k], to which the subgraph is glued.
{
store=rtm_fix[j]-rmt_fix[j]-rtm_fix[p[k]];
}
else // The vertex of weight 1 less belongs to the subgraph.
{
store=rtm_fix[j]-rmt_fix[j]-rtm_fix[j-1];
}
// It is connected to two vertices V (which has weight one less) and W.
if (store>0)
{
if (j==stricttransforms[k]+1) // V is p[k] (to which the subgraph was glued) and W is q[k], the
{ // vertex of weight one less, to which p[k] is connected.
rtm_var[j]=rtm_var[p[k]]+rtm_var[q[k]]; // In this case the subgraph separates p[k] and q[k]!
}
if (j==stricttransforms[k]+2) // V belongs to the subgraph (it is the vertex considerd in the
{ // previous case!), and W is p[k] or q[k]. In this case the subgraph separates p[k] and q[k].
if (store==rtm_fix[p[k]]) // If W=p[k], ...
{
rtm_var[j]=rtm_var[j-1]+rtm_var[p[k]];
}
else // else W=q[k] ... .
{
rtm_var[j]=rtm_var[j-1]+rtm_var[q[k]]; // separates p[k] and q[k].
}
}
if (j>stricttransforms[k]+2) // V belongs to the subgraph and W either does as well or is p[k].
{
l=j-2;
while (store<rtm_fix[l]) // Find the second vertex W which is connected to which it is
{ // connected. It has total multipl. = store!
if (l>stricttransforms[k]+1) // If l-1 belongs to the graph, then reduce l.
{
l=l-1;
}
else // If l-1 is stricttransform[k], hence isn't in the graph, then reducing l gives p[k].
{ // If l=p[k] and still store<rtm_fix[l], then j must be connected to q[k]!
if (l==stricttransforms[k]+1)
{
l=p[k];
}
else
{
l=q[k];
}
}
}
rtm_var[j]=rtm_var[j-1]+rtm_var[l];
}
}
// It is only connected to one vertex V, which then must be the one of weight one less.
else
{
if (j==stricttransforms[k]+1) // V is p[k], the vertex, to which the subgraph was glued.
{
rtm_var[j]=rtm_var[p[k]];
}
else
{
rtm_var[j]=rtm_var[j-1]; // V is belongs already to the subgraph.
}
}
}
}
return(rtm_var);
}
static proc find_connection_point (intvec v, int k)
"USAGE: find_connection_point(v,c); where v is an intvec, and k is an integer
RETURN: The largest integer i>k, such that v[i]=1, or 0 if no such i exists.
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
for (int i=size(v)-1;i>=k+1;i--)
{
if (v[i]==1)
{
return(i);
}
}
return(0);
}
static proc find_connection_points (intmat resgr, int k)
"USAGE: find_connection_points(resgr,k); where resgr is an intmat, and k is an integer
RETURN: list of two intvecs ctps and ctpswts, where ctps contains all integers i!=k, such
that resgr[k,i]=1, and ctpswts contains for each such i the weight resgr[i,i].
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
intvec ctps;
intvec ctpswts;
int j=1;
for (int i=1;i<=ncols(resgr);i++)
{
if ((resgr[k,i]==1) and (i!=k))
{
ctps[j]=i;
ctpswts[j]=resgr[i,i];
j++;
}
}
return(list(ctps,ctpswts));
}
static proc find_lower_connection_points (intmat resgr, int k)
"USAGE: find_lower_connection_points(resgr,k); where resgr is an intmat, and k is an integer
ASSUME: resgr is the resolutiongraph of an IRREDUCIBLE curve singularity and k<ncols(resgr).
RETURN: intvec, which contains the weights of points of lower weight than k, to which
the point of weight k in resgr is connected, and 0 if no such point exists.
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
intvec ctps=find_connection_points(resgr,k)[2];
intvec lower_ctps;
int i=1;
while ((ctps[i]<k) and (ctps[i]>0))
{
lower_ctps[i]=ctps[i];
i++;
}
return(lower_ctps);
}
static proc euclides(int a,int b) // Procedure of Fernando.
"USAGE: euclides(m,n);where m,n are integers.
RETURN: The divisor, the quotients and the remainders of the euclidean algorithm performing for m and n.
NOTE: This procedure is only for internal use; it is called in multseq2charexp.
"
{
int c=a div b;//we compute in c the integer division between a and b.
int r=a mod b;//in r the remainer of the division between a and b
intvec dividendo=c;// we define the intvec of the dividens and we initialize it to c
intvec remain=r;// we define the intvec of the remainders and we initialize it to r
a=b;//change a to b
b=r;// and b to r
while(r<>0)// while the current remainder is diferent to 0 we make the same af before
{
c=a div b;
r=a mod b;
dividendo =dividendo,c;
if(r<>0)
{
remain=remain,r;
}
a=b;
b=r;
}
list L=dividendo,remain;//we put in a list all the dividens and all the remainders
return(L);// and return the list
}
static proc tau_es_qh (poly f)
"USAGE: tau_es_qh(f), poly f
RETURN: int, equisingular Tjurina number
NOTE: This procedure is only for internal use; it is called in Tau_es.
"
{
intvec qh=qhweight(f);
if (qh[1]==0)
{
ERROR("Input is not quasi-homogenous.");
}
else
{
int d_f = deg(f,qh);
list Tj=Tjurina(f,1);
ideal tj=Tj[2];
int Taues=size(tj);
for (int i=1;i<=size(tj);i++)
{
if (deg(tj[i],qh)>=d_f)
{
Taues--;
}
}
}
return(Taues);
}
static proc move_row (intmat M, int i,int j)
"USAGE: move_row(M,i,j), intmat M, int i,j
RETURN: intmat, the matrix M with j-th row now i-th row and the remaining rows moved accordingly.
NOTE: This procedure is only for internal use; it is called in move_row_col.
"
{
if ((i>nrows(M)) or (j>nrows(M)))
{
ERROR("The matrix has not enough rows.");
}
if (i==j)
{
return(M);
}
if (i>1)
{
intmat N[nrows(M)+1][ncols(M)]=intvec(M[1..i-1,1..ncols(M)]),intvec(M[j,1..ncols(M)]),intvec(M[i..nrows(M),1..ncols(M)]);
}
if (i==1)
{
intmat N[nrows(M)+1][ncols(M)]=intvec(M[j,1..ncols(M)]),intvec(M[i..nrows(M),1..ncols(M)]);
}
if (i<j)
{
N=delete_row(N,j+1);
}
if (i>j)
{
N=delete_row(N,j);
}
return(N);
}
static proc move_col (intmat M, int i,int j)
"USAGE: move_col(M,i,j), intmat M, int i,j
RETURN: intmat, the matrix M with j-th column now i-th column and the remaining columns moved accordingly.
NOTE: This procedure is only for internal use; it is called in move_row_col.
"
{
return(transpose(move_row(transpose(M),i,j)));
}
static proc move_row_col (intmat M,int i,int j)
"USAGE: move_row(M,i,j), intmat M, int i,j
RETURN: intmat, the matrix M with j-th row/column now i-th row/column and the remaining
rows and columns moved accordingly.
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
return(move_col(move_row(M,i,j),i,j));
}
static proc delete_row (intmat M,int i)
"USAGE: delete_row(M,i); M intmat, i int
RETURN: intmat, which is derived from M by removing the ith row
NOTE: This procedure is only for internal use; it is called in move_row and tau_es2.
"
{
if ((i!=1) and (i!=nrows(M)))
{
return(intmat(intvec(M[1..i-1,1..ncols(M)],M[i+1..nrows(M),1..ncols(M)]),nrows(M)-1,ncols(M)));
}
if (i==1)
{
return(intmat(intvec(M[2..nrows(M),1..ncols(M)]),nrows(M)-1,ncols(M)));
}
else
{
return(intmat(intvec(M[1..nrows(M)-1,1..ncols(M)]),nrows(M)-1,ncols(M)));
}
}
static proc delete_col (intmat M, int i)
"USAGE: delete_col(M,i); M intmat, i int
RETURN: intmat, which is derived from M by removing the ith column
NOTE: This procedure is only for internal use; it is called in tau_es.
"
{
return(transpose(delete_row(transpose(M),i)));
}
static proc sort_branches (intmat contact, list graphs, list totmult, list multpl, int k,int l)
"USAGE: sort_branches(K,L,M,N,k,l); K intmat, L,M,N lists, k,l integers
ASSUME: K = contact matrix of the branches of a curve, L = their resolutiongraphs,
M = their totalmultiplicities, N = their multiplicities
RETURN: list LL, LL[1] transformed K, LL[2..4] transformed L,M,N.
The procedure sorts the branches from k+1 to l according to descending contact with
with the branch k.
NOTE: This procedure is only for internal use; it is called in totalmultiplicities.
"
{
intvec max;
for (int i=k+1;i<=l;i++)
{
// Find the last graph max between i and l which has maximal contact with k.
max=max_in_intvec(intvec(contact[k,i..l]),1);
max[2]=max[2]+i-1;
if (i!=max[2]) // If max is not i, then move max to position i!
{
graphs=insert(graphs,graphs[max[2]],i-1);
graphs=delete(graphs,max[2]+1);
totmult=insert(totmult,totmult[max[2]],i-1);
totmult=delete(totmult,max[2]+1);
multpl=insert(multpl,multpl[max[2]],i-1);
multpl=delete(multpl,max[2]+1);
contact=move_row_col(contact,i,max[2]);
}
}
return(list(contact,graphs,totmult,multpl));
}
static proc find_last_non_one (intvec v,int k)
"USAGE: find_last_non_one (v,k); intvec v, int k
RETURN: int i, the last index i>=k such that v[i]!=1, or k-1 if no such i exists.
NOTE: This procedure is only for internal use; it is called in tau_es2.
"
{
int i=size(v);
while (i>=k)
{
if (v[i]!=1)
{
return(i);
}
else
{
i--;
}
}
return(i);
}
static proc intmat_minus_one (intmat M)
"USAGE: intmat_minus_one(M); intmat M
RETURN: intmat, all non-zero entries of M deminuished by 1.
NOTE: This procedure is only for internal use; it is called in tau_es2.
"
{
int i,j;
for (i=1;i<=nrows(M);i++)
{
for (j=1;j<=ncols(M);j++)
{
if (M[i,j]!=0)
{
M[i,j]=M[i,j]-1;
}
}
}
return(M);
}
proc proximitymatrix (def INPUT)
"USAGE: proximitymatrix(INPUT); INPUT poly or list or intmat
ASSUME: INPUT is either a REDUCED bivariate polynomial defining a plane curve singularity,
or the output of @code{hnexpansion(f[,\"ess\"])}, or the list @code{hne} in
the ring created by @code{hnexpansion(f[,\"ess\"])}, or the output of
@code{develop(f)} resp. of @code{extdevelop(f,n)}, or a list containing
the contact matrix and a list of integer vectors with the characteristic exponents
of the branches of a plane curve singularity, or an integer vector containing the
characteristic exponents of an irreducible plane curve singularity, or the resolution
graph of a plane curve singularity (i.e. the output of resolutiongraph or
the first entry in the output of totalmultiplicities).
RETURN: list, of three integer matrices. The first one is the proximity matrix of
the plane curve defined by the INPUT, i.e. the entry i,j is 1 if the
infinitely near point corresponding to row i is proximate to the infinitely
near point corresponding to row j. The second integer matrix is the incidence matrix of the
resolution graph of the plane curve. The entry on the diagonal in row i is -s-1
if s is the number of points proximate to the infinitely near point corresponding
to the ith row in the matrix. The third integer matrix is the incidence matrix of
the Enriques diagram of the plane curve singularity, i.e. each row corresponds to
an infinitely near point in the minimal standard resolution, including the
strict transforms of the branches, the diagonal element gives
the level of the point, and the entry i,j is -1 if row i is proximate to row j.
NOTE: In case the Hamburger-Noether expansion of the curve f is needed
for other purposes as well it is better to calculate this first
with the aid of @code{hnexpansion} and use it as input instead of
the polynomial itself.
@*
If you are not sure whether the INPUT polynomial is reduced or not, use
@code{squarefree(INPUT)} as input instead.
@*
If the input is a smooth curve, then the output will consist of
three one-by-one zero matrices.
@*
For the definitions of the computed objects see e.g. the book
Eduardo Casas-Alvero, Singularities of Plane Curves.
SEE ALSO: develop, hnexpansion, totalmultiplicities, alexanderpolynomial
EXAMPLE: example proximitymatrix; shows an example
"
{
///////// Decide on the type of input. //////////
if (typeof(INPUT)=="intmat")
{
intmat resgr=INPUT;
}
else
{
intmat resgr=totalmultiplicities(INPUT)[1];
}
//////// Deal with the case of a smooth curve ////////////////
if (size(resgr)==1)
{
return(list(intmat(intvec(1),1,1),intmat(intvec(-1),1,1),intmat(intvec(0),1,1)));
}
//////// Calculate the proximity resolution graph ////////////
int i,j;
int n=nrows(resgr);
intvec diag; // Diagonal of the Enriques diagram.
int si; // number of points proximate to the point corresponding to the ith row
// Adjust the weights of the nodes corresponding to strict transforms so
// as if there had been one additional blow up.
for (i=1;i<=n;i++)
{
// Check if the row corresponds to an exceptional divisor ...
if (resgr[i,i]<0)
{
j=1;
while ((resgr[i,j]==0) or (i==j))
{
j++;
}
resgr[i,i]=resgr[j,j]+1;
}
}
// Set the weights in the resolution graph to the blowing up level in the resolution.
for (i=1;i<=n;i++)
{
resgr[i,i]=resgr[i,i]-1;
diag[i]=resgr[i,i]; // The level of the corresponding infinitely near point.
}
// Replace the weights in the resolution graph by
// -s-1, where s is the number of points which are proximate to the point.
for (i=1;i<=n;i++)
{
si=-1;
// Find the points of higher weight which are connected to the ith row.
for (j=i+1;j<=n;j++)
{
// If the point in row j is connected to the ith row, then all the points of
// weight resgr[i,i]+1 to weight resgr[j,j] in the corresponding subgraph
// are proximate to the point of the ith row. This number is just resgr[j,j]-resgr[i,i].
if ((resgr[i,j]!=0) and (resgr[j,j]>0))
{
si=si-(resgr[j,j]-resgr[i,i]);
}
}
resgr[i,i]=si;
}
/////////////// Calculate the proximity matrix ///////////////////
intmat proximity=proxgauss(resgr);
intmat enriques=proximity;
for (i=1;i<=nrows(enriques);i++)
{
enriques[i,i]=diag[i];
}
return(list(proximity,resgr,enriques));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=(y2-x3)^2-4x5y-x7;
poly f2=y2-x3;
poly f3=y3-x2;
list proximity=proximitymatrix(f1*f2*f3);
/// The proximity matrix P ///
print(proximity[1]);
/// The proximity resolution graph N ///
print(proximity[2]);
/// They satisfy N=-transpose(P)*P ///
print(-transpose(proximity[1])*proximity[1]);
/// The incidence matrix of the Enriques diagram ///
print(proximity[3]);
/// If M is the matrix of multiplicities and TM the matrix of total
/// multiplicities of the singularity, then M=P*TM.
/// We therefore calculate the (total) multiplicities. Note that
/// they have to be slightly extended.
list MULT=extend_multiplicities(totalmultiplicities(f1*f2*f3));
intmat TM=MULT[1]; // Total multiplicites.
intmat M=MULT[2]; // Multiplicities.
/// Check: M-P*TM=0.
M-proximity[1]*TM;
/// Check: inverse(P)*M-TM=0.
intmat_inverse(proximity[1])*M-TM;
}
static proc addmultiplrows (intmat M, int i, int j, int ki, int kj)
"USAGE: addmultiplrows(M,i,j,ki,kj); intmat M, int i,j,ki,kj
RETURN: intmat, replaces the j-th row in M by ki-times the i-th row plus
kj times the j-th
NOTE: This procedure is only for internal use; it is called in intmat_inverse
and proxgauss.
"
{
int k=ncols(M);
M[j,1..k]=kj*M[j,1..k]+ki*M[i,1..k];
return(M);
}
static proc proxgauss (intmat M)
"USAGE: proxgauss(M); intmat M
ASSUME: M is the output of proximity_resgr
RETURN: intmat, replaces the j-th row in M by ki-times the i-th row plus
kj times the j-th
NOTE: This procedure is only for internal use; it is called in intmat_inverse.
"
{
int i;
int n=nrows(M);
if (n==1)
{
M[1,1]=1;
return(M);
}
else
{
if (M[n,n]<0)
{
M=addmultiplrows(M,n,n,-1,0);
}
for (i=n-1;i>=1;i--)
{
if (M[i,n]!=0)
{
M=addmultiplrows(M,n,i,-M[i,n],M[n,n]);
}
}
intmat N[n-1][n-1]=M[1..n-1,1..n-1];
N=proxgauss(N);
M[1..n-1,1..n-1]=N[1..n-1,1..n-1];
return(M);
}
}
proc extend_multiplicities (list rg)
"USAGE: extend_multiplicities(rg); list rg
ASSUME: rg is the output of the procedure totalmultiplicities
RETURN: list, the first entry is an integer matrix containing the total
multiplicities and the second entry is an integer matrix containing
the multiplicies of the resolution given by rg, where the zeros
corresponding to the strict transforms of the branches of the curve
have been replaced by the (total) multiplicities of the infinitely near
point corresponding to one further blow up for each branch.
KEYWORDS: total multiplicities; multiplicity sequence; resolution graph
EXAMPLE: example extend_multiplicities; shows an example
"
{
intmat resgr,tm,mt=rg[1],rg[2],rg[3];
int i,j;
for (i=1;i<=nrows(resgr);i++)
{
if (resgr[i,i]<0)
{
j=1;
while ((resgr[i,j]==0) or (i==j))
{
j++;
}
tm[i,1..ncols(tm)]=tm[j,1..ncols(tm)];
tm[i,-resgr[i,i]]=tm[i,-resgr[i,i]]+1;
mt[i,-resgr[i,i]]=1;
}
}
return(list(tm,mt));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ls;
poly f1=(y2-x3)^2-4x5y-x7;
poly f2=y2-x3;
poly f3=y3-x2;
// Calculate the resolution graph and the (total) multiplicities of f1*f2*f3.
list RESGR=totalmultiplicities(f1*f2*f3);
// Extend the (total) multiplicities.
list MULT=extend_multiplicities(RESGR);
// Compare the total multiplicities.
RESGR[2];
MULT[1];
// Compare the multiplicities.
RESGR[3];
MULT[2];
}
proc intmat_inverse (intmat M)
"USAGE: intmat_inverse(M); intmat M
ASSUME: M is a lower triangular integer matrix with diagonal entries 1 or -1
RETURN: intmat, the inverse of M
KEYWORDS: integer matrix, inverse
EXAMPLE: example intmat_inverse; shows an example
"
{
int i,j,k;
int n=nrows(M);
intmat U[n][n];
U=U+1;
for (i=1;i<=n;i++)
{
if (M[i,i]==-1)
{
M=addmultiplrows(M,i,i,-1,0);
U=addmultiplrows(U,i,i,-1,0);
}
for (j=i+1;j<=n;j++)
{
U=addmultiplrows(U,i,j,-M[j,i],M[i,i]);
M=addmultiplrows(M,i,j,-M[j,i],M[i,i]);
}
}
return(U);
}
example
{
"EXAMPLE:";echo=2;
intmat M[5][5]=1,0,0,0,0,1,1,0,0,0,2,1,1,0,0,3,1,1,1,0,4,1,1,1,1 ;
intmat U=intmat_inverse(M);
print(U);
print(U*M);
}
|