/usr/share/singular/LIB/bfun.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 | /////////////////////////////////////////////////////////////////////////////
version="version bfun.lib 4.0.0.0 Jun_2013 "; // $Id: ec07870569d6828b6cb89ea4e65c85db66e7e604 $
category="Noncommutative";
info="
LIBRARY: bfun.lib Algorithms for b-functions and Bernstein-Sato polynomial
AUTHORS: Daniel Andres, daniel.andres@math.rwth-aachen.de
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
OVERVIEW:
Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R,
one is interested in the global b-function (also known as Bernstein-Sato
polynomial) b(s) in K[s], defined to be the non-zero monic polynomial of minimal
degree, satisfying a functional identity L * F^{s+1} = b(s) F^s,
for some operator L in D[s] (* stands for the action of differential operator)@*
By D one denotes the n-th Weyl algebra
K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j +1>.
One is interested in the following data:@*
- Bernstein-Sato polynomial b(s) in K[s],@*
- the list of its roots, which are known to be rational@*
- the multiplicities of the roots.@*
There is a constructive definition of a b-function of a holonomic ideal I in D
(that is, an ideal I in a Weyl algebra D, such that D/I is holonomic module)
with respect to the given weight vector w: For a polynomial p in D, its initial
form w.r.t. (-w,w) is defined as the sum of all terms of p which have
maximal weighted total degree where the weight of x_i is -w_i and the weight
of d_i is w_i. Let J be the initial ideal of I w.r.t. (-w,w), i.e. the
K-vector space generated by all initial forms w.r.t (-w,w) of elements of I.
Put s = w_1 x_1 d_1 + ... + w_n x_n d_n. Then the monic generator b_w(s) of
the intersection of J with the PID K[s] is called the b-function of I w.r.t. w.
Unlike Bernstein-Sato polynomial, general b-function with respect to
arbitrary weights need not have rational roots at all. However, b-function
of a holonomic ideal is known to be non-zero as well.
REFERENCES: [SST] Saito, Sturmfels, Takayama: Groebner Deformations of
Hypergeometric Differential Equations (2000),@*
Noro: An Efficient Modular Algorithm for Computing the Global b-function,
(2002).
PROCEDURES:
bfct(f[,s,t,v]); compute the BS polynomial of f with linear reductions
bfctSyz(f[,r,s,t,u,v]); compute the BS polynomial of f with syzygy-solver
bfctAnn(f[,s]); compute the BS polynomial of f via Ann f^s + f
bfctOneGB(f[,s,t]); compute the BS polynomial of f by just one GB computation
bfctIdeal(I,w[,s,t]); compute the b-function of ideal w.r.t. weight
pIntersect(f,I[,s]); intersection of ideal with subalgebra K[f] for a polynomial f
pIntersectSyz(f,I[,p,s,t]); intersection of ideal with subalgebra K[f] with syz-solver
linReduce(f,I[,s]); reduce a polynomial by linear reductions w.r.t. ideal
linReduceIdeal(I,[s,t]); interreduce generators of ideal by linear reductions
linSyzSolve(I[,s]); compute a linear dependency of elements of ideal I
allPositive(v); checks whether all entries of an intvec are positive
scalarProd(v,w); computes the standard scalar product of two intvecs
vec2poly(v[,i]); constructs an univariate polynomial with given coefficients
SEE ALSO: dmod_lib, dmodapp_lib, dmodvar_lib, gmssing_lib
KEYWORDS: D-module; global Bernstein-Sato polynomial; Bernstein-Sato polynomial; b-function;
graded Weyl algebra; initial ideal; initial form; principal intersection; linear interreduction;
initial ideal approach
";
/*
CHANGELOG
03.03.11:
- simplified scalarProd
- fixed bug in bfct when user used vars t,Dt
- now bFactor is used by bfct, bfctAnn, i.e. the static procs
addRoot, listofroots are superfluous
- fixed printlevel/debug message issue in bfct, bfctAnn
- fixed small issue for zero ideal input in linReduceIdeal
16.03.11
- fixed bug in linReduceIdeal when ideal contained unlucky constellation
of zeros
- fixed printlevel/debug message issue in linReduceIdeal
*/
LIB "qhmoduli.lib"; // for Max
LIB "dmod.lib"; // for SannfsBFCT etc
LIB "dmodapp.lib"; // for initialIdealW etc
LIB "nctools.lib"; // for isWeyl etc
LIB "presolve.lib"; // for valvars
//--------------- auxiliary procedures ----------------------------------------
/*
static proc gradedWeyl (intvec u,intvec v)
"USAGE: gradedWeyl(u,v); u,v intvecs
RETURN: a ring, the associated graded ring of the basering w.r.t. u and v
PURPOSE: compute the associated graded ring of the basering w.r.t. u and v
ASSUME: basering is a Weyl algebra
EXAMPLE: example gradedWeyl; shows examples
NOTE: u[i] is the weight of x(i), v[i] the weight of D(i).
@* u+v has to be a non-negative intvec.
"
{
// todo check assumption
int i;
def save = basering;
int n = nvars(save) div 2;
if (nrows(u)<>n || nrows(v)<>n)
{
ERROR("weight vectors have wrong dimension");
}
intvec uv,gr;
uv = u+v;
for (i=1; i<=n; i++)
{
if (uv[i]>=0)
{
if (uv[i]==0)
{
gr[i] = 0;
}
else
{
gr[i] = 1;
}
}
else
{
ERROR("the sum of the weight vectors has to be a non-negative intvec");
}
}
list l = ringlist(save);
list l2 = l[2];
matrix l6 = l[6];
for (i=1; i<=n; i++)
{
if (gr[i] == 1)
{
l2[n+i] = "xi("+string(i)+")";
l6[i,n+i] = 0;
}
}
l[2] = l2;
l[6] = l6;
def G = ring(l);
return(G);
}
example
{
"EXAMPLE:"; echo = 2;
ring @D = 0,(x,y,z,Dx,Dy,Dz),dp;
def D = Weyl();
setring D;
intvec u = -1,-1,1; intvec v = 2,1,1;
def G = gradedWeyl(u,v);
setring G; G;
}
*/
static proc safeVarName (string s)
{
string S = "," + charstr(basering) + "," + varstr(basering) + ",";
s = "," + s + ",";
while (find(S,s) <> 0)
{
s[1] = "@";
s = "," + s;
}
s = s[2..size(s)-1];
return(s)
}
proc allPositive (intvec v)
"USAGE: allPositive(v); v an intvec
RETURN: int, 1 if all components of v are positive, or 0 otherwise
PURPOSE: check whether all components of an intvec are positive
EXAMPLE: example allPositive; shows an example
"
{
int i;
for (i=1; i<=size(v); i++)
{
if (v[i]<=0)
{
return(0);
break;
}
}
return(1);
}
example
{
"EXAMPLE:"; echo = 2;
intvec v = 1,2,3;
allPositive(v);
intvec w = 1,-2,3;
allPositive(w);
}
static proc findFirst (list l, def i)
"USAGE: findFirst(l,i); l a list, i an argument of any type
RETURN: int, the position of the first appearance of i in l,
@* or 0 if i is not a member of l
PURPOSE: check whether the second argument is a member of a list
EXAMPLE: example findFirst; shows an example
"
{
int j;
for (j=1; j<=size(l); j++)
{
if (l[j]==i)
{
return(j);
break;
}
}
return(0);
}
// findFirst(list(1, 2, list(1)),2); // seems to be a bit buggy,
// findFirst(list(1, 2, list(1)),3); // but works for the purposes
// findFirst(list(1, 2, list(1)),list(1)); // of this library
// findFirst(l,list(2));
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,x,dp;
list l = 1,2,3;
findFirst(l,4);
findFirst(l,2);
}
proc scalarProd (intvec v, intvec w)
"USAGE: scalarProd(v,w); v,w intvecs
RETURN: int, the standard scalar product of v and w
PURPOSE: computes the scalar product of two intvecs
ASSUME: the arguments are of the same size
EXAMPLE: example scalarProd; shows examples
"
{
if (size(v)!=size(w))
{
ERROR("non-matching dimensions");
}
else
{
intvec u = transpose(v)*w;
}
return(u[1]);
}
example
{
"EXAMPLE:"; echo = 2;
intvec v = 1,2,3;
intvec w = 4,5,6;
scalarProd(v,w);
}
//-------------- main procedures -------------------------------------------------------
proc linReduceIdeal(ideal I, list #)
"USAGE: linReduceIdeal(I [,s,t,u]); I an ideal, s,t,u optional ints
RETURN: ideal or list, linear reductum (over field) of I by its elements
PURPOSE: reduces a list of polys only by linear reductions (no monomial
@* multiplications)
NOTE: If s<>0, a list consisting of the reduced ideal and the coefficient
@* vectors of the used reductions given as module is returned.
@* Otherwise (and by default), only the reduced ideal is returned.
@* If t<>0 (and by default) all monomials are reduced (if possible),
@* otherwise, only leading monomials are reduced.
@* If u<>0 (and by default), the ideal is first sorted in increasing order.
@* If u is set to 0 and the given ideal is not sorted in the way described,
@* the result might not be as expected.
DISPLAY: If @code{printlevel}=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example linReduceIdeal; shows examples
"
{
// #[1] = remembercoeffs
// #[2] = redtail
// #[3] = sortideal
int ppl = printlevel - voice + 2;
int remembercoeffs = 0; // default
int redtail = 1; // default
int sortideal = 1; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
remembercoeffs = #[1];
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
redtail = #[2];
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
sortideal = #[3];
}
}
}
}
int sI = ncols(I);
int sZeros = sI - size(I);
int i,j,k;
ideal J,lmJ,ordJ;
list lJ = sort(I);
intvec iv,iv2; //todo
module M; // for the coefficients
// step 1: prepare, e.g. sort I
if (sortideal <> 0)
{
if (sZeros > 0) // I contains zeros
{
if (remembercoeffs <> 0)
{
j = 0;
k = 0;
intvec posNonZero;
for (i=1; i<=sI; i++)
{
if (I[i] == 0)
{
j++;
J[j] = 0;
ordJ[j] = -1;
M[j] = gen(i);
}
else
{
k++;
M[k+sZeros] = gen(lJ[2][k]);
posNonZero = posNonZero,i;
}
}
posNonZero = posNonZero[2..nrows(posNonZero)];
posNonZero = posNonZero[lJ[2]];
for (i=1; i<=size(lJ[1]); i++)
{
M[i+sZeros] = gen(posNonZero[i]);
}
kill posNonZero;
}
else
{
for (i=1; i<=sZeros; i++)
{
J[i] = 0;
ordJ[i] = -1;
}
}
I = J,lJ[1];
}
else // I contains no zeros
{
I = lJ[1];
if (remembercoeffs <> 0)
{
for (i=1; i<=size(lJ[1]); i++) { M[i] = gen(lJ[2][i]); }
}
}
}
else // assume I is already sorted
{
if (remembercoeffs <> 0)
{
for (i=1; i<=ncols(I); i++) { M[i] = gen(i); }
}
}
dbprint(ppl,"// initially sorted ideal:", I);
if (remembercoeffs <> 0) { dbprint(ppl,"// used permutations:", M); }
// step 2: reduce leading monomials by linear reductions
poly lm,c,redpoly,maxlmJ;
J[sZeros+1] = I[sZeros+1];
lm = I[sZeros+1];
maxlmJ = leadmonom(lm);
lmJ[sZeros+1] = maxlmJ;
int ordlm,reduction;
ordJ[sZeros+1] = ord(lm);
vector v;
int noRedPast;
for (i=sZeros+2; i<=sI; i++)
{
redpoly = I[i];
lm = leadmonom(redpoly);
ordlm = ord(lm);
if (remembercoeffs <> 0) { v = M[i]; }
reduction = 1;
while (reduction == 1) // while there was a reduction
{
noRedPast = i;
reduction = 0;
for (j=sZeros+1; j<noRedPast; j++)
{
if (lm == 0) { break; } // nothing more to reduce
if (lm > maxlmJ) { break; } //lm is bigger than maximal monomial to reduce with
if (ordlm == ordJ[j])
{
if (lm == lmJ[j])
{
dbprint(ppl-1,"// reducing " + string(redpoly));
dbprint(ppl-1,"// with " + string(J[j]));
c = leadcoef(redpoly)/leadcoef(J[j]);
redpoly = redpoly - c*J[j];
dbprint(ppl-1,"// to " + string(redpoly));
lm = leadmonom(redpoly);
ordlm = ord(lm);
if (remembercoeffs <> 0) { M[i] = M[i] - c * M[j]; }
noRedPast = j;
reduction = 1;
}
}
}
}
for (j=sZeros+1; j<i; j++)
{
if (redpoly < J[j]) { break; }
}
J = insertGenerator(J,redpoly,j);
lmJ = insertGenerator(lmJ,lm,j);
ordJ = insertGenerator(ordJ,poly(ordlm),j);
if (remembercoeffs <> 0)
{
v = M[i];
M = deleteGenerator(M,i);
M = insertGenerator(M,v,j);
}
maxlmJ = lmJ[i];
}
// step 3: reduce tails by linear reductions as well
if (redtail <> 0)
{
dbprint(ppl,"// finished reducing leading monomials");
dbprint(ppl-1,string(J));
if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(M)); }
for (i=sZeros+1; i<=sI; i++)
{
lm = lmJ[i];
for (j=i+1; j<=sI; j++)
{
for (k=2; k<=size(J[j]); k++) // run over all terms in J[j]
{
if (ordJ[i] == ord(J[j][k]))
{
if (lm == normalize(J[j][k]))
{
c = leadcoef(J[j][k])/leadcoef(J[i]);
dbprint(ppl-1,"// reducing " + string(J[j]));
dbprint(ppl-1,"// with " + string(J[i]));
J[j] = J[j] - c*J[i];
dbprint(ppl-1,"// to " + string(J[j]));
if (remembercoeffs <> 0) { M[j] = M[j] - c * M[i]; }
}
}
}
}
}
}
if (sI == sZeros) // if I=0,0,...,0, we now have one too much by construction due to sort
{
J = J[1..sZeros];
}
if (remembercoeffs <> 0) { return(list(J,M)); }
else { return(J); }
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
ideal I = 3,x+9,y4+5x,2y4+7x+2;
linReduceIdeal(I); // reduces tails
linReduceIdeal(I,0,0); // no reductions of tails
list l = linReduceIdeal(I,1); // reduces tails and shows reductions used
l;
module M = I;
matrix(l[1]) - M*l[2];
}
proc linReduce(poly f, ideal I, list #)
"USAGE: linReduce(f, I [,s,t,u]); f a poly, I an ideal, s,t,u optional ints
RETURN: poly or list, linear reductum (over field) of f by elements from I
PURPOSE: reduce a polynomial only by linear reductions (no monomial multiplications)
NOTE: If s<>0, a list consisting of the reduced polynomial and the coefficient
@* vector of the used reductions is returned, otherwise (and by default)
@* only reduced polynomial is returned.
@* If t<>0 (and by default) all monomials are reduced (if possible),
@* otherwise, only leading monomials are reduced.
@* If u<>0 (and by default), the ideal is linearly pre-reduced, i.e.
@* instead of the given ideal, the output of @code{linReduceIdeal} is used.
@* If u is set to 0 and the given ideal does not equal the output of
@* @code{linReduceIdeal}, the result might not be as expected.
DISPLAY: If @code{printlevel}=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example linReduce; shows examples
"
{
int ppl = printlevel - voice + 2;
int remembercoeffs = 0; // default
int redtail = 1; // default
int prepareideal = 1; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
remembercoeffs = #[1];
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
redtail = #[2];
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
prepareideal = #[3];
}
}
}
}
int i,j,k;
int sI = ncols(I);
// pre-reduce I:
module M;
if (prepareideal <> 0)
{
if (remembercoeffs <> 0)
{
list sortedI = linReduceIdeal(I,1,redtail);
I = sortedI[1];
M = sortedI[2];
dbprint(ppl-1,"// prepared ideal:" +string(I));
dbprint(ppl-1,"// with operations:" +string(M));
}
else { I = linReduceIdeal(I,0,redtail); }
}
else
{
if (remembercoeffs <> 0)
{
for (i=1; i<=sI; i++) { M[i] = gen(i); }
}
}
ideal lmI,lcI,ordI;
for (i=1; i<=sI; i++)
{
lmI[i] = leadmonom(I[i]);
lcI[i] = leadcoef(I[i]);
ordI[i] = ord(lmI[i]);
}
vector v;
poly c;
// === reduce leading monomials ===
poly lm = leadmonom(f);
int ordf = ord(lm);
for (i=sI; i>=1; i--) // I is sorted: smallest lm's on top
{
if (lm == 0) { break; }
else
{
if (ordf == ordI[i])
{
if (lm == lmI[i])
{
c = leadcoef(f)/lcI[i];
f = f - c*I[i];
lm = leadmonom(f);
ordf = ord(lm);
if (remembercoeffs <> 0) { v = v - c * M[i]; }
}
}
}
}
// === reduce tails as well ===
if (redtail <> 0)
{
dbprint(ppl,"// finished reducing leading monomials");
dbprint(ppl-1,string(f));
if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(v)); }
for (i=1; i<=sI; i++)
{
dbprint(ppl,"// testing ideal entry "+string(i));
for (j=1; j<=size(f); j++)
{
if (ord(f[j]) == ordI[i])
{
if (normalize(f[j]) == lmI[i])
{
c = leadcoef(f[j])/lcI[i];
f = f - c*I[i];
dbprint(ppl-1,"// reducing with " + string(I[i]));
dbprint(ppl-1,"// to " + string(f));
if (remembercoeffs <> 0) { v = v - c * M[i]; }
}
}
}
}
}
if (remembercoeffs <> 0)
{
list l = f,v;
return(l);
}
else { return(f); }
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
ideal I = 1,y,xy;
poly f = 5xy+7y+3;
poly g = 7x+5y+3;
linReduce(g,I); // reduces tails
linReduce(g,I,0,0); // no reductions of tails
linReduce(f,I,1); // reduces tails and shows reductions used
f = x3+y2+x2+y+x;
I = x3-y3, y3-x2,x3-y2,x2-y,y2-x;
list l = linReduce(f,I,1);
l;
module M = I;
f - (l[1]-(M*l[2])[1,1]);
}
proc linSyzSolve (ideal I, list #)
"USAGE: linSyzSolve(I[,s]); I an ideal, s an optional int
RETURN: vector, coefficient vector of linear combination of 0 in elements of I
PURPOSE: compute a linear dependency between the elements of an ideal
@* if such one exists
NOTE: If s<>0, @code{std} is used for Groebner basis computations,
@* otherwise, @code{slimgb} is used.
@* By default, @code{slimgb} is used in char 0 and @code{std} in char >0.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example linSyzSolve; shows examples
"
{
int whichengine = 0; // default
int enginespecified = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
whichengine = int( #[1]);
enginespecified = 1;
}
}
int ppl = printlevel - voice +2;
int sI = ncols(I);
// check if we are done
if (I[sI]==0)
{
vector v = gen(sI);
}
else
{
// ------- 1. introduce undefined coeffs ------------------
def save = basering;
list RL = ringlist(save);
int nv = nvars(save);
int np = npars(save);
int p = char(save);
string cs = "(" + charstr(save) + ")";
if (enginespecified == 0)
{
if (p <> 0)
{
whichengine = 1;
}
}
int i;
list Lvar;
for (i=1; i<=sI; i++)
{
Lvar[i] = safeVarName("@a(" + string(i) + ")");
}
list L@A = RL[1..4];
L@A[2] = Lvar;
L@A[3] = list(list("lp",intvec(1:sI)),list("C",intvec(0)));
def @A = ring(L@A);
L@A[2] = list(safeVarName("@z"));
L@A[3][1] = list("dp",intvec(1));
if (size(L@A[1])>1)
{
L@A[1][2] = L@A[1][2] + Lvar;
L@A[1][3][size(L@A[1][3])+1] = list("lp",intvec(1:sI));
}
else
{
L@A[1] = list(p,Lvar,list(list("lp",intvec(1:sI))),ideal(0));
}
def @aA = ring(L@A);
def @B = save + @aA;
setring @B;
ideal I = imap(save,I);
// ------- 2. form the linear system for the undef coeffs ---
poly W; ideal QQ;
for (i=1; i<=sI; i++)
{
W = W + par(np+i)*I[i];
}
while (W!=0)
{
QQ = QQ,leadcoef(W);
W = W - lead(W);
}
// QQ consists of polynomial expressions in @a(i) of type number
setring @A;
ideal QQ = imap(@B,QQ);
// ------- 3. this QQ is a polynomial ideal, so "solve" the system -----
dbprint(ppl, "// linSyzSolve: starting Groebner basis computation with engine:", whichengine);
QQ = engine(QQ,whichengine);
dbprint(ppl, "// QQ after engine:", QQ);
if (dim(QQ) == -1)
{
dbprint(ppl+1, "// no solutions by linSyzSolve");
// output zeroes
setring save;
kill @A,@aA,@B;
return(v);
}
// ------- 4. in order to get the numeric values -------
matrix AA = matrix(maxideal(1));
module MQQ = std(module(QQ));
AA = NF(AA,MQQ); // todo: we still receive NF warnings
dbprint(ppl, "// AA after NF:",AA);
// "AA after NF:"; print(AA);
for(i=1; i<=sI; i++)
{
AA = subst(AA,var(i),1);
}
dbprint(ppl, "// AA after subst:",AA);
// "AA after subst: "; print(AA);
vector v = (module(transpose(AA)))[1];
setring save;
vector v = imap(@A,v);
kill @A,@aA,@B;
}
return(v);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,x,dp;
ideal I = x,2x;
linSyzSolve(I);
ideal J = x,x2;
linSyzSolve(J);
}
proc pIntersect (poly s, ideal I, list #)
"USAGE: pIntersect(f, I [,s]); f a poly, I an ideal, s an optional int
RETURN: vector, coefficient vector of the monic polynomial
PURPOSE: compute the intersection of ideal I with the subalgebra K[f]
ASSUME: I is given as Groebner basis, basering is not a qring.
NOTE: If the intersection is zero, this proc might not terminate.
@* If s>0 is given, it is searched for the generator of the intersection
@* only up to degree s. Otherwise (and by default), no bound is assumed.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example pIntersect; shows examples
"
{
def save = basering;
int n = nvars(save);
list RL = ringlist(save);
int i,j,k;
if (RL[4]<>0)
{
ERROR ("basering must not be a qring");
}
// assume I is given in Groebner basis
if (attrib(I,"isSB") <> 1)
{
print("// WARNING: The input has no SB attribute!");
print("// Treating it as if it were a Groebner basis and proceeding...");
attrib(I,"isSB",1); // set attribute for suppressing NF messages
}
int bound = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
bound = #[1];
}
}
int ppl = printlevel-voice+2;
// ---case 1: I = basering---
if (size(I) == 1)
{
if (simplify(I,2)[1] == 1)
{
return(gen(1)); // = 1
}
}
// ---case 2: intersection is zero---
intvec degs = leadexp(s);
intvec possdegbounds;
list degI;
i = 1;
while (i <= ncols(I))
{
if (i == ncols(I)+1) { break; }
degI[i] = leadexp(I[i]);
for (j=1; j<=n; j++)
{
if (degs[j] == 0)
{
if (degI[i][j] <> 0) { break; }
}
if (j == n)
{
k++;
possdegbounds[k] = Max(degI[i]);
}
}
i++;
}
int degbound = Min(possdegbounds);
if (bound>0 && bound<degbound) // given bound is too small
{
print("// Try a bound of at least " + string(degbound));
return(vector(0));
}
dbprint(ppl,"// lower bound for the degree of the insection is " +string(degbound));
if (degbound == 0) // lm(s) does not appear in lm(I)
{
print("// Intersection is zero");
return(vector(0));
}
// ---case 3: intersection is non-trivial---
ideal redNI = 1;
vector v;
list l,ll;
l[1] = vector(0);
poly toNF,tobracket,newNF,rednewNF,oldNF,secNF;
i = 1;
while (1)
{
if (bound>0 && i>bound) { return(vector(0)); }
dbprint(ppl,"// Testing degree "+string(i));
if (i>1)
{
oldNF = newNF;
tobracket = s^(i-1) - oldNF;
if (tobracket==0) // todo bug in bracket?
{
toNF = 0;
}
else
{
toNF = bracket(tobracket,secNF);
}
newNF = NF(toNF+oldNF*secNF,I); // = NF(s^i,I)
}
else
{
newNF = NF(s,I);
secNF = newNF;
}
ll = linReduce(newNF,redNI,1);
rednewNF = ll[1];
l[i+1] = ll[2];
dbprint(ppl-1,"// newNF is: "+string(newNF));
dbprint(ppl-1,"// rednewNF is: "+string(rednewNF));
if (rednewNF != 0) // no linear dependency
{
redNI[i+1] = rednewNF;
i++;
}
else // there is a linear dependency, hence we are done
{
dbprint(ppl,"// degree of the generator of the intersection is: "+string(i));
break;
}
}
dbprint(ppl-1,"// used linear reductions:", l);
// we obtain the coefficients of the generator by the used reductions:
list Lvar;
for (j=1; j<=i+1; j++)
{
Lvar[j] = safeVarName("a("+string(j)+")");
}
list Lord = list("dp",intvec(1:(i+1))),list("C",intvec(0));
list L@R = RL[1..4];
L@R[2] = Lvar; L@R[3] = Lord;
def @R = ring(L@R); setring @R;
list l = imap(save,l);
ideal C;
for (j=1;j<=i+1;j++)
{
C[j] = 0;
for (k=1;k<=j;k++)
{
C[j] = C[j]+l[j][k]*var(k);
}
}
for (j=i;j>=1;j--)
{
C[i+1]= subst(C[i+1],var(j),var(j)+C[j]);
}
matrix m = coeffs(C[i+1],maxideal(1));
vector v = gen(i+1);
for (j=1;j<=i+1;j++)
{
v = v + m[j,1]*gen(j);
}
setring save;
v = imap(@R,v);
kill @R;
return(v);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
def D = initialMalgrange(f);
setring D;
inF;
pIntersect(t*Dt,inF);
pIntersect(t*Dt,inF,1);
}
proc pIntersectSyz (poly s, ideal I, list #)
"USAGE: pIntersectSyz(f, I [,p,s,t]); f poly, I ideal, p,t optial ints, p prime
RETURN: vector, coefficient vector of the monic polynomial
PURPOSE: compute the intersection of an ideal I with the subalgebra K[f]
ASSUME: I is given as Groebner basis.
NOTE: If the intersection is zero, this procedure might not terminate.
@* If p>0 is given, this proc computes the generator of the intersection in
@* char p first and then only searches for a generator of the obtained
@* degree in the basering. Otherwise, it searches for all degrees by
@* computing syzygies.
@* If s<>0, @code{std} is used for Groebner basis computations in char 0,
@* otherwise, and by default, @code{slimgb} is used.
@* If t<>0 and by default, @code{std} is used for Groebner basis
@* computations in char >0, otherwise, @code{slimgb} is used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example pIntersectSyz; shows examples
"
{
// assume I is given as Groebner basis
if (attrib(I,"isSB") <> 1)
{
print("// WARNING: The input has no SB attribute!");
print("// Treating it as if it were a Groebner basis and proceeding...");
attrib(I,"isSB",1); // set attribute for suppressing NF messages
}
int ppl = printlevel-voice+2;
int whichengine = 0; // default
int modengine = 1; // default
int solveincharp = 0; // default
def save = basering;
int n = nvars(save);
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
solveincharp = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
whichengine = int(#[2]);
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
modengine = int(#[3]);
}
}
}
}
int i,j;
vector v;
poly tobracket,toNF,newNF,p;
ideal NI = 1;
newNF = NF(s,I);
NI[2] = newNF;
list RL = ringlist(save);
if (solveincharp)
{
int psolveincharp = prime(solveincharp);
if (solveincharp <> psolveincharp)
{
print("// " + string(solveincharp) + " is invalid characteristic of ground field.");
print("// " + string(psolveincharp) + " is used.");
solveincharp = psolveincharp;
kill psolveincharp;
}
list RLp = RL[1..4];
if (typeof(RL[1]) == "int") { RLp[1] = solveincharp; }
else { RLp[1][1] = solveincharp; } // parameters
def @Rp = ring(RLp);
setring @Rp;
number c;
setring save;
int shortSave = short; // workaround for maps Q(a_i) -> Z/p(a_i)
short = 0;
string str;
int badprime;
i=1;
while (badprime == 0 && i<=size(s)) // detect bad primes
{
str = string(denominator(leadcoef(s[i])));
str = "c = " + str + ";";
setring @Rp;
execute(str);
if (c == 0) { badprime = 1; }
setring save;
i++;
}
str = "poly s = " + string(s) + ";";
if (size(RL) > 4) // basering is NC-algebra
{
string RL5 = "@C = " + string(RL[5]) + ";";
string RL6 = "@D = " + string(RL[6]) + ";";
setring @Rp;
matrix @C[n][n]; matrix @D[n][n];
execute(RL5); execute(RL6);
def Rp = nc_algebra(@C,@D);
}
else { def Rp = @Rp; }
setring Rp;
kill @Rp;
dbprint(ppl-1,"// solving in ring ", Rp);
execute(str);
vector v;
number c;
ideal NI = 1;
setring save;
i=1;
while (badprime == 0 && i<=size(I)) // detect bad primes
{
str = string(leadcoef(cleardenom(I[i])));
str = "c = " + str + ";";
setring Rp;
execute(str);
if (c == 0) { badprime = 1; }
setring save;
i++;
}
if (badprime == 1)
{
print("// WARNING: bad prime");
short = shortSave;
return(vector(0));
}
}
i = 1;
dbprint(ppl,"// pIntersectSyz starts...");
dbprint(ppl-1,"// with ideal I=", I);
while (1)
{
dbprint(ppl,"// testing degree: "+string(i));
if (i>1)
{
tobracket = s^(i-1)-NI[i];
if (tobracket!=0)
{
toNF = bracket(tobracket,NI[2]) + NI[i]*NI[2];
}
else
{
toNF = NI[i]*NI[2];
}
newNF = NF(toNF,I);
NI[i+1] = newNF;
}
// look for a solution
dbprint(ppl-1,"// linSyzSolve starts with: "+string(matrix(NI)));
if (solveincharp) // modular method
{
for (j=1; j<=size(newNF); j++)
{
str = string(denominator(leadcoef(s[i])));
str = "c = " + str + ";";
setring Rp;
execute(str);
if (c == 0)
{
print("// WARNING: bad prime");
setring save;
short = shortSave;
return(vector(0));
}
setring save;
}
str = "NI[" + string(i) + "+1] = " + string(newNF) + ";";
setring Rp;
execute(str); // NI[i+1] = [newNF]_{solveincharp}
v = linSyzSolve(NI,modengine);
if (v!=0) // there is a modular solution
{
dbprint(ppl,"// got solution in char "+string(solveincharp)+" of degree "+string(i));
setring save;
v = linSyzSolve(NI,whichengine);
if (v==0)
{
break;
}
}
else // no modular solution
{
setring save;
v = 0;
}
}
else // non-modular method
{
v = linSyzSolve(NI,whichengine);
}
matrix MM[1][nrows(v)] = matrix(v);
dbprint(ppl-1,"// linSyzSolve ready with: "+string(MM));
kill MM;
// "linSyzSolve ready with"; print(v);
if (v!=0)
{
// a solution:
//check for the reality of the solution
p = 0;
for (j=1; j<=i+1; j++)
{
p = p + v[j]*NI[j];
}
if (p!=0)
{
dbprint(ppl,"// linSyzSolve: bad solution!");
}
else
{
dbprint(ppl,"// linSyzSolve: got solution!");
// "got solution!";
break;
}
}
// no solution:
i++;
}
dbprint(ppl,"// pIntersectSyz finished");
if (solveincharp) { short = shortSave; }
return(v);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
def D = initialMalgrange(f);
setring D;
inF;
poly s = t*Dt;
pIntersectSyz(s,inF);
int p = prime(20000);
pIntersectSyz(s,inF,p,0,0);
}
proc vec2poly (list #)
"USAGE: vec2poly(v [,i]); v a vector or an intvec, i an optional int
RETURN: poly, an univariate polynomial in i-th variable with coefficients given by v
PURPOSE: constructs an univariate polynomial in K[var(i)] with given coefficients,
@* such that the coefficient at var(i)^{j-1} is v[j].
NOTE: The optional argument i must be positive, by default i is 1.
EXAMPLE: example vec2poly; shows examples
"
{
def save = basering;
int i,ringvar;
ringvar = 1; // default
if (size(#) > 0)
{
if (typeof(#[1])=="vector" || typeof(#[1])=="intvec")
{
def v = #[1];
}
else
{
ERROR("wrong input: expected vector/intvec expression");
}
if (size(#) > 1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
ringvar = int(#[2]);
}
}
}
if (ringvar > nvars(save))
{
ERROR("var out of range");
}
poly p;
for (i=1; i<=nrows(v); i++)
{
p = p + v[i]*(var(ringvar))^(i-1);
}
return(p);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
vector v = gen(1) + 3*gen(3) + 22/9*gen(4);
intvec iv = 3,2,1;
vec2poly(v,2);
vec2poly(iv);
}
/*
// // listofroots and addRoots aren't needed anymore due to some modifications
//
// static proc listofroots (list #)
// {
// def save = basering;
// int n = nvars(save);
// int i;
// poly p;
// if (typeof(#[1])=="vector")
// {
// vector b = #[1];
// for (i=1; i<=nrows(b); i++)
// {
// p = p + b[i]*(var(1))^(i-1);
// }
// }
// else
// {
// p = #[1];
// }
// int substitution = int(#[2]);
// string s = safeVarName("s");
// list RL = ringlist(save); RL = RL[1..4];
// RL[2] = list(s); RL[3] = list(list("dp",intvec(1)),list("C",0));
// def S = ring(RL); setring S;
// ideal J;
// for (i=1; i<=n; i++)
// {
// J[i] = var(1);
// }
// map @m = save,J;
// poly p = @m(p);
// if (substitution == 1)
// {
// p = subst(p,var(1),-var(1)-1);
// }
// // the rest of this proc is nicked from bernsteinBM from dmod.lib
// list P = factorize(p);//with constants and multiplicities
// ideal bs; intvec m; //the BS polynomial is monic, so we are not interested in constants
// for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1]
// {
// bs[i-1] = P[1][i];
// m[i-1] = P[2][i];
// }
// bs = normalize(bs);
// bs = -subst(bs,var(1),0);
// setring save;
// ideal bs = imap(S,bs);
// kill S;
// list BS = bs,m;
// return(BS);
// }
//
//
// static proc addRoot(number q, list L)
// {
// // add root to list in bFactor format
// int i,qInL;
// ideal I = L[1];
// intvec v = L[2];
// list LL;
// if (v == 0)
// {
// I = poly(q);
// v = 1;
// LL = I,v;
// }
// else
// {
// for (i=1; i<=ncols(I); i++)
// {
// if (I[i] == q)
// {
// qInL = i;
// break;
// }
// }
// if (qInL)
// {
// v[qInL] = v[qInL] + 1;
// }
// else
// {
// I = q,I;
// v = 1,v;
// }
// }
// LL = I,v;
// if (size(L) == 3) // irreducible factor
// {
// if (L[3] <> "0" && L[3] <> "1")
// {
// LL = LL + list(L[3]);
// }
// }
// return(LL);
// }
*/
static proc bfctengine (poly f, int inorann, int whichengine, int addPD, int stdsum, int methodord, int methodpIntersect, int pIntersectchar, int modengine, intvec u0)
{
int printlevelsave = printlevel;
printlevel = printlevel + 1;
int ppl = printlevel - voice + 2;
int i;
def save = basering;
int n = nvars(save);
if (isCommutative() == 0) { ERROR("basering must be commutative"); }
if (char(save) <> 0) { ERROR("characteristic of basering has to be 0"); }
list L = ringlist(save);
int qr;
if (L[4] <> 0) // qring
{
print("// basering is qring:");
print("// discarding the quotient and proceeding...");
L[4] = ideal(0);
qr = 1;
def save2 = ring(L); setring save2;
poly f = imap(save,f);
}
if (inorann == 0) // bfct using initial ideal
{
// list L = ringlist(basering);
intvec iv = valvars(f)[1]; // heuristacally better ordering for initialMalgrange
list varL = L[2];
varL = varL[iv];
L[2] = varL;
if (u0 <> 0)
{
u0 = u0[iv];
}
def newr = ring(L);
kill varL,iv,L;
setring newr;
poly f = imap(save,f);
dbprint(ppl,"// starting computation of the initial ideal of the Malgrange ideal...");
def D = initialMalgrange(f,whichengine,methodord,u0);
dbprint(ppl,"// ...done");
setring D;
ideal J = inF;
kill inF;
poly s = var(1)*var(n+2);
}
else // bfct using Ann(f^s)
{
dbprint(ppl,"// starting computation of the s-parametric annihilator...");
def D = SannfsBFCT(f,addPD,whichengine,stdsum);
dbprint(ppl,"// ...done");
setring D;
ideal J = LD;
kill LD;
poly s = var(1);
}
vector b;
dbprint(ppl,"// starting to intersect with subalgebra...");
// try it modular
if (methodpIntersect <> 0) // pIntersectSyz
{
if (pIntersectchar == 0) // pIntersectSyz::modular
{
list L = ringlist(D);
int lb = 10000; int ub = 536870909; // bounds for random primes
list usedprimes;
int sJ = size(J);
int sLJq;
ideal LJ;
for (i=1; i<=sJ; i++)
{
LJ[i] = leadcoef(cleardenom(J[i]));
}
int short_save = short; // workaround for map Q(a_i) -> Z/q(a_i)
short = 0;
string strLJq = "ideal LJq = " + string(LJ) + ";";
int nD = nvars(D);
string L5 = "matrix @C[nD][nD]; @C = " + string(L[5]) + ";";
string L6 = "matrix @D[nD][nD]; @D = " + string(L[6]) + ";";
L = L[1..4];
i = 1;
while (b == 0)
{
dbprint(ppl,"// number of run in the loop: "+string(i));
int q = prime(random(lb,ub));
if (findFirst(usedprimes,q)==0) // if q has not been used already
{
usedprimes = usedprimes,q;
dbprint(ppl,"// using prime: "+string(q));
if (typeof(L[1]) == "int") { L[1] = q; }
else { L[1][1] = q; } // parameters
def @Rq = ring(L); setring @Rq;
execute(L5); execute(L6);
def Rq = nc_algebra(@C,@D); // def Rq = nc_algebra(1,@D);
setring Rq; kill @Rq;
execute(strLJq);
sLJq = size(LJq);
setring D; kill Rq;
if (sLJq <> sJ ) // detect unlucky prime
{
dbprint(ppl,"// " +string(q) + " is unlucky");
b = 0;
}
else
{
b = pIntersectSyz(s,J,q,whichengine,modengine);
}
}
i++;
}
short = short_save;
}
else // pIntersectSyz::non-modular
{
b = pIntersectSyz(s,J,0,whichengine);
}
}
else // pIntersect: linReduce
{
b = pIntersect(s,J);
}
dbprint(ppl,"// ...done"); // with the intersection
poly pb = vec2poly(b);
if (inorann == 0)
{
pb = subst(pb,var(1),-var(1)-1);
}
else // bfctAnn
{
if (addPD)
{
pb = pb*(var(1)+1);
}
}
list l = bFactor(pb);
setring save;
list l = imap(D,l);
printlevel = printlevelsave;
return(l);
}
proc bfct (poly f, list #)
"USAGE: bfct(f [,s,t,v]); f a poly, s,t optional ints, v an optional intvec
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s)
@* for the hypersurface defined by f.
ASSUME: The basering is commutative and of characteristic 0.
BACKGROUND: In this proc, the initial Malgrange ideal is computed according to
@* the algorithm by Masayuki Noro and then a system of linear equations is
@* solved by linear reductions.
NOTE: In the output list, the ideal contains all the roots
@* and the intvec their multiplicities.
@* If s<>0, @code{std} is used for GB computations,
@* otherwise, and by default, @code{slimgb} is used.
@* If t<>0, a matrix ordering is used for Groebner basis computations,
@* otherwise, and by default, a block ordering is used.
@* If v is a positive weight vector, v is used for homogenization
@* computations, otherwise and by default, no weights are used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfct; shows examples
"
{
int ppl = printlevel - voice +2;
int i;
int n = nvars(basering);
// in # we have two switches:
// one for the engine used for Groebner basis computations,
// one for M() ordering or its realization
// in # can also be the optional weight vector
int whichengine = 0; // default
int methodord = 0; // default
intvec u0 = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
whichengine = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
methodord = int(#[2]);
}
if (size(#)>2)
{
if (typeof(#[3])=="intvec" && size(#[3])==n && allPositive(#[3])==1)
{
u0 = #[3];
}
}
}
}
list b = bfctengine(f,0,whichengine,0,0,methodord,0,0,0,u0);
return(b);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
bfct(f);
intvec v = 3,2;
bfct(f,1,0,v);
}
proc bfctSyz (poly f, list #)
"USAGE: bfctSyz(f [,r,s,t,u,v]); f poly, r,s,t,u optional ints, v opt. intvec
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s)
@* for the hypersurface defined by f
ASSUME: The basering is commutative and of characteristic 0.
BACKGROUND: In this proc, the initial Malgrange ideal is computed according to
@* the algorithm by Masayuki Noro and then a system of linear equations is
@* solved by computing syzygies.
NOTE: In the output list, the ideal contains all the roots and the intvec
@* their multiplicities.
@* If r<>0, @code{std} is used for GB computations in characteristic 0,
@* otherwise, and by default, @code{slimgb} is used.
@* If s<>0, a matrix ordering is used for GB computations, otherwise,
@* and by default, a block ordering is used.
@* If t<>0, the computation of the intersection is solely performed over
@* charasteristic 0, otherwise and by default, a modular method is used.
@* If u<>0 and by default, @code{std} is used for GB computations in
@* characteristic >0, otherwise, @code{slimgb} is used.
@* If v is a positive weight vector, v is used for homogenization
@* computations, otherwise and by default, no weights are used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctSyz; shows examples
"
{
int ppl = printlevel - voice +2;
int i;
// in # we have four switches:
// one for the engine used for Groebner basis computations in char 0,
// one for M() ordering or its realization
// one for a modular method when computing the intersection
// and one for the engine used for Groebner basis computations in char >0
// in # can also be the optional weight vector
int n = nvars(basering);
int whichengine = 0; // default
int methodord = 0; // default
int pIntersectchar = 0; // default
int modengine = 1; // default
intvec u0 = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
whichengine = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
methodord = int(#[2]);
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
pIntersectchar = int(#[3]);
}
if (size(#)>3)
{
if (typeof(#[4])=="int" || typeof(#[4])=="number")
{
modengine = int(#[4]);
}
if (size(#)>4)
{
if (typeof(#[5])=="intvec" && size(#[5])==n && allPositive(#[5])==1)
{
u0 = #[5];
}
}
}
}
}
}
list b = bfctengine(f,0,whichengine,0,0,methodord,1,pIntersectchar,modengine,u0);
return(b);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
bfctSyz(f);
intvec v = 3,2;
bfctSyz(f,0,1,1,0,v);
}
proc bfctIdeal (ideal I, intvec w, list #)
"USAGE: bfctIdeal(I,w[,s,t]); I an ideal, w an intvec, s,t optional ints
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the global b-function of I w.r.t. the weight (-w,w).
ASSUME: The basering is the n-th Weyl algebra in characteristic 0 and for all
@* 1<=i<=n the identity var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the
@* sequence of variables is given by x(1),...,x(n),D(1),...,D(n),
@* where D(i) is the differential operator belonging to x(i).
@* Further we assume that I is holonomic.
BACKGROUND: In this proc, the initial ideal of I is computed according to the
@* algorithm by Masayuki Noro and then a system of linear equations is
@* solved by linear reductions.
NOTE: In the output list, say L,
@* - L[1] of type ideal contains all the rational roots of a b-function,
@* - L[2] of type intvec contains the multiplicities of above roots,
@* - optional L[3] of type string is the part of b-function without rational roots.
@* Note, that a b-function of degree 0 is encoded via L[1][1]=0, L[2]=0 and
@* L[3] is 1 (for nonzero constant) or 0 (for zero b-function).
@* If s<>0, @code{std} is used for GB computations in characteristic 0,
@* otherwise, and by default, @code{slimgb} is used.
@* If t<>0, a matrix ordering is used for GB computations, otherwise,
@* and by default, a block ordering is used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctIdeal; shows examples
"
{
int ppl = printlevel - voice +2;
int i;
def save = basering;
int n = nvars(save) div 2;
int whichengine = 0; // default
int methodord = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
whichengine = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
methodord = int(#[2]);
}
}
}
if (isWeyl()==0) { ERROR("basering is not a Weyl algebra"); }
for (i=1; i<=n; i++)
{
if (bracket(var(i+n),var(i))<>1)
{
ERROR(string(var(i+n))+" is not a differential operator for " +string(var(i)));
}
}
int isH = isHolonomic(I);
if (isH<>1)
{
print("WARNING: given ideal is not holonomic");
print("... setting bound for degree of b-function to 10 and proceeding");
isH = 10;
}
else { isH = 0; } // no degree bound for pIntersect
ideal J = initialIdealW(I,-w,w,whichengine,methodord);
poly s;
for (i=1; i<=n; i++)
{
s = s + w[i]*var(i)*var(n+i);
}
vector b = pIntersect(s,J,isH);
list RL = ringlist(save); RL = RL[1..4];
RL[2] = list(safeVarName("s"));
RL[3] = list(list("dp",intvec(1)),list("C",intvec(0)));
def @S = ring(RL); setring @S;
vector b = imap(save,b);
poly bs = vec2poly(b);
list l = bFactor(bs);
setring save;
list l = imap(@S,l);
return(l);
}
example
{
"EXAMPLE:"; echo = 2;
ring @D = 0,(x,y,Dx,Dy),dp;
def D = Weyl();
setring D;
ideal I = 3*x^2*Dy+2*y*Dx,2*x*Dx+3*y*Dy+6; I = std(I);
intvec w1 = 0,1;
intvec w2 = 2,3;
bfctIdeal(I,w1);
bfctIdeal(I,w2,0,1);
ideal J = I[size(I)]; // J is not holonomic by construction
bfctIdeal(J,w1); // b-function of D/J w.r.t. w1 is non-zero
bfctIdeal(J,w2); // b-function of D/J w.r.t. w2 is zero
}
proc bfctOneGB (poly f,list #)
"USAGE: bfctOneGB(f [,s,t]); f a poly, s,t optional ints
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the
@* hypersurface defined by f, using only one GB computation
ASSUME: The basering is commutative and of characteristic 0.
BACKGROUND: In this proc, the initial Malgrange ideal is computed based on the
@* algorithm by Masayuki Noro and combined with an elimination ordering.
NOTE: In the output list, the ideal contains all the roots and the intvec
@* their multiplicities.
@* If s<>0, @code{std} is used for the GB computation, otherwise,
@* and by default, @code{slimgb} is used.
@* If t<>0, a matrix ordering is used for GB computations,
@* otherwise, and by default, a block ordering is used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctOneGB; shows examples
"
{
int ppl = printlevel - voice +2;
if (!isCommutative()) { ERROR("Basering must be commutative"); }
def save = basering;
int n = nvars(save);
if (char(save) <> 0)
{
ERROR("characteristic of basering has to be 0");
}
list L = ringlist(save);
int qr;
if (L[4] <> 0) // qring?
{
print("// basering is qring:");
print("// discarding the quotient and proceeding...");
L[4] = ideal(0);
qr = 1;
def save2 = ring(L);
setring save2;
poly f = imap(save,f);
}
int N = 2*n+4;
int i;
int whichengine = 0; // default
int methodord = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
whichengine = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
methodord = int(#[2]);
}
}
}
// creating the homogenized extended Weyl algebra
// create names for vars
list Lvar;
Lvar[1] = safeVarName("t");
Lvar[2] = safeVarName("s");
Lvar[n+3] = safeVarName("D"+Lvar[1]);
Lvar[N] = safeVarName("h");
for (i=1; i<=n; i++)
{
Lvar[i+2] = string(var(i));
Lvar[i+n+3] = safeVarName("D" + string(var(i)));
}
// create ordering
intvec uv = -1; uv[n+3] = 1; uv[N] = 0;
intvec @a = 1:N; @a[2] = 2;
intvec @a2 = @a; @a2[2] = 0; @a2[2*n+4] = 0;
list Lord;
Lord[1] = list("a",@a); Lord[2] = list("a",@a2);
if (methodord == 0) // default: block ordering
{
//ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),a(uv),dp(N-1),lp(1));
Lord[3] = list("a",uv);
Lord[4] = list("dp",intvec(1:(N-1)));
Lord[5] = list("lp",intvec(1));
Lord[6] = list("C",intvec(0));
}
else // M() ordering
{
intmat @Ord[N][N];
@Ord[1,1..N] = uv; @Ord[2,1..N] = 1:(N-1);
for (i=1; i<=N-2; i++) { @Ord[2+i,N - i] = -1; }
dbprint(ppl,"// weights for ordering: "+string(transpose(@a)));
dbprint(ppl,"// the ordering matrix:",@Ord);
//ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),M(@Ord));
Lord[3] = list("M",intvec(@Ord));
Lord[4] = list("C",intvec(0));
}
// create commutative ring
list L@Dh = ringlist(basering);
L@Dh = L@Dh[1..4]; // if basering is commutative nc_algebra
L@Dh[2] = Lvar; L@Dh[3] = Lord;
def @Dh = ring(L@Dh); setring @Dh;
dbprint(ppl,"// the ring @Dh:",@Dh);
// create non-commutative relations
matrix @relD[N][N];
@relD[1,2] = var(1)*var(N)^2; // s*t = t*s + t*h^2
@relD[2,n+3] = var(n+3)*var(N)^2; // Dt*s = s*Dt+Dt*h^2
@relD[1,n+3] = var(N)^2;
for (i=1; i<=n; i++)
{
@relD[i+2,n+3+i] = var(N)^2;
}
dbprint(ppl,"// nc relations:",@relD);
def Dh = nc_algebra(1,@relD);
setring Dh; kill @Dh;
dbprint(ppl,"// computing in ring",Dh);
poly f = imap(save,f);
f = homog(f,h);
// create the Malgrange ideal
ideal I = var(1) - f, var(1)*var(n+3) - var(2);
for (i=1; i<=n; i++)
{
I[3+i] = var(i+n+3)+diff(f,var(i+2))*var(n+3);
}
dbprint(ppl-1, "// the Malgrange ideal: " +string(I));
// the hard part: Groebner basis computation
dbprint(ppl, "// starting Groebner basis computation with engine: "+string(whichengine));
I = engine(I, whichengine);
dbprint(ppl, "// finished Groebner basis computation");
I = subst(I,h,1); // dehomogenization
dbprint(ppl-1,string(I));
// 3.3 the initial form
I = inForm(I,uv);
dbprint(ppl, "// the initial ideal:", string(matrix(I)));
// read off the solution
intvec tonselect = 1;
for (i=3; i<=2*n+4; i++) { tonselect = tonselect,i; }
I = nselect(I,tonselect);
dbprint(ppl, "// generators containing only s:", string(matrix(I)));
I = engine(I, whichengine); // is now a principal ideal;
if (qr == 1) { setring save2; }
else { setring save; }
ideal J; J[2] = var(1);
map @m = Dh,J;
ideal I = @m(I);
poly p = I[1];
p = subst(p,var(1),-var(1)-1);
list l = bFactor(p);
if (qr == 1)
{
setring save;
list l = imap(save2,l);
}
return(l);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
bfctOneGB(f);
bfctOneGB(f,1,1);
}
proc bfctAnn (poly f, list #)
"USAGE: bfctAnn(f [,a,b,c]); f a poly, a, b, c optional ints
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the
@* hypersurface defined by f.
ASSUME: The basering is commutative and of characteristic 0.
BACKGROUND: In this proc, Ann(f^s) is computed and then a system of linear
@* equations is solved by linear reductions.
NOTE: In the output list, the ideal contains all the roots and the intvec
@* their multiplicities.
@* If a<>0, only f is appended to Ann(f^s), otherwise, and by default,
@* f and all its partial derivatives are appended.
@* If b<>0, @code{std} is used for GB computations, otherwise, and by
@* default, @code{slimgb} is used.
@* If c<>0, @code{std} is used for Groebner basis computations of ideals
@* <I+J> when I is already a Groebner basis of <I>.
@* Otherwise, and by default the engine determined by the switch b is used.
@* Note that in the case c<>0, the choice for b will be overwritten only
@* for the types of ideals mentioned above.
@* This means that if b<>0, specifying c has no effect.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctAnn; shows examples
"
{
def save = basering;
int ppl = printlevel - voice + 2;
int addPD = 1; // default
int whichengine = 0; // default
int stdsum = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
addPD = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
whichengine = int(#[2]);
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
stdsum = int(#[3]);
}
}
}
}
list b = bfctengine(f,1,whichengine,addPD,stdsum,0,0,0,0,0);
return(b);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x^2+y^3+x*y^2;
bfctAnn(f);
def R = reiffen(4,5); setring R;
RC; // the Reiffen curve in 4,5
bfctAnn(RC,0,1);
}
/*
static proc hardexamples ()
{
// some hard examples
ring r1 = 0,(x,y,z,w),dp;
// ab34
poly ab34 = (z3+w4)*(3z2x+4w3y);
bfct(ab34);
// ha3
poly ha3 = xyzw*(x+y)*(x+z)*(x+w)*(y+z+w);
bfct(ha3);
// ha4
poly ha4 = xyzw*(x+y)*(x+z)*(x+w)*(y+z)*(y+w);
bfct(ha4);
// chal4: reiffen(4,5)*reiffen(5,4)
ring r2 = 0,(x,y),dp;
poly chal4 = (x4+xy4+y5)*(x5+x4y+y4);
bfct(chal4);
// (xy+z)*reiffen(4,5)
ring r3 = 0,(x,y,z),dp;
poly xyzreiffen45 = (xy+z)*(y4+yz4+z5);
bfct(xyzreiffen45);
// sparse ideal as suggested by Alex; gives 1 as std
ideal I1 = 28191*y^2+14628*x*Dy, 24865*x^2+24072*x*Dx+17756*Dy^2;
std(I1);
}
*/
|