/usr/share/singular/LIB/bimodules.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | /////////////////////////////////////////////////////////////////////////////
version="version bimodules.lib 4.0.0.0 Jun_2013 "; // $Id: 2e5433493a3f629deb8c418171e37dcc76027d6a $
category="Noncommutative";
info="
LIBRARY: bimodules.lib Tools for handling bimodules
AUTHORS: Ann Christina Foldenauer, Christina.Foldenauer@rwth-aachen.de
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
OVERVIEW:
@* The main purpose of this library is the handling of bimodules
@* which will help e.g. to determine weak normal forms of representation matrices
@* and total divisors within non-commutative, non-simple G-algebras.
@* We will use modules homomorphisms between a G-algebra and its enveloping algebra
@* in order to work left Groebner basis theory on bimodules.
@* Assume we have defined a (non-commutative) G-algebra A over the field K, and an (A,A)-bimodule M.
@* Instead of working with M over A, we define the enveloping algebra A^{env} = A otimes_K A^{opp}
@* (this can be done with command envelope(A)) and embed M into A^{env} via imap().
@* Thus we obtain the left A^{env}-module M otimes 1 in A^{env}.
@* This has a lot of advantages, because left module theory has much more commands
@* that are already implemented in SINGULAR:PLURAL. Two important procedures that we can use are std()
@* which computes the left Groebner basis, and NF() which computes the left normal form.
@* With the help of this method we are also able to determine the set of bisyzygies of a bimodule.
@*
@* A built-in command @code{twostd} in PLURAL computes the two-sided Groebner basis of an ideal
@* by using the right completion algorithm of [2]. @code{bistd} from this library uses very different
@* approach, which is often superior to the right completion.
REFERENCES:
@* The procedure bistd() is the implementation of an algorithm M. del Socorro Garcia Roman presented in [1](page 66-78).
@* [1] Maria del Socorro Garcia Roman, Effective methods in Algebras with PBW bases:
@* G-algebras and Yang-Baxter Algebras, Ph.D. thesis, Universidad de La Laguna, 2005.
@* [2] Viktor Levandovskyy, Non-commutative Computer Algebra for polynomial Algebras:
@* Groebner Bases, Applications and Implementations, Ph.D. thesis, Kaiserlautern, 2005.
@* [3] N. Jacobson, The theory of rings, AMS, 1943.
@* [4] P. M. Cohn, Free Rings and their Relations, Academic Press Inc. (London) Ltd., 1971.
PROCEDURES:
bistd(M); computes the two-sided Groebner bases of an ideal or module
bitrinity(M); computes the trinity of M: Groebner basis, lift matrix and bisyzygies
liftenvelope(M,g); computes the coefficients of an element g concerning the generators of a bimodule M in the enveloping algebra
CompDecomp(p); returns an ideal which contains the component decomposition of a polynomial p in the enveloping algebra regarding the right side of the tensors
isPureTensor(p); checks whether an element p in A^{env} is a pure tensor
isTwoSidedGB(I); checks whether an ideal I is two-sided Groebner basis
SEE ALSO: ncalg_lib; nctools_lib
KEYWORDS: bimodules; bisyzygies; lift; enveloping algebra; pure tensor; total divisors; two-sided; two-sided Groebner basis; tensor
";
LIB "ncalg.lib";
LIB "nctools.lib";
proc testbimoduleslib()
{
/* tests all procs for consistency */
"MAIN PROCEDURES:";
example bistd;
example bitrinity;
example liftenvelope;
example isPureTensor;
example isTwoSidedGB;
"SECONDARY BIMODULES PROCEDURES:";
example enveltrinity;
example CompDecomp;
}
proc bistdIdeal (ideal M)
"does bistd directly for ideals
"
{
intvec optionsave = option(get);
option(redSB);
option(redTail);
def save = basering ;
def saveenv = envelope(save);
setring saveenv;
ideal M = imap(save, M);
int i; int n = nvars(save);
ideal K;
for (i=1; i <= n; i++)
{
K[i] = var(i)-var(2*n-i+1);
}
M = M+K;
M = std(M);
option(set,optionsave);
setring save;
list L = ringlist(save);
if (size(ringlist(save)) > 4)
{
L = delete(L,6);
L = delete(L,5);}
def Scom = ring(L);
setring Scom;
ideal P;
for (i= 1; i <= n; i++)
{
P[i] = var(i);
P[2*n-i+1] = var(i);
}
map Pi = saveenv, P;
ideal N = Pi(M) ;
setring save;
ideal MM = fetch(Scom,N);
return(MM);
}
example
{ "EXAMPLE:"; echo = 2;
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s); // 1st shift algebra
setring W;
ideal I1 = s^3-x^2*s;
print(matrix(bistd(I1))); // compare with twostd:
print(matrix(twostd(I1)));
ideal I2 = I1, x*s;
print(matrix(bistd(I2))); // compare with twostd:
print(matrix(twostd(I2)));
}
proc bistd (module M)
"USAGE: bistd(M); M is (two-sided) ideal/module
RETURN: ideal or module (same type as the argument)
PURPOSE: Computes the two-sided Groebner basis of an ideal/module with the help the enveloping algebra of the basering, alternative to twostd() for ideals.
EXAMPLE: example bistd; shows examples
"
{
// VL: added simplify
// commented out: Additionally you should use simplify(N,2+4+8) on the output N = bistd(M), where M denotes to the ideal/module in the argument.
// NOTE: option(redSB), option(redTail) are used by the procedure.
// intvec optionsave = option(get);
// option(redSB);
// option(redTail);
int ROW = nrows(M);
def save = basering ;
def saveenv = envelope(save);
setring saveenv;
module M = imap(save, M);
int i; int n = nvars(save);
module B;
for (i=1; i <= n; i++)
{
B[i] = var(i) - var(2*n-i+1);
}
module K ; int j;int m = 1;
for (i=1; i <= n; i++)
{
for(j=1;j<=ROW;j++)
{
K[m]= B[i][1,1]*gen(j);m++;
}
}
M = M+K;
M = std(M);
// option(set,optionsave);
setring save;
list L = ringlist(save);
if (size(ringlist(save)) > 4)
{L = delete(L,6);L = delete(L,5);}
def Scom = ring(L);
setring Scom;
ideal P;
for (i= 1; i <= n; i++)
{
P[i] = var(i) ;
P[2*n-i+1] = var(i);
}
map Pi = saveenv, P;
module N = Pi(M) ;
setring save;
module MM = fetch(Scom,N);
if (nrows(MM)==1)
{
//i.e. MM is an ideal indeed
ideal @M = ideal(MM);
kill MM;
ideal MM = @M;
}
MM = simplify(MM,2+4+8);
return(MM);
}
example
{ "EXAMPLE:"; echo = 2;
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s); // 1st shift algebra
setring W;
matrix m[3][3]=[s^2,s+1,0],[s+1,0,s^3-x^2*s],[2*s+1, s^3+s^2, s^2];
print(m);
module L = m; module M2 = bistd(L);
print(M2);
}
proc enveltrinityIdeal(ideal f)
" enveltrinity for an ideal directly"
{
// AUXILIARY PROCEDURES: Uses Zersubcols(matrix N, int l).
intvec optionsave = option(get);
def save = basering ;
option(redSB);
int i; int n = nvars(save);
def saveenv = envelope(save);
setring saveenv;
def R = makeModElimRing(saveenv); setring R;
ideal K;
for (i=1; i <= n; i++)
{ K[i] = var(i)-var(2*n-i+1);}
K = std(K);
ideal f = imap(save, f);
// now we compute the trinity (GB,Liftmatrix,Syzygy)
// can do it with f but F=NF(f,kr), so the ideals are the same in R env
ideal I = f, K; // ideal I = F, K;
int l = ncols(I);
int j = ncols(f);
matrix M[j+1][l];
for (i = 1; i<= l;i++)
{
M[1,i] = I[i];
}
for (i=1; i <= j;i++)
{
M[i+1,i] = 1;
}
matrix N = std(M);
option(set,optionsave);
int m = ncols(N);
intvec sypos;
for (i=1; i <= m; i++)
{
if (N[1,i] == 0)
{
sypos = sypos,i;
}
}
intvec Nrows = 2..(j+1);
matrix BS = submat(N,Nrows,sypos); // e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
module BSy = BS;
setring saveenv;
ideal K = imap(R,K);
module BS = imap(R,BSy);
matrix N = imap(R,N);
kill R;
export K; export BS; export N;
return(saveenv);
}
static proc Zersubcols(matrix N, int l)
{
if (nrows(N) <= l)
{
string f = "Inputinteger ist zu gross. Muss kleiner sein als die Anzahl der Zeilen von der Inputmatrix."; return(f);
}
else
{
matrix O[l][1]; int m = ncols(N);
matrix H = submat(N,1..l,1..m);
int i;
intvec s;
intvec c;
for(i=1; i<= m;i++)
{
if(H[i] != O[1]) {c = c,i;}
else {s = s,i;}
}
list L = s,c;
return(L);
}
}
proc enveltrinity(module M)
"USAGE: enveltrinity(M); M is (two-sided) ideal/module
RETURN: ring, the enveloping algebra of the basering with objects K, N, BS in it.
PURPOSE: compute two-sided Groebner basis, module of bisyzygies and the bitransformation matrix of M.
THEORY: Assume R is a G-algebra generated by x_1, \dots x_k. Let psi_s be the epimorphism of left R (X) R^{opp} modules:
@* psi_s (s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , ... , psi(s_s (X) t_s)) in R^s
@* additionally we define for a given bimodule M = < f_1, ... , f_r > the matrix M' := [F, I_r], [K, 0]
@* where I_r refers to the identity matrix in Mat(r,R), K is a matrix which columns are the generators of the kernel of psi_s.
@* These have the form (x_i-X_i)e_j for j in {1,...,s}, i in {1,...,k}.
@* The matrix F = (f_1 ... f_r), where the f_i's are the generators of M and 0 is the matrix with only entries that are zero.
@* Enveltrinity() calculates the kernel K of psi_s and left normal form N of the matrix M' which also yields the bisyzygies of M
@* and a coefficient matrix as submatrix of N which we need in the procedures bitrinity() and liftenevelope().
NOTE: In the output,
@* ideal/module K is the kernel of psi_s above
@* matrix N is the left Groebner basis of the matrix M'
@* module BS corresponds to the set of bisyzygies of M.
@* To get K,N or BS, use @code{def G = enveltrinity(M); setring G; K; N; BS;}.
EXAMPLE: example enveltrinity; shows examples
"
{
def save = basering ;
intvec optionsave = option(get);
option(redSB);
int ROW = nrows(M);
int i; int n = nvars(save);
def saveenv = envelope(save);
setring saveenv;
def R = makeModElimRing(saveenv); setring R;
module B;
for (i=1; i <= n; i++)
{ B[i] = var(i) - var(2*n-i+1);}
module K ; int t;int g = 1;
for (i=1; i <= n; i++)
{
for(t=1;t<=ROW;t++)
{
K[g]= B[i][1,1]*gen(t);g++;
}
}
K = std(K);
module M = imap(save,M);
module I = M,K;
int l = ncols(I);
int j = ncols(M);
matrix NN[j+ROW][l];
for (t=1; t <= ROW; t++)
{
for (i = 1; i<= l;i++)
{ NN[t,i] = I[t,i];}
}
for (i=ROW+1; i <= j+ROW;i++)
{ NN[i,i-ROW] = 1;}
// now we compute the trinity (GB,Liftmatrix,Syzygy)
// can do it with f but F=NF(f,kr), so the ideals are the same in R env
matrix N = std(NN);
option(set,optionsave);
intvec sypos = Zersubcols(N,ROW)[1];
sypos = sypos[2..nrows(sypos)];
intvec Nrows = (ROW+1)..(j+ROW);
matrix BS = submat(N,Nrows,sypos); // e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
module BSy = BS;
setring saveenv;
matrix N = imap(R,N); module BS = imap(R,BSy);
module K = imap(R,K);
if (nrows(K)==1)
{
// i.e. K is an ideal
ideal @K = ideal(K);
kill K;
ideal K = @K;
}
kill R;
export K;
export BS;
export N;
return(saveenv);
}
example
{"EXAMPLE"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R;
poly f = x*s + s^2;
ideal I = f;
def G = enveltrinity(I);
setring G;
print(matrix(K)); // kernel of psi_s
print(BS); // module of bisyzygies
print(N); // bitransformation matrix
}
proc bitrinityIdeal(ideal f)
"direct appl of bitrinity to ideal"
{
intvec optionsave = option(get);
option(redSB);
option(redTail);
int j = ncols(f);
def A = enveltrinity(f);
setring A; // A = envelope(basering)
int i;
def R = makeModElimRing(A); setring R;
ideal K = imap(A,K); K = std(K);
option(set,optionsave);
matrix N = imap(A,N);
int m = ncols(N);
//decomposition of N: Liftmatrix, Bisyzygymatrix:
intvec cfpos;
for (i=1; i <= m; i++)
{ if (N[1,i] != 0)
{cfpos = cfpos,i;}
}
cfpos = cfpos[2..nrows(cfpos)];
matrix C = submat(N,1..(j+1),cfpos);
module Coef;
for(i=1;i<=ncols(C);i++)
{
poly p = NF(C[1,i],K);
if( (p != 0) && (p == C[1,i]))
{ Coef = Coef,C[i];}
}
matrix Co = Coef;
matrix Coe = submat(Co,1..nrows(Co),2..ncols(Co));
module CC = Coe; //e.g. i-th column is (a_i1,...,a_ij) (see top)
setring A;
matrix Coeff = imap(R,CC); matrix Bisyz = BS;// e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
kill R;
list L = Coeff,Bisyz;
// output is a Coefficient-Matrix Co and a Bisyzygy-Matriy BS such that (g1,...,gk) = (f1,...,fj)*Submat(Coeff,2..nrows(Coeff),1..ncols(Coeff)) and (0,...,0) = (f1,...,fj)*BiSyz
export L;
return(A);
}
proc bitrinity(module M)
"USAGE: bitrinity(M); M is (two-sided) ideal/module
RETURN: ring, the enveloping algebra of the basering, with objects in it.
additionally it exports a list L = Coeff, Bisyz.
THEORY:
Let psi_s be the epimorphism of left R (X) R^{opp} modules:
@* psi_s(s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , \dots , psi(s_s (X) t_s)) in R^s.
@* Then psi_s(A) := (psi_s(a_{ij})) for every matrix A in Mat(n x m, R)$.
@* For a two-sided ideal I = < f_1, ... , f_j> with Groebner basis G = {g_1, ... , g_k} in R, Coeff is the Coefficient-Matrix and
BiSyz a bisyzygy matrix.
@* Let C be the submatrix of Coeff, where C is Coeff without the first row. Then
(g_1,...,g_k) = psi_s(C^T * (f_1 ... f_j)^T) and (0,...,0) = psi_s(BiSyz^T * (f_1 ... f_j)^T).
@* The first row of Coeff (G_1 ... G_n)$ corresponds to the image of the Groebner basis of I:
psi_s((G_1 ... G_n)) = G = {g_1 ... g_k }.
@* For a (R,R)-bimodule M with Groebner basis G = {g_1, ... , g_k} in R^r, Coeff is the coefficient matrix and
BiSyz a bisyzygy matrix.
@* Let C be the submatrix of Coeff, where C is Coeff without the first r rows. Then
(g_1 ... g_k) = psi_s(C^T * (f_1 ... f_j)^T) and (0 ... 0) = psi_s(BiSyz^T * (f_1 ... f_j)^T).
@* The first r rows of Coeff = (G_1 ... G_n) (Here G_i denotes to the i-th column of the first r rows) corresponds to the image of the
Groebner basis of M: psi_s((G_1 ... G_n)) = G = {g_1 ... g_k}.
PURPOSE: This procedure returns a coefficient matrix in the enveloping algebra of the basering R, that gives implicitly the two-sided Groebner basis of a (R,R)-bimodule M
and the coefficients that produce the Groebner basis with the help of the originally used generators of M. Additionally it calculates the bisyzygies of M as left-module of the enveloping algebra of R.
AUXILIARY PROCEDURES: Uses the procedure enveltrinity().
NOTE: To get list L = Coeff, BiSyz, we set: def G = bitrinity(); setring G; L; or $L[1]; L[2];.
EXAMPLE: example bitrinity; shows examples
"
{
intvec optionsave = option(get);
option(redSB);
option(redTail);
int ROW = nrows(M); int j = ncols(M);
def A = enveltrinity(M);
setring A; // A = envelope(basering)
int i;
def R = makeModElimRing(A); setring R;
module K = imap(A,K); K = std(K);
option(set,optionsave);
matrix N = imap(A,N);
int m = ncols(N);
//decomposition of N: Liftmatrix, Bisyzygymatrix:
intvec cfpos = Zersubcols(N,ROW)[2];
cfpos = cfpos[2..nrows(cfpos)];
matrix C1 = submat(N,1..nrows(N),cfpos);
matrix C2 = submat(N,1..ROW,cfpos);
module Coef; matrix O[ROW][1];
module p;
for(i=1;i<=ncols(C2);i++)
{
p = NF(C2[i],K);
if( (p[1] != O[1]) && (p[1] == C2[i]))
{ Coef = Coef,C1[i];}
}
matrix Co = Coef;
matrix Coe = submat(Co,1..nrows(Co),2..ncols(Co));
module CC = Coe;
setring A;
matrix Coeff = imap(R,CC); matrix Bisyz = BS;
kill R;
list L = Coeff,Bisyz;
export L;
return(A);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R; // 1st shift algebra
poly f = x*s + s^2; // only one generator
ideal I = f; // note, two sided Groebner basis of I is xs, s^2
def G = bitrinity(I);
setring G;
print(L[1]); // Coeff
//the first row shows the Groebnerbasis of I consists of
// psi_s(SX) = xs , phi(S^2) = s^2:
// remember phi(a (X) b - c (X) d) = psi_s(a (X) b) - phi(c (X) d) := ab - cd in R.
// psi_s((-s+S+1)*(x*s + s^2)) = psi_s(-xs2-s3+xsS+xs+s2S)
// = -xs^2-s^3+xs^2+xs+s^3 = xs
// psi_s((s-S)*(x*s + s^2)) = psi_s(xs2+s3-xsS-s2S+s2) = s^2
print(L[2]); //Bisyzygies
// e.g. psi_s((x2-2sS+s-X2+2S2+2X+S-1)(x*s + s^2))
// = psi_s(x3s+x2s2-2xs2S+xs2-2s3S+s3-xsX2+2xsS2+2xsX+xsS-xs-s2X2+2s2S2+2s2X-s2S)
// = x^3s+x^2s^2-2xs^3+xs^2-2s^4+s^3-xsx^2+2xs^3+2xsx+xs^2-xs-s^2x^2+2s^4+2s^2x-s^3
// = 0 in R
}
proc liftenvelope(module I,poly g)
"USAGE: liftenvelope(M,g); M ideal/module, g poly
RETURN: ring, the enveloping algebra of the basering R.
Given a two-sided ideal M in R and a polynomial g in R this procedure returns the enveloping algebra of R.
Additionally it exports a list l = C, B; where B is the left Groebner basis of the left-syzygies of M \otimes 1 and C is a vector of coefficients in the enveloping algebra
of R such that psi_s(C^T *(f_1 \dots f_n)) = g.
@* psi_s is an epimorphism of left R (X) R^{opp} modules:
@* psi_s (s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , \dots , psi(s_s (X) t_s)) in R^s.
@* Then psi_s(A) := (psi_s(a_{ij})) for every matrix A in Mat(n x m, R)$.
ASSUME: The second component has to be an element of the first component.
PURPOSE: This procedure is used for computing total divisors. Let {f_1, ..., f_n} be the generators of the first component and let the second component be called g. Then
the returned list l = C, B = (b_1, ..., b_n); defines an affine set A = C + sum_i a_i b_i with (a_1,..,a_n) in the enveloping algebra of the basering R such that
psi_s(a^T * (f_1 ... f_n)) = g for all a in A. For certain rings R, we csn find pure tensors within this set A,
and if we do, liftenvelope() helps us to decide whether f is a total divisor of g.
NOTE: To get list l = C, B. we set: def G = liftenvelope(); setring G; l; or l[1]; l[2];.
EXAMPLE: example liftenvelope; shows examples
"
{
def save = basering;
int m = ncols(I);
intvec optionsave = option(get);
option(redSB);
option(redTail);
def A = enveltrinity(I);
setring A; // A = envelope(basering)
int i;
def R = makeModElimRing(A); setring R;
module N = imap(A,N); N = std(N);
//intvec Nrows = 2..(j+1);
module g = imap(save,g);
matrix G[nrows(N)][1];
for (i=2;i<=m;i++)
{
G[1,1] = g;
G[i,1]=0;
}
module NFG = (-1)*NF(G,N);
module C = submat(NFG,2..nrows(N),1);
setring A;
module C = imap(R,C);
kill R;
module B = std(BS);
option(set,optionsave);
list l = C,B; // transpose(C)*(f1,...,fn) = g
export l;
return(A);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R;
ideal I = x*s;
poly p = s*x*s*x; // = (s (x) x) * x*s = (sX) * x*s
p;
def J = liftenvelope(I,p);
setring J;
print(l[1]);
//2s+SX = (2s (x) 1) + (1 (x) sx)
print(l[2]);
// Groebnerbasis of BiSyz(I) as LeftSyz in R^{env}
// We get : 2s+SX + ( sX - 2s -SX) = sX - a pure tensor!!!!
}
static proc twoComp(poly q)
"USAGE: twoComp(g); g poly
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
RETURN: Returns the second half of the leading exponent of a polynomial p in A^{env}:
@* lm(p) = c x1^a1 x2^a2 ... xn^an (X) xn^bn * x(n-1)^b(n-1) * ... * x1^b1
such that lex(p) = [a1,..,an,bn,...,b1]. Then the procedure returns [bn,...,b1] (of lex(p)!).
"
{
if (q == 0) {return(q);}
def saveenv = basering;
int n = nvars(saveenv); int k = n div 2;
intvec v = leadexp(q);
intvec w = v[k+1..2*k];
return(w);
}
static proc firstComp(poly q)
"USAGE: firstComp(g); g poly
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
RETURN: Returns the first half of the leading exponent of a polynomial p in A^{env}:
@* lm(p) = c x1^a1 x2^a2 ... xn^an (X) xn^bn * x(n-1)^b(n-1) * ... * x1^b1
such that lex(p) = [a1,..,an,bn,...,b1]. Then the procedure returns [a1,...,an] (of lex(p)!).
"
{
if (q == 0) {return(q);}
def saveenv = basering;
int n = nvars(saveenv); int k = n div 2;
intvec v = leadexp(q);
intvec w = v[1..k];
return(w);
}
proc CompDecomp(poly p)
"USAGE: CompDecomp(p); p poly
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
RETURN: Returns an ideal I in A^{env}, where the sum of all terms of the argument with the same right side (of the tensor summands) are stored as a generator of I.
@* Let b != c, then for p = (a (X) b) + (c (X) b) + (a (X) c) the ideal I := CompDecomp(p) is given by: I[1] = (a (X) b) + (c (X) b); I[2] = a (X) c.
PURPOSE: By decomposing the polynomial we can easily check whether the given polynomial is a pure tensor.
EXAMPLE: example CompDecomp; shows examples
"
{
poly s = p;
ideal Q;
int j = 0; poly t; poly w;
while (s!= 0)
{
t = lead(s);
w = s-t;
s = s-t;
j++;
Q[j] = t;
while(w !=0)
{
if (twoComp(w) == twoComp(t))
{
Q[j] = Q[j]+lead(w);
s = s-lead(w);
}
w = w-lead(w);
}
}
return(Q);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R; //1st shift algebra
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
poly f = X*S*x^2+5*x*S*X+S*X; f;
ideal I = CompDecomp(f);
print(matrix(I)); // what means that f = (x2+5x+1)*SX + x2*S
poly p = x*S+X^2*S+2*s+x*X^2*s+5*x*s; p;
ideal Q = CompDecomp(p);
print(matrix(Q));
}
proc getOneComp(poly p)
"USAGE: getOneComp(p); p poly
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
ASSUME: The given polynomial has to be of the form sum_i a_i \otimes b = (sum_i a_i) (X) b.
RETURN: Returns a polynomial in A^{env}, which is the sum of the left-side (of the tensor summands) of all terms of the argument.
@* Let A be a G-algebra. For a given polynomial p in A^{env} of the form p = sum_i a_i (X) b = (sum_i a_i) (X) b this procedure returns
g = (\sum_i a_i) (X) 1 written sum_i a_i in A^{env}.
PURPOSE: This is an auxiliary procedure for isPureTensor().
EXAMPLE: example getOneComp; shows examples
"
{
ideal I;
int i; int m = size(p);poly f;
if (size(p) == 0) {f = 1; return(f);}
for(i=1;i<=m;i++)
{ I[i] = leadcoef(p[i])*monomial(firstComp(p[i]));}
f = sum(I);
return(f);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R; //1st shift algebra
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
poly f = 5*x*s*S+x^2*S+s*S+3*x*S; // f = (x2+5xs+3x+s)*S
getOneComp(f);
}
proc isPureTensor(poly g)
"USAGE: isPureTensor(g); g poly
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
RETURN: Returns 0 if g is not a pure tensor and if g is a pure tensor then isPureTensor() returns a vector v with v = a*gen(1)+b*gen(2) = (a,b)^T with a (X) b = g.
PURPOSE: Checks whether a given polynomial in $\A^{env}$ is a pure tensor. This is also an auxiliary procedure for checking total divisibility.
EXAMPLE: example isPureTensor; shows examples
"
{
ideal I = CompDecomp(g);
ideal U;int i; int k = ncols(I);
for (i = 1 ; i <= k; i++)
{
U[i] = getOneComp(I[i]);
}
poly q = normalize(U[1]);
for (i=2; i<= k;i++)
{
if ( U[i] != leadcoef(U[i])*q)
{
return(0);
}
}
def saveenv = basering;
int n = nvars(saveenv); int l = n div 2;
ideal P; intvec d = 0:l;
intvec vv;
for (i=1;i<=k;i++)
{
vv= d,twoComp(I[i]);
P[i] = leadcoef(U[i])*monomial(vv);
}
poly w = sum(P);
vector v = [q, w];
return(v);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R; //1st shift algebra
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
poly p = x*(x*s)*x + s^2*x; p;
// p is of the form q(X)1, a pure tensor indeed:
isPureTensor(p);
// v = transpose( x3s+x2s+xs2+2s2 1 ) i.e. p = x3s+x2s+xs2+2s2 (X) 1
poly g = S*X+ x*s*X+ S^2*x;
g;
isPureTensor(g); // indeed g is not a pure tensor
poly d = x*X+s*X+x*S*X+s*S*X;d;
isPureTensor(d); // d is a pure tensor indeed
// v = transpose( x+s S*X+X ) i.e. d = x+s (X) s*x+x
// remember that * denotes to the opposite mulitiplication s*x = xs in R.
}
proc isTwoSidedGB(ideal I)
"USAGE: isTwoSidedGB(I); I ideal
RETURN: Returns 0 if the generators of a given ideal are not two-sided, 1 if they are.\\
NOTE: This procedure should only be used for non-commutative rings, as every element is two-sided in a commutative ring.
PURPOSE: Auxiliary procedure for diagonal forms. Let R be a non-commutative ring (e.g. G-algebra), and p in R, this program checks whether p is two-sided i.e. Rp = pR.
EXAMPLE: example isTwoSidedGB; shows examples
"
{
int i; int n = nvars(basering);
ideal J;
// determine whether I is a left Groebner basis
if (attrib(I,"isSB"))
{
J = I;
J = simplify(J,1+2+4+8);
attrib(J,"isSB",1);
}
else
{
intvec optionsave = option(get);
option(redSB);
option(redTail);
J = std(I);
J = simplify(J,1+2+4+8);
attrib(J,"isSB",1);
I = interred(I);
I = simplify(I,1+2+4+8);
if ( size(J) != size(I))
{
option(set,optionsave);
return(int(0));
}
for(i = 1; i <= size(I); i++)
{
if (I[i] != J[i])
{
option(set,optionsave);
return(int(0));
}
}
}
// I = simplify(I,1+2+4+8);
// now, we check whether J is right complete
for(i = 1; i <= n; i++)
{
if ( simplify( NF(J*var(i),J), 2) != 0 )
{
return(int(0));
}
}
return(int(1));
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,s),dp;
def R = nc_algebra(1,s); setring R; //1st shift algebra
ideal I = s^2, x*s, s^2 + 3*x*s;
isTwoSidedGB(I); // I is two-sided
ideal J = s^2+x;
isTwoSidedGB(J); // J is not two-sided; twostd(J) = s,x;
}
|