/usr/share/singular/LIB/arcpoint.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | //////////////////////////////////////////////////////////////////////////////
version="version arcpoint.lib 4.0.0.0 Jun_2013 "; // $Id: 14a93d330540dc1bfea332ae44d5ca619952e74a $
//-*- mode:C++;-*-
category="Singularities";
info="
LIBRARY: arcpoint.lib Truncations of arcs at a singular point
AUTHOR: Nadine Cremer cremer@mathematik.uni-kl.de
OVERVIEW: An arc is given by a power series in one variable, say t, and
truncating it at a positive integer i means cutting
the t-powers > i. The set of arcs truncated at order
<bound> is denoted Tr(i). An algorithm for computing
these sets (which happen to be constructible) is given in
[Lejeune-Jalabert, M.: Courbes trac\'ees sur un germe
d'hypersurface, American Journal of Mathematics, 112 (1990)].
Our procedures for computing the locally closed sets contributing
to the set of truncations rely on this algorithm.
PROCEDURES:
nashmult(f,bound); determines locally closed sets relevant
for computing truncations of arcs over a
hypersurface with isolated singularity
defined by f. The sets are given by two
ideals specifying relations between
coefficients of power series in t. One
of the ideals defines an open set, the
other one the complement of a closed
set within the open one.
We consider only coefficients up to
t^<bound>.
Moreover, the sequence of Nash
Multiplicities of each set is
displayed
removepower(I); modifies the ideal I such that the
algebraic set defined by it remains
the same: removes powers of variables
idealsimplify(I,maxiter); further simplification of I in the
above sense: reduction with other
elements of I. The positive integer
<maxiter> gives a bound to the number of
repetition steps
equalJinI(I,J); tests if two ideals I and J are equal
under the assumption that J is
contained in I. Returns 1 if this is
true and 0 otherwise
";
LIB "ring.lib";
LIB "general.lib";
LIB "standard.lib";
LIB "sing.lib";
//////////////////////////////////////////////////////////////////////
// //
// RELEVANT LOCALLY CLOSED SETS //
// //
//////////////////////////////////////////////////////////////////////
proc nashmult (poly f, int bound)
"USAGE: nashmult(f,bound); f polynomial, bound positive integer
CREATE: allsteps:
@format
a list containing all relevant locally closed sets
up to order <bound> and their sequences of
Nash Multiplicities
@end format
setstep:
@format
list of relevant locally closed sets
obtained from sequences of length bound+1
@end format
RETURN: ring, original basering with additional
variables t and coefficients up to t^<bound>
EXAMPLE: example nashmult; shows an example"
{
// Make sure that only admissible parameters are entered
if (bound<1)
{
ERROR("Integer parameter must be positive!");
}
// General setup, declarations and initialization...
int k,s,step,loop; // loop variables
int pos; // position parameter
int countall; // position parameter
list allsteps; // saves results from all
// steps
def r=basering;
int startvar=nvars(basering);
intvec control=order(f); // initialize
def R=ringchange(bound+1); // ring in which result lies
setring R; // make it basering
ideal I0;
list init=control,I0,I0;
list setstep=insert(setstep,init); // stores Nash multiplicities
kill I0; // and underlying sets (given
kill init; // that the sets are not
// empty),will be a list of
// lists, each of which
// containing an intvec and
// two ideals
// consider all possible sequences of multiplicities<=<bound>:
for(step=2;step<=bound+1;step++)
{
list setsteptmp; // temporary variable, local
// to this loop
int count; // position parameter
int setsize=size(setstep);
setring r;
def rplug=pluginCoeffs(f,step); // substitute variables in f
// by polynomials in t of
// degree <step>
setring R;
ideal coe=imap(rplug,resultcoe); // gives the t-coefficients
kill rplug;
// consider all sequences of length <step-1> giving rise to a
// family...
for(loop=1;loop<=setsize;loop++)
{
control=setstep[loop][1]; // initialization. <control>
int sizecontrol=size(control); // describes Nash mutiplicities
ideal gprev=setstep[loop][3]; // in this step, <fprev> and
ideal fprev=setstep[loop][2]; // <gprev> the already obtained
// relations
ideal actcoe=reduce(coe,slimgb(fprev)); // take into account
// existing relations
pos=1; // determine first nonzero
while(actcoe[pos]==0) // t-coefficient
{
pos++;
}
ideal fset; // will store relations
ideal gset; // defining the
// constructible sets
int m0=control[sizecontrol]; // bounds the computations
// consider all possible sequences arising from <control>...
control=control,0;
for (s=1;s<=m0;s++)
{
control[step]=control[step]+1; // the next possible sequence
// of multiplicities
fset=fset,actcoe[pos+s-1],gset; // add new condition
gset=gset,fset;
for(k=0;k<startvar;k++) // additional conditions for
{ // <gset>:
ideal coevar=coeffs(actcoe[pos+s],
var(startvar+1+step+k*(bound+1)));
int coesize=ncols(coevar);
if (coesize>=2) // add coeff. of nonconstant
{ // terms in "highest"
gset=gset,coevar[2..coesize]; // variables
}
kill coevar;
kill coesize;
}
fset=fprev,fset; // add obtained conditions
gset=fprev,gset; // to the existing ones...
gset=idealsimplify(gset,1000); // ...and simplify
fset=idealsimplify(fset,1000);
// if we have found a nontrivial component...
if (control[step-1]==1)
{
list comp=control,fset,gset; // ...add it and
setsteptmp=insert(setsteptmp,comp,count); // multiplicity
count++;
kill comp;
}
else
{
if (equalJinI(gset,fset)==0)
{
list comp=control,fset,gset; // ...add it and
setsteptmp=insert(setsteptmp,comp,count);// multiplicity
count++;
kill comp;
}
}
}
kill fset,gset,actcoe,sizecontrol,fprev,gprev,m0;
}
setstep=setsteptmp;
allsteps=insert(allsteps,setstep,countall); // add results from
countall++; // this step
kill setsteptmp,count,coe,setsize;
}
export(setstep);
export(allsteps);
return(R);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
poly f=z4+y3-x2;
def R=nashmult(f,2);
setring R;
allsteps;
}
//////////////////////////////////////////////////////////////////////
// //
// SUBSTITUE VARIABLES BY POLYNOMIALS //
// //
//////////////////////////////////////////////////////////////////////
static proc pluginCoeffs (poly f,int i)
"USAGE: pluginCoeffs(f,i); f polynomial, i integer
CREATE: matrix, the t-coefficients obtained by replacing each
variable of f by a polynomial in t
RETURN: ring, corresponds to f and i in the sense that it is
the original ring with added variables t and
t-coefficients up to t^<bound> "
{
int startvar=nvars(basering);
def r=basering;
def R=ringchange(i); // changes the ring
setring R; // makes it new basering;
ideal I=tpolys(i,startvar);
map h=r,I; // define map
ideal resultplug=h(f);
matrix resultcoe=coeffs(resultplug[1],t);
export(resultcoe); // keep accessible
export(resultplug);
return(R); //
}
//////////////////////////////////////////////////////////////////////
static proc tpolys (int i,int k)
"USAGE: tpolys(i,k); i,k integer
RETURN: ideal, generated by k polynomials in t of degree i
of the form a(1)*t+..+a(i)*t^i
NOTE: called from pluginCoeffs"
{
int s,t;
int v;
poly sum;
ideal I;
for(t=1;t<=k;t++)
{
v=(t-1)*i;
for(s=1;s<=i;s++)
{
sum=sum+var(1+k+v+s)*var(k+1)^s;
}
I[t]=sum;
sum=0;
}
return(I);
}
//////////////////////////////////////////////////////////////////////
// //
// CONSTRUCTING THE RESULT RING //
// //
//////////////////////////////////////////////////////////////////////
static proc ringchange (int i)
"USAGE: ringchange(i); i integer
RETURN: ring, extends basering by variables t and
#(variables of basering)*i new variables"
{
def R=changevar(""+varstr(basering)+",t,"
+variables_str(nvars(basering),i)+"");
return(R);
}
/////////////////////////////////////////////////////////////////////
static proc variables_str (int k,int i)
"USAGE: variables_str(k,i); k,i integer
ASSUME: 1<=k<=26, i>=1
RETURN: string of names of variables added in ringchange
NOTE: called from ringchange, we use this procedure to
obtain a nice shape of the ring created "
{
list l;
int s,u;
string str;
for (u=1;u<=k;u++)
{
for (s=1;s<=i;s++)
{
str=""+atoz(u)+"("+string(s)+")"; // creates new variables
l[(u-1)*i+s]=str; // saves them in a list
}
}
string str1=string(l); // makes a string of the
return(str1); // list (needed for change
} // of ring)
//////////////////////////////////////////////////////////////////////
static proc atoz (int n)
"USAGE: atoz(n); n integer
ASSUME: 1<=n<=26
RETURN: string, the nth letter of the alphabet"
{
string s="ring r=0,("+A_Z("a",n)+"),ds;";
execute(s);
return (string(var(n)));
}
//////////////////////////////////////////////////////////////////////
// //
// AUXILIARY PROCEDURES //
// //
//////////////////////////////////////////////////////////////////////
static proc order (poly f)
"USAGE: order(f); f polynomial
RETURN: int i, such that f_i is the smallest (in terms of degree)
non-zero homogeneous part
NOTE: is designed for ordering dp"
{
int k=deg(f);
int i;
for(i=1;i<=k;i++)
{
if(jet(f,i)!=0)
{
return(i);
}
}
}
//////////////////////////////////////////////////////////////////////
static proc modd (poly f, poly g)
"USAGE: modd(f,g); f,g polynomials
RETURN: poly, f mod g division with remainder
NOTE: called from idealsimplify where it is used to modify
the generating set of an ideal"
{
poly result=f-(f/g)*g;
return(result);
}
//////////////////////////////////////////////////////////////////////
proc removepower (ideal I)
"USAGE: removepower(I); I ideal
SEE ALSO:idealsimplify
RETURN: ideal defining the same zeroset as I: if any generator
of I is a power of one single variable, replace it by the
respective variable
EXAMPLE: example removepower; shows an example"
{
int i,j;
int divisornumber=0;
int pos;
I=simplify(I,6); // remove 0 and multiple generators
for(j=1;j<=ncols(I);j++)
{
if(size(I[j])==1) // test if generators are powers
{ // of variables...
for(i=1;i<=nvars(basering);i++)
{
if(modd(I[j],var(i))==0)
{
divisornumber++;
pos=i;
}
}
}
if(divisornumber==1) // ...if so, replace by variable
{
I[j]=var(pos);
}
divisornumber=0;
}
return(I);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
ideal I = x3,y+z2-x2;
I;
removepower(I);
}
//////////////////////////////////////////////////////////////////////
proc idealsimplify (ideal I, int maxiter)
"USAGE: idealsimplify(I,m); I ideal, m int
ASSUME: procedure is stable for sufficiently large m
RETURN: ideal defining the same zeroset as I: replace generators
of I by the generator modulo other generating elements
EXAMPLE: example idealsimplify; shows an example "
{
if(maxiter<1)
{ERROR("The integer argument has to be positive!")}
ideal comp;
int iteration;
int changed=0;
int i,j,ci,n,cols;
for(iteration=0;iteration<maxiter;iteration++)
{
comp=I;
n=ncols(I);
for(j=2;j<=n;j++) // reduce with lower elements
{
for(i=1;i<j;i++)
{
if(I[i]!=0)
{
I[j]=modd(I[j],I[i]);
}
}
}
I=simplify(removepower(I),7);
kill n;
int n=ncols(I);
for(j=n-1;j>=1;j--) // reduce with higher elements
{
for(i=n;i>j;i--)
{
if(I[i]!=0)
{
I[j]=modd(I[j],I[i]);
}
}
}
I=simplify(removepower(I),7);
if (ncols(I)==ncols(comp)) //check if I has changed
{
cols=ncols(I);
changed=0;
for(ci=1;ci<=cols;ci++)
{
if (I[ci]!=comp[ci])
{
changed=1;
break;
}
}
if (changed==0)
break;
}
}
return(I);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
ideal I = x3,y+z2-x2;
I;
idealsimplify(I,10);
}
//////////////////////////////////////////////////////////////////////
proc equalJinI (ideal I, ideal J)
"USAGE: equalJinI(I,J); (I,J ideals)
ASSUME: J contained in I and both I and J have been processed
with idealsimplify before
SEE ALSO: idealsimplify
RETURN: 1, if I=J, 0 otherwise
EXAMPLE: example equalJinI; shows an example"
{
int col=ncols(I);
J=slimgb(J);
int k;
for(k=1;k<=col;k++)
{
if(reduce(I[k],J)!=0)
{ return(0);}
}
return(1);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
ideal I = x,y+z2;
ideal J1= x;
ideal J2= x,y+z2;
equalJinI(I,J1);
equalJinI(I,J2);
}
|