This file is indexed.

/usr/share/singular/LIB/brillnoether.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
////////////////////////////////////////////////////////////////////
version="version brillnoether.lib 4.0.1.0 Oct_2014 "; // $Id: 629d46281fe8201d290fac3c41d8d1d6f54e3688 $
category="Algebraic Geometry";
info="
LIBRARY:  brillnoether.lib  Riemann-Roch spaces of divisors on curves
AUTHORS:  I. Stenger:       stenger@mathematik.uni-kl.de
          Janko Boehm       boehm@mathematik.uni-kl.de


PROCEDURES:

RiemannRochBN();     Computes a vector space basis of the
                     Riemann-Roch space of a divisor D on a
                     projective curve C

";

LIB "normal.lib";
LIB "paraplanecurves.lib";
LIB "qhmoduli.lib";
LIB "divisors.lib";



///////////////////////////////////////////////////////////////////
///////////////////// Main Procedure //////////////////////////////
//_________________________________________________________________
proc RiemannRochBN(ideal C,ideal I,ideal J)
"USAGE: RiemannRochBN(C,I,J); ideal C, ideal I, ideal J
ASSUME: C is a homogeneous ideal defining a projective curve.
        If C is a non-planar curve, then C is assumed to be
        nonsingular. This assumption is not checked.
        The ideals I and J represent a
        a divisor D on C.
RETURN: A vector space basis of the Riemann-Roch space of D,
        stored in a list RRBasis. The list RRBasis contains a
        list IH and a form F. The vector space basis of L(D)
        consists of all rational functions G/F, where G is an
        element of IH.
EXAMPLE: example RiemannRochBN; shows an example
"
{
  def R_base = basering;
  int i,boundFinal,boundReg,boundDeg;

  // C is a plane curve and is allowed to have singularities
  // involves the computation of the (Gorenstein) adjoint ideal
  if (nvars(R_base) == 3)
  {
    poly f = C[1];

    //computation of the Gorenstein adjoint
    ideal adjointId = adjointIdeal(f);

    // every form of I defines an adjoint curve of C
    I = intersect(I,adjointId);

   // the curve is a plane curve, regularity not needed
    boundReg = 1;
  }
  else
  {
    // curve is non-planar and is assumed to be nonsingular
    // need to compute the regularity as a lower bound
    // for the degrees
    def Cres = mres(C,0);
    boundReg = regularity(Cres)-1;
    if (printlevel > 1)
    {
      "The regularity is"+string(boundReg);
    }
  }
  qring Q = std(C);
  ideal I = imap(R_base,I);
  ideal J = imap(R_base,J);

  divisor D =  makeDivisor(I,J);
  // kill common places of the positive and negative divisor
  D = normalForm(D);
  I = D.num;
  J = D.den;
  // compute a set of minimal generators
  //I = minbase(sat(I,maxideal(1))[1]);
  //J = minbase(sat(J,maxideal(1))[1]);

  list degI;

  for (i=1; i<=size(I); i++)
  {
    degI[i]=deg(I[i]);
  }
  // compute the minimal degree of the gen. set
  boundDeg = Min(degI);
  boundFinal = Max(list(boundReg,boundDeg));

  // choose a form F of I of degree greater or equal than boundFinal
  // such that the deg(<F>:J) = deg(<F>)
  poly F = findRandomForm(I,J,boundFinal);
  if (printlevel > 1)
  {
    "The chosen form is "+string(F);
  }

  int n = deg(F[1]);

  // compute the residual divisor
  ideal Iresidual = quotient((sat(ideal(F),maxideal(1)))[1],I);
  ideal IH = intersect(Iresidual,J);
  IH = minbase(truncate1(IH,n));

  //choose all forms of IH degree n
  IH = chooseGenerators(IH,n);
  setring R_base;
  ideal IH = imap(Q,IH);
  poly F = imap(Q,F);
  list RRBasis = IH,F;
  return(RRBasis);
}

example
{ "EXAMPLE:"; echo=2;
  ring R = 0,(x,y,z),dp;
  poly f = y^2+x^2-1;
  f = homog(f,z);
  ideal C = f;
  ideal P1 = x,y-z;
  ideal P2 = x^2+y^2,z;
  ideal I = intersect(P1^3,P2^2);
  ideal P3 = x+z,y;
  ideal J = P3^2;
  RiemannRochBN(C,I,J);
}


////////////////////////////////////////////////////////////////////
///////////////////// Essential Static Procedures //////////////////

//_________________________________________________________________
static proc truncate1(ideal I,int r)
"USAGE: truncate1(I,r); ideal I,int r
ASSUME: I homogeneous ideal
RETURN: the subideal of I consisting of all forms of
        degree greater or equal than r
"
{
  ideal IH;
  int i;
  for (i=1;i<=size(I);i++)
  {
    if (deg(I[i]) < r )
    {
      IH = IH+maxideal(r-deg(I[i]))*I[i];
    }
    else
    {
     IH = IH+I[i];
    }
  }
  return(IH);
}

//__________________________________________________________________
static proc findRandomForm(ideal I,ideal J,int r)
"USAGE: findRandomForm(I,J,r); ideal I, ideal J, int r
ASSUME: I and J are homogeneous ideals
RETURN: a form F of I of degree greater or than r such
        that the ideals <F>:J and <F> have the same degree
THEORY: Assures that the divisor defined by F and the
        divisor defined by J have disjoint supports.
"
{
  int i,s;
  int h=1;
  ideal F1,G;
  while(h)
  {
    s = 0;
    while (s<5)
    {
      s++;
      poly Fhelp;
      for (i=1;i<=size(I);i++)
      {
        if( deg(I[i]) <= r)
        {
          Fhelp = Fhelp + I[i]*sparseid(1,r-deg(I[i]),r-deg(I[i]),0,10)[1];
        }
      }
      G = Fhelp;
      F1 = quotient(G,J);
      if (mult(std(F1)) == mult(std(G)))
      {
        if (dim(std(G)) < dim(std(ideal(0))))
        {
          h = 0;
          break;
        }
      }
      kill Fhelp;
      r++;
    }

  }
  poly finalform = G[1];
  return(finalform);
}

//__________________________________________________________________
static proc chooseGenerators(ideal I,int r)
{
  int i;
  ideal final;
  int counter;
  for (i=1; i<=size(I);i++)
  {
    if(deg(I[i]) == r)
    {
      counter++;
      final[counter] = I[i];
    }
  }
  return(final);
}