This file is indexed.

/usr/share/singular/LIB/chern.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
////////////////////////////////////////////////////////////////
version = "version chern.lib 0.6 Oct_2015 ";      //$Id:$
category = "Chern classes";
info="
LIBRARY:  chern.lib    Symbolic Computations with Chern classes

AUTHOR:  Oleksandr Iena,      oleksandr.iena@uni.lu,  yena@mathematik.uni-kl.de

REFERENCES:
  [1] Iena, Oleksandr, On symbolic computations with Chern classes:
                       remarks on the library chern.lib for Singular,
                       http://hdl.handle.net/10993/22395, 2015
  [2] Lascoux, Alain,  Classes de Chern d'un produit tensoriel.
                       C. R. Acad. Sci., Paris, Ser. A 286, 385-387 (1978).

PROCEDURES:
  symm(l [,N]);             symmetric functions in the entries of l
  symNsym(f, c);            symmetric and non-symmetric parts of a polynomial f
  CompleteHomog(N, l);      complete homogeneous symmetric functions
  segre(N, c);              Segre classes in terms of Chern classes
  chern(N, s);              Chern classes in terms of Segre classes
  chNum(N, c);              the non-zero Chern numbers in degree N in the entries of c
  chNumbers(N, c);          the Chern numbers in degree N in the entries of c
  sum_of_powers(k, l);      the sum of k-th powers of the entries of l
  powSumSym(c [,N]);        the sums of powers [up to degree N] in terms
                            of the elementary symmetric polynomials (entries of l)
  chAll(c [,N]);            Chern character in terms of the Chern classes
  chAllInv(c);              Chern classes in terms of the Chern character
  chHE(c);                  the highest term of the Chern character
  ChernRootsSum(a, b);      the Chern roots of a direct sum
  chSum(c, C);              the Chern classes of a direct sum
  ChernRootsDual(l);        the Chern roots of the dual vector bundle
  chDual(c);                the Chern classes of the dual vector bundle
  ChernRootsProd(l, L);     the Chern roots of a tensor product of vector bundles
  chProd(r, c, R, C [,N]);  Chern classes of a tensor product of vector bundles
  chProdE(c, C);            Chern classes of a tensor product of vector bundles
  chProdL(r, c, R, C);      Chern classes of a tensor product of vector bundles
  chProdLP(r, c, R, C);     total Chern class of a tensor product of vector bundles
  ChernRootsHom(l, L);      the Chern roots of a Hom vector bundle
  chHom(r, c, R, C [,N]);   Chern classes of the Hom-vector bundle
  ChernRootsSymm(n, l);     the Chern roots of the n-th symmetric power
                            of a vector bundle with Chern roots from l
  ChernRootsWedge(n, l);    the Chern roots of the n-th exterior power
                            of a vector bundle with Chern roots from l
  chSymm(k, r, c [,p]);     the rank and the Chern classes of the k-th symmetric power
                            of a vector bundle of rank r with Chern classes c
  chSymm2L(r, c);           the rank and the Chern classes of the second symmetric power
                            of a vector bundle of rank r with Chern classes c
  chSymm2LP(r, c);          the total Chern class of the second symmetric power
                            of a vector bundle of rank r with Chern classes c
  chWedge(k, r, c [,p]);    the rank and the Chern classes of the k-th exterior power
                            of a vector bundle of rank r with Chern classes c
  chWedge2L(r, c);          the rank and the Chern classes of the second exterior power
                            of a vector bundle of rank r with Chern classes c
  chWedge2LP(r, c);         the total Chern class of the second exterior power
                            of a vector bundle of rank r with Chern classes c
  todd(c [,n]);             the Todd class
  toddE(c);                 the highest term of the Todd class
  Bern(n);                  the second Bernoulli numbers
  tdCf(n);                  the coefficients of the Todd class of a line bundle
  tdTerms(n, f);            the terms of the Todd class of a line bundle
                            coresponding to the Chern root t
  tdFactor(n, t);           the Todd class of a line bundle coresponding
                            to the Chern root t
  cProj(n);                 the total Chern class of (the tangent bundle on)
                            the projective space P_n
  chProj(n);                the Chern character of (the tangent bundle on)
                            the projective space P_n
  tdProj(n);                the Todd class of (the tangent bundle on)
                            the projective space P_n
  eulerChProj(n, r, c);     Euler characteristic of a vector bundle on
                            the projective space P_n
                            via Hirzebruch-Riemann-Roch theorem
  chNumbersProj(n);         the Chern numbers of the projective space P_n
  classpoly(l, t);          polynomial in t with coefficients from l
                            (without constant term)
  chernPoly(l, t);          Chern polynomial (constant term 1)
  chernCharPoly(r, l, t);   polynomial in t corresponding to the Chern character
                            (constant term r)
  toddPoly(td, t);          polynomial in t corresponding to the Todd class
                            (constant term 1)
  rHRR(N, ch, td);          the main ingredient of the right-hand side
                            of the Hirzebruch-Riemann-Roch formula
  SchurS(I, S);             the Schur polynomial corresponding to partition I
                            in terms of the Segre classes S
  SchurCh(I, C);            the Schur polynomial corresponding to partition I
                            in terms of the Chern classes C
  part(m, n);               partitions of integers not exceeding n
                            into m non-negative summands
  dualPart(I [,N]);         partition dual to I
  PartC(I, m);              the complement of a partition with respect to m
  partOver(n, J);           partitions over a given partition J with summands not exceeding n
  partUnder(J);             partitions under a given partition J
";

LIB "general.lib";
//----------------------------------------------------------

proc symm(list l, list #)
"USAGE:   symm(l [,n]);  l a list of polynomials, n integer
RETURN:   list of polynomials
PURPOSE:  computes the list of elementary symmetric functions in the entries of l
EXAMPLE:  example symm; shows an example
NOTE:     makes sense only for a list of polynomials
"
{
  int N=size(l);
  int n=size(l);
  if(size(#)!=0)
  {
    if( is_integer(#[1]) )
    {
      N = #[1];
    }
  }
  if(n==0) // if the list is empty, return the empty list
  {
    return(list());
  }
  else
  {
    int i, j;
    list rez=list(1, l[1]);
    for(i=2; i<=n; i++)
    {
      if( i<=N )
      {
        rez=rez+list(0);
      }
      for(j = min(i, N); j>=1; j--)
      {
        rez[j+1] = rez[j+1] + rez[j]*l[i];
      }
    }
    return(delete(rez, 1));
  }
}
example
{
  "EXAMPLE:";echo =2;
  // elementary symmetric functions in x, y, z:
  ring r = 0, (x, y, z), dp;
  list l=(x, y, z);
  print(symm(l));

  //now let us compute only the first two symmetric polynomials in a(1), ... , a(10)
  ring q= 0,(a(1..10)), dp;
  list l=a(1..10);
  print(symm(l, 2));
}
//-----------------------------------------------------------------------

proc symNsym(poly f, list c)
"USAGE:   symNsym(f, c);  f polynomial; c list of polynomials
RETURN:   list with 2 poly entries
PURPOSE:  computes a symmetric and a non-symmetric part of f
          in terms of the elementary symmetric functions from c
          as well a non-symmetric remainder
EXAMPLE:  example symNsym; shows an example
NOTE:     constants are not considered symmetric
"
{
  ideal V=variables(f); // variables f depends on
  int nV=size(V); // their number
  if(nV==0)
  {
    return(list(f, 0));
  }
  // now f is non-constant and does depend on some variables
  c=append_by_zeroes(nV, c); // append c by zeroes if it is too short
  def br@=basering; // remember the base ring
  // add additional variables to the base ring
  execute("ring r@= ("+ charstr(basering) +"),("+varstr(basering)+",c@(1..nV),A@(1..nV)), dp;" );
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  ideal V=F(V);
  poly f=F(f);
  int i;
  for(i=1; i<=nV; i++)
  {
    f=subst(f, V[i], A@(i) ); // rename the variables of f into A@(1..nV)
  }
  int N1=nvars(basering)-nV+1; // the number of variable A@(1)
  poly rez1=0; // to be the expression in c@(i) of the symmetric part of f
  poly rez2=0; // to be the remainder
  poly mon; // monomial in c@(i)
  poly monc; // the corresponding expression in A@(i)
  list l=symm(list(A@(1..nV) )); // symmetric functions in A@(i)
  intvec v=leadexp(f), 0; // the exponent of the leading monomial
  while(v[N1]!=0)
  {
    mon=leadcoef(f); // leading coefficient of f
    monc=mon;
    for(i=1; v[N1+i-1]!=0 ;i++ )
    {
      mon = mon*c@(i)^( v[N1+i-1]-v[N1+i] );
      monc = monc*l[i]^( v[N1+i-1]-v[N1+i] ); // has the same leading coefficient as f
    }
    rez1=rez1+mon; // add a monomial
    f=f-monc; // subtract the monomial
    v=leadexp(f), 0;
  }
  while( leadexp(f)!=0 )
  {
    rez2=rez2+lead(f);
    f=f-lead(f);
  }
  rez1=rez1+f;
  setring br@; // come back to the initial base ring
  // define the specialization homomorphism
  execute("map FF = r@,"+varstr(br@)+",c[1..nV], V[1..nV];");
  return( list( FF(rez1), FF(rez2) ) );
}
example
{
  "EXAMPLE:";echo=2;
  ring r=0, (x,y,z, c(1..3)), dp;
  list l=c(1..3);
  // The symmetric part of f = 3x2 + 3y2 + 3z2 + 7xyz + y
  // in terms of the elemenatary symmetric functions c(1), c(2), c(3)
  // and the remainder
  poly f = 3x2 + 3y2 + 3z2 + 7xyz + y;
  print( symNsym(f, l) );
  // Take a symmetrix polynomial in variables x and z
  f=x2+xz+z2;
  // Express it in terms of the elementary the symmetric functions
  print( symNsym(f, l)[1]);
}
//-------------------------------------------------------------------------------------------

proc CompleteHomog(int N, list c)
"USAGE:   CompleteHomog(N, c);  N integer, c list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the list of the complete homogeneous symmetric polynomials
          in terms of the elementary symmetric polynomials (entries of c)
EXAMPLE:  example CompleteHomog; shows an example
NOTE:
"
{
  c=append_by_zeroes(N, c);
  if(N<0) // if N is negative, return the empty list
  {
    return(list());
  }
  list rez=list(1); // the result will be computed here
  int i, j;
  int sign;
  poly f;
  for(i=1; i<=N; i++) // use the resursive formula
  {
    f=0;
    sign=1;
    for(j=1;j<=i; j++) // compute the next complete homogeneous symmetric polynomial
    {
      f=f+sign*c[j]*rez[i-j+1];
      sign=-sign;
    }
    rez=rez+( list(f)  );
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (x(1..3)), dp;
  list l=x(1..3);
  //Complete homogeneous symmetric polynomials up to degree 3 in variables x(1), x(2), x(3)
  print( CompleteHomog(3, l) );
}
//-----------------------------------------------------------------------

proc segre(list c, list #)
"USAGE:   segre(c[, N]); c list of polynomials, N integer
RETURN:   list of polynomials
PURPOSE:  computes the list of the Segre classes up to degree N
          in terms of the Chern classes from c
EXAMPLE:  example segre; shows an example
NOTE:
"
{
  int N;
  if(size(#)>0)
  {
    if( is_integer(#[1]) )
    {
      N=#[1];
    }
  }
  else
  {
    N=size(c);
  }
  c=append_by_zeroes(N, c);
  if(N<0) // if N is negative, return the empty list
  {
    return(list());
  }
  list rez=list(1); // the result will be computed here
  int i, j;
  poly f;
  for(i=1; i<=N; i++) // use the resursive formula
  {
    f=0;
    for(j=1;j<=i; j++) // compute the next Segre class
    {
      f=f-c[j]*rez[i-j+1];
    }
    rez=rez+( list(f)  );
  }
  return(delete(rez,1));
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (c(1..3)), dp;
  list l=c(1..3);
  //Segre classes up to degree 5 in Chern classes c(1), c(2), c(3)
  print( segre(l, 5) );
}
//-----------------------------------------------------------------------

proc chern(list s, list #)
"USAGE:   chern(s);  s list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the list of the Chern classes up to degree N
          in terms of the Segre classes from s
EXAMPLE:  example chern; shows an example
NOTE:
"
{
  return( segre(s, #) );
}
example
{
  "EXAMPLE:"; echo =2;
  ring r = 0, (s(1..3)), dp;
  list l=s(1..3);
  // Chern classes in Segre classes s(1), s(2), s(3)
  print( chern(l) );
  // This procedure is inverse to segre(...). Indeed:
  print( segre(chern(l), 3) );
}
//-----------------------------------------------------------------------

proc chNum(int N, list c)
"USAGE:   chNun(N, c);  N integer, c list
RETURN:   list
PURPOSE:  computes the Chern numbers of a vector bundle with Chern classes c
          on a complex manifold (variety) of dimension N,
          the zeroes corresponding to the higher zero Chern classes are ignored
EXAMPLE:  example chNumbers; shows an example
NOTE:     computes basically the partitions of N
          in summands not greater than the length of c
"
{
  int n=size(c);
  if(N<0)
  {
    print("");
    return( list() );
  }
  if( (n==0) || (N==0)  )
  {
    return(list(1));
  }
  if(n==1) // if there is only one entry in the list
  {
    return(list(c[1]^N));
  }
  int i;
  int j;
  poly f; // the powers of the last variable will be stored here
  list l=delete(c, n); // delete the last variable
  list L;
  list rez=chNum(N, l); // monomials not involving the last variable
  for(i=1;i<=(N div n); i++) // add the monomials involving the last variable
  {
    f=c[n]^i; // the power of the last variable
    // monomials without the last variable that,
    // multiplied by the i-th power of the last variable,
    // give a monomial of the required type
    L=chNum(N-n*i, l);
    for(j=1; j<=size(L) ;j++) // multiply every such monomial
    {
      L[j]=L[j]*f; // by the i-th power of the last variable
    }
    rez=rez+L; // add the monomials involving the i-th power of the last variable
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo=2;
  ring r = 0, (c(1..2)), dp;
  list l=c(1..2);
  // Let c(1) be a variable of degree 1, let c(2) be a variable of degree 2.
  // The monomials in c(1) and c(2) of weighted degree 5 are:
  print( chNum( 5, l ) );

  // Compare the result to the output of chNumbers(...):
  print( chNumbers(5, l) );
}
//----------------------------------------------------------------------------------------

proc chNumbers(int r, list c)
"USAGE:   chNumbers(r, c);  r integer,  c list
RETURN:   list
PURPOSE:  computes the Chern numbers of a vector bundle with Chern classes c
          on a complex manifold (variety) of dimension r
EXAMPLE:  example chNumbers; shows an example
NOTE:     computes basically the patitions of r
"
{
  if(r<0)
  {
    print("The dimension of a manifold must be a non-negative integer!");
    return(list()); // return the empty list in this case
  }
  if(r==0)
  {
    return(list(1));
  }
  //-----------------
  // from now on r>0
  //----------------
  int n=size(c);
  c=append_by_zeroes(r, c);
  c=c[1..r]; // throw away redundant data
  return(chNum(r, c));
}
example
{
  "EXAMPLE:";echo=2;
  ring r = 0, (c(1..3)), dp;
  list l=c(1..3);
  // The Chern numbers of a vector bundle with Chern classes c(1), c(2), c(3)
  // on a 3-fold:
  print( chNumbers( 3, l ) );

  // If the highest Chern class is zero, the Chern numbers are:
  l=c(1..2);
  print( chNumbers( 3, l ) );

  // Compare this to the output of chNum(...):
  print( chNum( 3, l ) );
}
//---------------------------------------------------------------------------------------

proc sum_of_powers(int k, list l)
"USAGE:   sum_of_powers(k, l);  k non-negative integer, l list of polynomials
RETURN:   polynomial
PURPOSE:  computes the sum of k-th powers of the entries of l
EXAMPLE:  example sum_of_powers; shows an example
NOTE:     returns 0 if k is negative
"
{
  if(k<0) // return 0 if k is negative
  {
    print("The exponent must be non-negative; 0 has been returned");
    return(0);
  }
  int i;
  int n=size(l);
  poly rez; // the result will be computed here
  for(i=1;i<=n;i++) // compute the sum of powers
  {
    rez=rez+l[i]^k;
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (x, y, z), dp;
  list l=x, y, z;
  //sum of 7-th powers of x, y, z
  print( sum_of_powers(7, l) );
}
//-----------------------------------------------------------------------

proc powSumSym(list c, list #)
"USAGE:   powSumSym(l [,N]);  l a list of polynomials, N integer
RETURN:   list of polynomials
PURPOSE:  computes the expressions for the sums of powers [up to degree N]
          in terms of the elementary symmetric polynomials (entries of l),
EXAMPLE:  example powSumSym; shows an example
NOTE:     returns the terms of the Chern character
          multiplied by the correspoding factorials
"
{
  int n;
  if( size(#) == 0 ) // if there are no optional parameters
  {
    n = size(c); // set n to be the length of c
  }
  else // if there are optional parameters
  {
    if( is_integer(#[1])) // if the first optional parameter is an integer
    {
      n = max( #[1], 0 ); // if the parameter is negative, reset it to be zero
      c = append_by_zeroes(n, c); // if n is greater than the length of c, append c by zeroes
      if( n != 0 ) // if n is non-zero
      {
        c = c[1..n]; // take into account only the first n entries of c
      }
    }
    else // if the optional parameter is not an integer, then
    {
      n=size(c); // ingore it and set n to be the length of c
    }
  }
  list rez; // the result will be computed here
  if(n==0) // return the empty list
  {
    return(rez)
  }
  else // otherwise proceed as follows:
  {
    // first compute the sums of powers of the Chern roots
    // in terms of the Chern classes using the Newton's identities
    int i, j, sign;
    poly f;
    // the first term of the Chern character coincides with the first Chern class,
    // or equivalently with the sum of Chern roots
    rez = rez + list(c[1]);
    // compute the sums of powers of Chern roots recursively using the Newton's identities
    for(j=2; j<=n; j++)
    {
      sign=1;
      f=0;
      for(i=1; i<j; i++)
      {
        f=f + c[i]*sign*rez[j-i];
        sign = -sign;
      }
      f=f+sign*j*c[j];
      rez=rez+list(f); // add the newly computed sum of powers of Chern roots to the list
    }
    return(rez); // return the result
  }
}
example
{
  "EXAMPLE:";echo =2;
  // the expressions of the first 3 sums of powers of 3 variables a(1), a(2), a(3)
  // in terms of the elementary symmetric polynomials c(1), c(2), c(3):
  ring r = 0, (c(1..3)), dp;
  list l=(c(1..3));
  print(powSumSym(l));
  // The first 5 sums in the same situation
  print(powSumSym(l, 5));
}
//---------------------------------------------------------------------------------

proc chAll(list c, list #)
"USAGE:   chAll(l [,N]);  l a list of polynomials, N integer
RETURN:   list of polynomials
PURPOSE:  computes the list of terms of positive degree [up to degree N] of
          the Chern character, where the entries of l are considered as the Chern classes
EXAMPLE:  example chAll; shows an example
NOTE:     makes sense only for a list of polynomials
"
{
    list rez; // to be the result
    rez = powSumSym(c, #); // get the sums of powers of the Chern roots
    int n = size(rez);
    bigint fct=1;
    int i;
    for(i=1;i<=n;i++) // get the terms of the Chern character
    {
      fct=fct*i;
      rez[i]=rez[i]/fct;
    }
    return(rez); // return the result
}
example
{
  "EXAMPLE:";echo =2;
  // Chern character (terms of degree 1, 2, 3)
  // corresponding to the Chern classes c(1), c(2), c(3):
  ring r = 0, (c(1..3)), dp;
  list l=(c(1..3));
  print(chAll(l));
  // terms up to degree 5 in the same situation
  print(chAll(l, 5));
}
//---------------------------------------------------------------------------------

proc chAllInv(list c)
"USAGE:   chAllInv(l);  l a list of polynomials
RETURN:   list of polynomials
PURPOSE:  procedure inverse to chAll(), computes the list of Chern classes
          from the list of terms of positive degree of the Chern character
EXAMPLE:  example chAllInv; shows an example
NOTE:     makes sense only for a list of polynomials
"
{
  int n = size(c);
  list rez;
  if(n==0) // if the list of terms of Chern character is empty, return the empty list
  {
    return(rez);
  }
  else // otherwise compute the result using the Newton's identities
  {
    int j, i, sign;
    poly f;
    // transform the list of terms of the Chern character
    // to the list of sums of powers of Chern roots
    //bigint fct=1;
    for(i=1; i<=n; i++)
    {
      //fct=fct*i;
      //c[i]=fct*c[i];
      c[i]=factorial(i)*c[i];
    }
    // the first Chern class coincides with the first degree term of the Chern character
    rez=rez+list(c[1]);
    // compute the higher Chern classes recursively using the Newton's identities
    for(j=2;j<=n;j++)
    {
      sign=1;f=0;
      for(i=1;i<j;i++)
      {
        f=f+ c[i]*sign*rez[j-i];
        sign=-sign;
      }
      f=f+sign*c[j];
      rez=rez+list(f/j);
    }
    return(rez); // return the result
  }
}
example
{
  "EXAMPLE:";echo=2;
  // first 3 Chern classes in terms of the first 3 terms
  // of the Chern character Chern  ch(1), ch(2), ch(3):
  ring r = 0, (ch(1..3)), dp;
  list l=(ch(1..3));
  print(chAllInv(l));
  // let's see that chAllInv() is inverse to chAll()
  print( chAll( chAllInv(l) ) );
}
//---------------------------------------------------------------------------------

proc chHE(list c)
"USAGE:   chHE(c);  c list of polynomials
RETURN:   polynomial
PURPOSE:  computes the highest relevant term of the Chern character
EXAMPLE:  example chHE; shows an example
NOTE:     uses the elimination and is extremely inefficient,
          is included just for comparison with chAll(c)
"
{
  int n=size(c);
  if(n==0) // in this case return the empty list
  {
    return(list());
  }
  else // otherwise proceed as follows
  {
    def br@=basering; // remember the base ring
    // add additional variables a@(1..n) to the base ring
    execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", c@, a@(1..n)), ls;" );
    execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
    list c=F(c); // embedd c in the bigger ring
    poly rez;
    list A=a@(1..n);
    list sym=symm(A);
    ideal I;
    int i;
    poly E=1; // to be the product of variables which should be eliminated
    for(i=1;i<=n;i++)
    {
      E=E*a@(i); // compute the product of the variables that must be eliminated
      I=I, c[i]-sym[i];
    }
    I=I, c@-sum_of_powers(n, A);
    I=elim(I, E);
    rez = -subst(I[1], c@, 0);
    setring br@; // come back to the initial base ring
    execute( "map FF= r@,"+varstr(br@)+",0 ;" ); // define the specialization homomorphism t@=0
    poly rez=FF(rez); // bring the result to the base ring
    return( (1/factorial(n))*rez);
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (c(1..3)), dp;
  list l=c(1..3);
  //the third degree term of the Chern character
  print( chHE(l) );
}
//----------------------------------------------------------------------

proc ChernRootsSum(list a, list b)
"USAGE:   ChernRootsSum(a, b); a, b lists of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern roots of the direct (Whitney) sum
          of a vector bundle with Chern roots a and a vector bundle with Chern roots b
EXAMPLE:  example ChernRootsSum; shows an example
NOTE:
"
{
  return(a+b);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (a(1..3), b(1..2)), dp;
  // assume a(1), a(2), a(3) are the Chern roots of a vector bundle E
  // assume b(1), b(2) are the Chern roots of a vector bundle F
  list l=a(1..3);
  list L=b(1..2);
  // the Chern roots of their direct sum is
  print( ChernRootsSum(l, L) );
}
//----------------------------------------------------------------------

proc chSum(list c, list C)
"USAGE:   chSum(c, C);  c, C lists of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern classes of a direct sum of two vector bundles
EXAMPLE:  example chSum; shows an example
NOTE:
"
{
  int N=size(c)+size(C);
  c=append_by_zeroes(N, c); // append by zeroes if necessary
  C=append_by_zeroes(N, C); // append by zeroes if necessary
  list rez; // to be the result
  int i;
  int j;
  poly f;
  for(i=1;i<=N;i++)
  {
    f=c[i]+C[i];
    for(j=1;j<i;j++)
    {
      f=f+c[j]*C[i-j];
    }
    rez=rez+list(f);
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (c(1..3), C(1..2)), dp;
  // Let E be a vector bundle with Chern classes c(1), c(2), c(3).
  // Let F be a vector bundle with Chern classes C(1), C(2).
  list l=c(1..3);
  list L=C(1..2);
  // Then the Chern classes of their direct sum are
  print( chSum(l, L) );
}
//----------------------------------------------------------------------

proc ChernRootsDual(list l)
"USAGE:   ChernRootsDual(l); l a list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern roots of the dual vector bundle
          of a vector bundle with Chern roots from l
EXAMPLE:  example ChernRootsDual; shows an example
NOTE:
"
{
  int n=size(l);
  int i;
  for(i=1;i<=n;i++) // change the sign of the entries of a
  {
    l[i]=-l[i];
  }
  return(l);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (a(1..3)), dp;
  // assume a(1), a(2), a(3) are the Chern roots of a vector bundle
  list l=a(1..3);
  // the Chern roots of the dual vector bundle
  print( ChernRootsDual(l) );
}
//----------------------------------------------------------------------

proc chDual(list c)
"USAGE:   chDual(c);   c list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the list of Chern classes of the dual vector bundle
EXAMPLE:  example chDual; shows an example
NOTE:
"
{
  int n=size(c);
  int i;
  for(i=1;i<=n;i=i+2)
  {
    c[i]=-c[i];
  }
  return(c);
}
example
{
  "EXAMPLE:"; echo=2;
  // Chern classes of a vector bundle that is dual to a vector bundle
  // with Chern classes c(1), c(2), c(3)
  ring r=0, (c(1..3)), dp;
  list l=c(1..3);
  print(chDual(l));
}
//-----------------------------------------------------------------------------------------

proc ChernRootsProd(list a, list b)
"USAGE:   ChernRootsProd(a, b); a, b lists of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern roots of the tensor product of a vector bundle with Chern roots a
          and a vector bundles with Chern roots b
EXAMPLE:  example ChernRootsProd; shows an example
NOTE:
"
{
  int na=size(a);
  int nb=size(b);
  int i;
  int j;
  list rez; // the result will be computed here
  for(i=1;i<=na;i++) // compute the result
  {
    for(j=1;j<=nb;j++)
    {
      rez=rez+list(a[i]+b[j]);
    }
  }
  return(rez);
}
example
{
  "EXAMPLE:"; echo=2;
  ring r=0, (a(1..2), b(1..3)), dp;
  list l=a(1..2);
  list L=b(1..3);
  // Chern roots of the tensor product of a vector bundle with Chern roots a(1), a(2)
  // and a vector bundle with Chern roots b(1), b(2), b(3)
  print(ChernRootsProd(l, L));
}
//-----------------------------------------------------------------------------------------

proc chProd(def r,  list c, def R, list C, list #)
"USAGE:   chProd(r, c, R, C [, N]);  r, R polynomials (integers);
          c, C lists of polynomials, N integer
RETURN:   list of polynomials
PURPOSE:  computes the list of Chern classes of the product of two vector bundles
          in terms of their ranks and Chern clases [up to degree N]
EXAMPLE:  example chProd; shows an example
NOTE:
"
{
  // check the input data
  if( is_integer(r) ) // if r is an integer
  {
    if(r<=0) // if r is negative or zero return the empty list
    {
      return( list() );
    }
    //----------------------------
    //now r is a positive integer
    //----------------------------
    c=append_by_zeroes(r, c); // append c by zeroes if r is greater than the length of c
    c=c[1..r]; // make c shorter (of length r) if r is smaller than the length of c
  }
  if( is_integer(R) ) // if R is an integer
  {
    if(R<=0) // if R is negative or zero return the empty list
    {
      return( list() );
    }
    //----------------------------
    //now R is a positive integer
    //----------------------------
    C=append_by_zeroes(R, C); // append C by zeroes if R is greater than the length of C
    C=C[1..R]; // make C shorter (of length R) if R is smaller than the length of C
  }
  //----------------------------------------------------------
  //now r > 0 if it is an integer; R > 0 if it is an integer
  //----------------------------------------------------------
  int n;
  if( is_integer(r) && is_integer(R) ) // if both r and R are integers
  {
    n=r*R; // set n to be the rank of the product bundle
  }
  else // otherwise define the rank of the product vector bundle by
  {
    n=size(c)*size(C); // looking at the lenghts of c and C
  }
  if( size(#) != 0 ) // if there is an optional parameter
  {
    if( is_integer( #[1] )  ) // if this parameter is an integer
    {
      if( #[1]<=0 ) // if it is negative or zero, return the empty list
      {
        return( list() );
      }
      // now #[1] is positive
      // the product bundle can only have non-zero Chern classes up to degree n
      // so ignore the optional parameter if it is greater than n
      n = min(#[1], n);
    }
  }
  if(n==0) // if n is zero, return the empty list
  {
    return( list() );
  }
  //-----------------------------------------------------------
  //now n is positive, we can perform the relevant computations
  //-----------------------------------------------------------
  int i, j;
  c=append_by_zeroes(n, c); // append c by zeroes up to degree n
  C=append_by_zeroes(n, C); // append C by zeroes up to degree n
  c=c[1..n]; // throw away the redundant data if needed
  C=C[1..n]; // throw away the redundant data if needed
  // build the list of all terms of the Chern characters: for rank r, and Chern classes c
  list ch = list(r) + chAll(c);
  list CH = list(R) + chAll(C); // do the same for rank R and Chern classes C
  poly f;
  list chP;
  // compute the list of the non-zero degree terms of the Chern character
  // of the tensor product of two vector bundles
  for(i=1;i<=n;i++) // using the multiplicativity of the Chern character
  {
    f=0;
    for(j=0;j<=i;j++)
    {
      f=f+ch[j+1]*CH[i-j+1];
    }
    chP=chP+list(f);
  }
  return( chAllInv(chP) ); // return the corresponding Chern classes
}
example
{
  "EXAMPLE:"; echo =2;
  ring H = 0, ( r, R, c(1..3), C(1..2) ), dp;
  list l=c(1..3);
  list L=C(1..2);
  // the Chern classes of the tensor product of a vector bundle E of rank 3
  // with Chern classes c(1), c(2), c(3)
  // and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
  print( chProd(3, l, 2, L) );
  // the first two Chern classes of the tensor product
  // of a vector bundle E of rank r with Chern classes c(1) and c(2)
  // and a vector bundle G of rank R with Chern classes C(1) and C(2)
  // this gives the Chern classes of a tensor product on a complex surface
  l=c(1..2);
  L=C(1..2);
  print( chProd(r, l, R, L, 2 ) );
}
//---------------------------------------------------------------------------------

proc chProdE(list c, list C)
"USAGE:   chProdE(c, C);   c, C lists of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the list of Chern classes of the product
          of two vector bundles in terms of their Chern clases
EXAMPLE:  example chProdE; shows an example
NOTE:     makes sense only for (lists of) polynomials;
          uses elimination, hence very inefficient;
          included only for comparison with chProd(...)
"
{
  int r=size(c);
  int R=size(C);
  if( (r==0) && (R==0) ) // if one of the ranks is 0,
  {
    return( list() ); // return the empty list (zero bundles have no Chern classes)
  }
  //------------------------------------
  //now both r and R are greater than 0
  //------------------------------------
  int n=r*R; // the rank of the product of two vector bundles
  def br@=basering; // remember the base ring
  // add additional variables a@(1..r), b@(1..R), x@ to the base ring
  execute("ring r@=("+ charstr(basering) +"),("+varstr(basering)+",a@(1..r),b@(1..R),x@ ), ls;");
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c=F(c); // embedd c in the bigger ring
  list C=F(C); // embedd C in the bigger ring
  list A=a@(1..r); // list of Chern roots of the first vector bundle
  list syma = symm(A); // symmetric functions in the Chern roots of the first vector bundles
  list B=b@(1..R); // list of Chern roots of the second vector bundle
  list symb=symm(B); // symmetric functions in the Chern roots of the second vector bundles
  ideal I;
  int i, j;
  // the product of variables (all Chern roots) which should be eliminated
  poly E=product(A)*product(B);
  for(i=1; i<=r; i++)
  {
    for(j=1; j<=R; j++)
    {
      I=I, c[i]-syma[i], C[j]-symb[j]; // add the relations
    }
  }
  // the Chern roots of the tensor product in terms of the Chern roots of the factors
  list crt=ChernRootsProd(A, B);
  list Cf=symm(crt); // Chern classes of the product in terms of the Chern roots of the factors
  list rez; // the result will be computed here
  ideal J;
  for(i=1;i<=n;i++)
  {
    J = I, x@-Cf[i]; // add the equation for the i-th Chern class to the ideal of relations
    J = elim(J, E); // eliminate the Chern roots
    // get the expression for the i-th Chern class of the product
    // in terms of the Chern classes of the factors
    rez = rez + list( -subst(J[1], x@, 0) );
  }
  setring br@; // come back to the initial base ring
  execute( "map FF= r@,"+varstr(br@)+";" ); // define the specialization homomorphism t@=0
  list rez=FF(rez); // bring the result to the base ring
  return(rez); // return the corresponding Chern classes
}
example
{
  "EXAMPLE:"; echo =2;
  ring H = 0, ( c(1..3), C(1..2) ), dp;
  list l=c(1..3);
  list L=C(1..2);
  // the Chern classes of the tensor product of a vector bundle E of rank 3
  // with Chern classes c(1), c(2), c(3)
  // and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
  print( chProdE(l,  L) );
}
//------------------------------------------------------------------------------------

proc chProdL(int r, list c, int R, list C)
"USAGE:   chProdL(r, c, R, C);  r, R integers; c, C lists of polynomials
RETURN:   list
PURPOSE:  computes the list of Chern classes of the product of two vector bundles
          in terms of their Chern clases
EXAMPLE:  example chProdL; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  // check the input data
  if(r<=0) // if r is negative or zero return the empty list
  {
    return( list() );
  }
  //----------------------------
  //now r is a positive integer
  //----------------------------
  c=append_by_zeroes(r, c); // append c by zeroes if r is greater than the length of c
  c=c[1..r]; // make c shorter (of length r) if r is smaller than the length of c
  if(R<=0) // if R is negative or zero return the empty list
  {
    return( list() );
  }
  //----------------------------
  //now R is a positive integer
  //----------------------------
  C=append_by_zeroes(R, C); // append C by zeroes if R is greater than the length of C
  C=C[1..R]; // make C shorter (of length R) if R is smaller than the length of C
  //----------------------------------------------------------
  // now r > 0 and R > 0
  //----------------------------------------------------------
  def br@=basering; // remember the base ring
  // add  additional variables to the base ring
  execute("ring r@=("+charstr(basering)+"), ("+varstr(basering)+", t@, c@(1..r), C@(1..R)), dp;");
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c, C;
  int i;
  for(i=1;i<=r;i++)
  {
    c[i]=c@(i)*t@^i;
  }
  for(i=1;i<=R;i++)
  {
    C[i]=C@(i)*t@^i;
  }
  poly f = chProdLP(r,c,R,C); // get the total Chern class using the Lascoux formula
  matrix CF = coeffs(f, t@); // get its coefficients in front of the powers of t@
  int N=r*R;
  list rez; // write them in a list
  for(i=1;i<=N;i++)
  {
    rez=rez+list(CF[i+1,1]);
  }
  setring br@; // come back to the initial base ring
  // define the specialization homomorphism
  execute("map FF = r@,"+varstr(br@)+",0, c[1..r], C[1..R];");
  return( FF( rez ) ); // bring the result to the initial ring
}
example
{
  "EXAMPLE:"; echo =2;
  // The Chern classes of the tensor product of a vector bundle of rank 3
  // with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
  // Chern class C(1)
  ring r = 0, ( c(1..3), C(1)), dp;
  list c=c(1..3);
  list C=C(1);
  print( chProdL(3,c,1,C) );
}
//---------------------------------------------------------------------------------------

proc chProdLP(int r, list c, int R, list C)
"USAGE:   chProdLP(r, c, R, C);  r, R integers; c, C lists of polynomials
RETURN:   polynomial
PURPOSE:  computes the total Chern class of the product of two vector bundles
          in terms of their ranks and Chern clases
EXAMPLE:  example chProdLP; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  if(r<=0) // if r is negative or zero, return 1
  {
    return( 1 );
  }
  if(R<=0) // if R is negative or zero, return 1
  {
    return( 1 );
  }
  //-------------------------------------------
  // now r and R are positive
  //-------------------------------------------
  c=append_by_zeroes(r, c);
  C=append_by_zeroes(R, C);
  c=c[1..r];
  C=C[1..R];
  list P;
  P=part(r, R); // compute the partitions of numbers up to R into r summands
  int sz=size(P); // number of such partitions
  int szu;
  int i, j;
  list T;
  list PU;
  list TU;
  poly rez; // the result will be computed here
  poly ST;
  // implement the formula of Lascoux:
  for(i=1;i<=sz;i++) // run through all the partitions from P
  {
    T=P[i]; // the current partition
    ST= SchurS( PartC(T, R) , C ); // compute the corresponding Schur polynomial
    PU=partUnder(T); // compute the partitions under T
    szu=size(PU); // number of such partitions
    for(j=1;j<=szu;j++) // run through all the partitions lying under T
    {
      TU=PU[j]; // for each of them
      rez=rez+IJcoef(T, TU)* SchurCh(TU, c) *ST; // add the corresponding term to the result
     }
  }
  return(rez); // return the result
}
example
{
  "EXAMPLE:"; echo =2;
  // The total Chern class of the tensor product of a vector bundle of rank 3
  // with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
  // Chern class C(1)
  ring r = 0, ( c(1..3), C(1)), ws(1,2,3, 1);
  list c=c(1..3);
  list C=C(1);
  print( chProdLP(3,c,1,C) );
}
//---------------------------------------------------------------------------------------

proc ChernRootsHom(list a, list b)
"USAGE:   ChernRootsHom(a, b); a, b lists of polynomials
RETURN:   list of polynomials
PURPOSE:  for a vector bundle E with Chern roots a and a vector bundle F
          with Chern roots b, computes the Chern roots of Hom(E, F)
EXAMPLE:  example ChernRootsHom; shows an example
NOTE:
"
{
  int na=size(a);
  int nb=size(b);
  int i;
  int j;
  list rez; // the result will be computed here
  for(i=1;i<=na;i++) // compute the result
  {
    for(j=1;j<=nb;j++)
    {
      rez=rez+list(-a[i]+b[j]);
    }
  }
  return(rez);
}
example
{
  "EXAMPLE:"; echo=2;
  ring r=0, (a(1..2), b(1..3)), dp;
  list l=a(1..2);
  list L=b(1..3);
  // Let E be a vector bundle with Chern roots a(1). a(2),
  // let F be a vector bundle with CHern roots b(1), b(2), b(3).
  // Then the Chern roots of Hom(E, F) are
  print(ChernRootsHom(l, L));
}
//-----------------------------------------------------------------------------------------

proc chHom(def r,  list c, def R, list C, list #)
"USAGE:   chHom(r, c, R, C [, N]);  r, R polynomials (integers);
          c, C lists of polynomials, N integer
RETURN:   list of polynomials
PURPOSE:  computes [up to degree N] the list of Chern classe of the vector bundle Hom(E, F)
          in terms of the ranks and the Chern clases of E and F
EXAMPLE:  example chHom; shows an example
NOTE:
"
{
  return( chProd(r, chDual(c), R, C, # ) );
}
example
{
  "EXAMPLE:"; echo=2;
  ring H = 0, ( r, R, c(1..3), C(1..2) ), dp;
  list l=c(1..3);
  list L=C(1..2);
  // the Chern classes of Hom(E, F) for a vector bundle E of rank 3
  // with Chern classes c(1), c(2), c(3)
  // and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
  print( chHom(3, l, 2, L) );
  // the first two Chern classes of Hom(E, F) for a vector bundle E of rank r
  // with Chern classes c(1) and c(2)
  // and a vector bundle G of rank R with Chern classes C(1) and C(2)
  // this gives the Chern classes of a tensor product on a complex surface
  l=c(1..2);
  L=C(1..2);
  print( chHom(r, l, R, L, 2 ) );
}
//---------------------------------------------------------------------------------

proc ChernRootsSymm(int n, list l)
"USAGE:   ChernRootsSymm(m, l); m integer, l a list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern roots of m-th symmetric power
          of a vector bundle with Chern roots from l
EXAMPLE:  example ChernRootsSymm; shows an example
NOTE:
"
{
  if(n<0) // return the empty list if n is negative
  {
    return(list(0));
  }
  int r=size(l);
  def br@=basering; // remember the base ring
  ring r@=0, (a@(1..r)), dp;
  ideal mon = a@(1..r);
  mon=mon^n; // all monomials of degree n
  list rez;
  int i, j;
  int N = size(mon);
  intvec v;
  for(i=1; i<=N; i++) // collect in rez the exponents of the monomials of degree n
  {
    v = leadexp(mon[i]);
    rez = rez + list(v);
  }
  setring br@;
  poly f;
  list rez1;
  // run over all exponents and construct the corresponding sums of the Chern roots
  for(i=1; i<=N; i++)
  {
    f=0;
    for(j=1;j<=r;j++)
    {
      f=f+rez[i][j]*l[j];
    }
    rez1=rez1+list(f);
  }
  return(rez1);
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (a(1..3)), dp;
  list l=a(1..3);
  // the Chern roots of the second symmetric power of a vector bundle
  // with Chern  roots a(1), a(2), a(3)
  print( ChernRootsSymm(2, l) );
}
//------------------------------------------------------------

proc ChernRootsWedge( int m, list l)
"USAGE:   ChernRootsWedge(m, l); m integer, l a list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern roots of m-th exterior power
          of a vector bundle with Chern roots from l
EXAMPLE:  example ChernRootsWedge; shows an example
NOTE:     makes sense only for list of polynomials
"
{
  int n=size(l);
  if((m>n)||(m<=0) ) // if m is bigger that n or non-positive
  {
    return( list(0) ); // return the list with one zero entry
  }
  else
  {
    if(m==n) // if m equals n, the only Chern root of the exterior power will be
    {
      return( list(sum(l)) ); // the sum of the initial Chern roots
    }
    else // otherwise proceed recursively
    {
      int i;
      list rez;
      list rez1;
      list l1 = delete(l, 1); // throw away the first element from the list
      poly f = l[1]; // remember the first entry of l
      // compute the Chern roots of the (m-1)-th exterior power of the smaller list
      rez1 = ChernRootsWedge(m-1, l1 );
      int s = size( rez1 );
      // add the first entry of the bigger list to every entry in the result,
      // this will give all Chern roots involving f
      for(i=1; i<=s; i++)
      {
        rez1[i] = f+rez1[i];
      }
      // return the union of those Chern roots with f and those without f
      rez = ChernRootsWedge(m, l1) + rez1;
      return( rez );
    }
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (a(1..3)), dp;
  list l=a(1..3);
  // the Chern roots of the second exterior power of a vector bundle
  // with Chern  roots a(1), a(2), a(3)
  print( ChernRootsWedge(2, l) );
}
//---------------------------------------------------------------------------------

proc chSymm(int k, int r, list c, list #)
"USAGE:   chSymm(k, r, c[, pos]);  k, r integers, c list of polynomials, pos list of integers
RETURN:   list with entries: int N, list of polynomials l
PURPOSE:  computes the rank and the Chern classes of the symmetric power of a vector bundle
EXAMPLE:  example chSymm; shows an example
NOTE:     for the second symmetric power chSymm2L(...) could be faster
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(list()); // return the empty list in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( list( 0, list() ) ); // return the data corresponding to the zero bundle
  }
  //-----------------------------------
  // from now on we are in the case r>0
  //-----------------------------------
  int i;
  // if the length  n of the list of Chern classes is smaller
  // than the rank of the vector bundle,
  // the higher classes are assumed to be zero and the list is appended by zeroes up to length r
  c=append_by_zeroes(r, c);
  // if the lenght of the list of the Chern classes is greater than the rank
    c=c[1..r]; // throw away the redundant data
  //-----------------------------------
  // from now on the lenght of c is r>0
  //-----------------------------------
  if(k<0)
  {
    print("You are trying to compute a negative symmetric power of a vector bundle");
    return( list(0, list() ) ); // assume such a power to be just a zero bundle
  }
  if(k==0) // the zeroth symmetric power is the trivial line bundle
  {
    return( list(1, list(0)) );
  }
  if(k==1) // the first symmetric power is equal to the vector bundle itself
  {
    return(list(r, c));
  }
  //-----------------------------------
  // from now on we are in the case k>2
  //-----------------------------------
  list LM = integer_list(#);
  int M = LM[2]; // maximum among the optional parameters
  # = LM[1]; // take into account only the first integer optional parameters that are positive
  //-------------------------------
  // Perform the computations now
  //-------------------------------
  def br@=basering; // remember the base ring
  // add additional variables to the base ring
  execute("ring r@=(" + charstr(basering) +  "),("+varstr(basering)+", x@, a@(1..r)), ls;" );
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c=F(c); // embed c into the bigger ring
  list rez; // the Chern classes of the symmetric power are going to be written here
  poly E = product( list( a@(1..r ) )  ); // product of the Chern roots
  list ss=ChernRootsSymm(k, list( a@(1..r) ) ); // list of the Chern roots of the symmetric power
  int N=size(ss); // number of such roots, it equals the rank of the symmetric power
  // the entries in C will be the Chern classes of the symmetric power
  // expressed in terms of the Chern roots of the initial vector bundle
  list C;
  ideal I, J;
  // list of the Chern classes of the initial vector bundle expressed in its Chern roots
  list sym=symm(list(a@(1..r)));
  if(size(#)==0) // if there are no optional parameters, compute all Chern classes
  {
    // the entries here are the Chern classes of the symmetric power
    // expressed in terms of Chern roots of the initial vector bundle
    C=symm(ss);
    for(i=1;i<=N;i++) // eliminate the Chern roots
    {
      if(i<= r) // first add all relevant  formulas for the Chern classes in terms of Chern roots
      {
        I=I, c[i]-sym[i];
      }
      J = I,  x@-C[i];
      // Notice that elim(...) is from the library "elim.lib",
      // it is loaded as a result of loading "general.lib"
      J=simplify(elim(J, E), 1);
      // get the expression of the next Chern class
      // in terms of the Chern classes of the initial vector bundle
      rez=rez+list( -subst(  J[1], x@, 0)  );
    }
  }
  else // otherwise compute only the needed Chern classes
  {
    C=symm(ss, M); // only the needed Chern classes
    int j;
    i=1;
    // the maximal number of optional parameters to be considered does not exceed N,
    // i.e., the rank of the symmetric power
    int NN = min( size(#), N);
    for(j=1; j <= NN; j++) // process the optional parameters
    {
      // process the optional parameters only untill they are not bigger than N;
      // notice they are positive anyway after integer_list(...)
      if( #[j]<=N  )
      {
        for( ; i<=#[j];i++)
        {
          if(i<=r)
          {
            // add the relevant formulas for the Chern classes in terms of the Chern roots
            I=I, c[i]-sym[i];
          }
        }
        J= I, x@-C[ #[j]];
        // Notice that elim(...) is from the library "elim.lib",
        // it is loaded as a result of loading "general.lib"
        J=simplify(elim(J, E), 1);
        // get the expression of the next Chern class
        // in terms of the Chern classes of the initial vector bundle
        rez=rez+list( -subst(  J[1], x@, 0)  );
      }
      else // get out from the loop
      {
        break;
      }
    }
  }
  // used because Singular seems not to be able to apply maps to empty lists (see below)
  if(size(rez)==0)
  {
    return(list(N, list()));
  }
  setring br@; // come back to the initial base ring
  // define the specialization homomorphism,
  // evaluate the formulas for the Chern classes on their given values
  execute( "map FF = r@,"+varstr(br@)+";" );
  list rez=FF( rez ); // bring the result back to the initial ring
  return( list( N, rez  ) ); // return the result together with the rank of the symmetric power
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..5)), dp;
  list l=c(1..5);
  // the rank and the Chern classes of the second symmetric power of a vector bundle of rank 3
  print( chSymm(2, 3, l) );
  // the rank and the first 3 Chern classes
  // of the second symmetric power of a vector bundle of rank 5
  print( chSymm(2, 5, l, 1, 2, 3) );
}
//----------------------------------------------------------------------------------

proc chSymm2L(int r, list c)
"USAGE:   chSymm2L(r, c); r integer, c list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern classes of the second symmetric power of a vector bundle
EXAMPLE:  example chSymm2L; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(list()); // return the empty list in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( list( 0, list() ) ); // return the data corresponding to the zero bundle
  }
  //-----------------------------------
  // from now on we are in the case r>0
  //-----------------------------------
  c=append_by_zeroes(r, c);
  c=c[1..r];
  def br@=basering; // remember the base ring
  // add  additional variables to the base ring
  execute("ring r@=(" + charstr(basering) +  "), ("+varstr(basering)+", t@, c@(1..r)), dp;" );
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c;
  int i;
  for(i=1;i<=r;i++)
  {
    c[i]=c@(i)*t@^i;
  }
  poly f = chSymm2LP(r,c); // get the total Chern class using the formula of Lascoux
  matrix CF = coeffs(f, t@);
  int N=r*(r+1) div 2;
  list rez; // write the coefficients in front of the powers of t@ into a list
  for(i=1;i<=N;i++)
  {
    rez=rez+list(CF[i+1,1]);
  }
  setring br@; // come back to the initial base ring
  execute("map FF = r@,"+varstr(br@)+",0, c[1..r];"); // define the specialization homomorphism
  return( list(N, FF( rez )) ); // bring the result to the initial ring
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..2)), dp;
  list l=c(1..2);
  // the Chern classes of the second symmetric power of a vector bundle of rank 2
  print( chSymm2L(2, l));
}
//---------------------------------------------------------------------------------------

proc chSymm2LP(int r, list c)
"USAGE:   chSymm2LP(r, c); r integer, c list of polynomials
RETURN:   poly
PURPOSE:  computes the total Chern class of the second symmetric power of a vector bundle
EXAMPLE:  example chSymm2LP; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(1); // return 1 in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( 1 ); // return 1 in this case
  }
  //-------------------------------------------
  // from now on we are in the case r > 0
  //-------------------------------------------
  c=append_by_zeroes(r, c);
  c=c[1..r];
  list I; // the partition (1,2,...,r) will be stored here
  int i;
  for(i=1;i<=r;i++)
  {
    I=I+list(i);
  }
  list PU = partUnder(I); // compute the partitions under I
  int sz=size(PU); // get their number
  poly rez; // the result will be computed here
  list J;
  poly cf;
  int ex;
  // implement the formula of Lascoux
  for(i=1;i<=sz;i++)
  {
    J=PU[i];
    ex=sum(J)- r*(r-1) div 2;
    if(ex>=0)
    {
      cf=bigint(2)^ex*IJcoef(I, J);
    }
    else
    {
      cf=IJcoef(I, J)/bigint(2)^(-ex);
    }
    rez = rez + cf * SchurCh(J, c );
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..2)), ws(1, 2);
  list l=c(1..2);
  // the total Chern class of the second symmetric power of a vector bundle of rank 2
  print( chSymm2LP(2, l));
}
//---------------------------------------------------------------------------------------

proc chWedge(int k, int r, list c, list #)
"USAGE:   chWedge(k, r, c [,pos]);  k, r integers, c list of polynomials, pos list of integers
RETURN:   list with entries: int N, list of polynomials l
PURPOSE:  computes the rank and the Chern classes of the exterior power of a vector bundle
EXAMPLE:  example chWedge; shows an example
NOTE:     for the second exterior power chWedge2L(...) could be faster
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(list()); // return the empty list in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( list( 0, list() ) ); // return the data corresponding to the zero bundle
  }
  //-------------------------------------------
  // from now on we are in the case r > 0
  //-------------------------------------------
  if(k<0)
  {
    print("You are trying to compute a negative exterior power of a vector bundle");
    return( list(0, list() ) ); // assume such a power to be just a zero bundle
  }
  if(k==0) // the zeroth exterior power is the trivial line bundle
  {
    return( list(1, list(0)) );
  }
  if(k==1) // the first exterior power is equal to the vector bundle itself
  {
    c=append_by_zeroes(r, c);
    c=c[1..r];
    return(list(r, c));
  }
  //---------------------------------------
  // from now on we are in the case k > 2
  //---------------------------------------
  int i;
  // if the length of the list of Chern classes is smaller than the rank of the vector bundle,
  // the higher classes are assumed to be zero and the list is appended by zeroes up to length r
  c=append_by_zeroes(r, c);
  // if the length of the list of the Chern classes is greater than the rank
    c=c[1..r]; // throw away the redundant data
  //------------------------------------------
  // from now on the length of c is r > 0
  //------------------------------------------
  if( k>r ) // if k>r, the exterior power is zero
  {
    return( list( int(0), list()  ) );
  }
  //-----------------------------------------------
  // from now on we are in the case 0 < k <= r = n
  //-----------------------------------------------
  if(k==r)
  {
    return(list( int(1), list( c(1) ) ) );
  }
  //-----------------------------------------------
  // from now on we are in the case 0 < k < r = n
  //-----------------------------------------------
  list LM = integer_list(#);
  int M=LM[2]; // maximum among the optional parameters if there are any, zero otherwise
  # = LM[1]; // take into account only the first integer optional parameters that are positive
  //-----------------------------
  // Let us compute now
  //-----------------------------
  def br@=basering; // remember the base ring
  // add additional variables a@(1..r), x@ to the base ring
  execute("ring r@= (" + charstr(basering) + "), ("+varstr(basering)+", x@, a@(1..r)), ls;" );
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c = F(c); // embed c into the bigger ring
  list rez; // the result should be computed here
  poly E = product( list( a@(1..r ) )  ); // product of the Chern roots to be eliminaned
  list ss=ChernRootsWedge(k,  list( a@(1..r) )); // list of the Chern roots of the exterior product
  int N=size(ss); // length of ss, equals the rank of the exterior product
  // list of the Chern classes of the initial vector bundle in terms of their Chern roots
  list sym=symm(list(a@(1..r)));
  // the entries here will be the Chern classes we need
  // expressed in  terms of the Chern roots of the initial vector bundle
  list C;
  ideal I, J;
  if( size(#) == 0 ) // if there are no optional parameters, compute all Chern classes
  {
    // the entries here are the Chern classes we need
    // expressed in  terms of the Chern roots of the initial vector bundle
    C=symm(ss);
    for(i=1;i<=N;i++) // eliminate the Chern roots
    {
      if(i<= r) // first add all relevant  formulas for the Chern classes in terms of Chern roots
      {
        I=I, c[i]-sym[i];
      }
      J = I,  x@-C[i];
      // Notice that elim(...) is from the library "elim.lib",
      // it is loaded as a result of loading "general.lib"
      J=simplify(elim(J, E), 1);
      // get the expression of the next Chern class
      // in terms of the Chern classes of the initial vector bundle
      rez=rez+list( -subst(  J[1], x@, 0)  );
    }
  }
  else // otherwise compute only the needed Chern classes
  {
    // the entries here are the Chern classes we need
    // expressed in  terms of the Chern roots of the initial vector bundle
    C=symm(ss, M);
    int j;
    i=1;
    // the maximal number of optional parameters to be considered
    // does not exceed N, the rank of the exterior power
    int NN = min( size(#), N);
    for(j=1; j <= NN; j++) // process the optional parameters
    {
      // process the optional parameters only untill they are not bigger than N;
      // notice they are positive anyway after integer_list(...)
      if( #[j]<=N  )
      {
        for( ; i<=#[j]; i++)
        {
          if( i<=r )
          {
            // add the relevant formulas for the Chern classes in terms of the Chern roots
            I=I, c[i]-sym[i];
          }
        }
        J= I, x@-C[ #[j]];
        // Notice that elim(...) is from the library "elim.lib",
        // it is loaded as a result of loading "general.lib"
        J=simplify(elim(J, E), 1);
        // get the expression of the next Chern class
        // in terms of the Chern classes of the initial vector bundle
        rez=rez+list( -subst(  J[1], x@, 0)  );
      }
      else // get out from the loop
      {
        break;
      }
    }
  }
  // used because Singular seems not to be able to apply maps to empty lists (see below)
  if(size(rez)==0)
  {
    return(list(N, list()));
  }
  setring br@; // come back to the initial base ring
  // define the specialization homomorphism,
  // evaluate the formulas for the Chern classes on their given values
  execute( "map FF = r@,"+varstr(br@)+";" );
  list rez=FF( rez ); // bring the result back to the initial ring
  return( list( N, rez  ) ); //return the rank and the Chern classes of the exterior product
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..5)), dp;
  list l=c(1..5);
  // the rank and the Chern classes of the second exterior power of a vector bundle of rank 3
  print( chWedge(2, 3, l) );
  // the rank and the first 3 Chern classes
  // of the fourth exterior power of a vector bundle of rank 5
  print( chWedge(4, 5, l, 1, 2, 3) );
}
//---------------------------------------------------------------------------------

proc chWedge2L(int r, list c)
"USAGE:   chWedge2L(r, c );  r integer, c list of polynomials
RETURN:   list of polynomials
PURPOSE:  computes the Chern classes of the second exterior power of a vector bundle
EXAMPLE:  example chWedge2L; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(list()); // return the empty list in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( list( 0, list() ) ); // return the data corresponding to the zero bundle
  }
  //-------------------------------------------
  // from now on we are in the case r > 0
  //-------------------------------------------
  c=append_by_zeroes(r, c);
  c=c[1..r];
  def br@=basering; // remember the base ring
  // add  additional variables to the base ring
  execute("ring r@=(" + charstr(basering) +  "), ("+varstr(basering)+", t@, c@(1..r)), dp;" );
  execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
  list c;
  int i;
  for(i=1;i<=r;i++)
  {
    c[i]=c@(i)*t@^i;
  }
  poly f = chWedge2LP(r,c); // get the total Chern class using the formula of Lascoux
  matrix CF = coeffs(f, t@);
  int N=r*(r-1) div 2;
  list rez; // write its coefficients in front of the powers of t@ to a list
  for(i=1;i<=N;i++)
  {
    rez=rez+list(CF[i+1,1]);
  }
  setring br@; // come back to the initial base ring
  execute("map FF = r@,"+varstr(br@)+",0, c[1..r];"); // define the specialization homomorphism
  return( list(N, FF( rez )) ); // bring the result to the initial ring
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..3)), dp;
  list l=c(1..3);
  // the Chern classes of the second exterior power of a vector bundle of rank 3
  print(chWedge2L(3, l));
}
//---------------------------------------------------------------------------------------

proc chWedge2LP(int r, list c)
"USAGE:   chWedge2LP(r, c );  r integer, c list of polynomials
RETURN:   poly
PURPOSE:  computes the total Chern class of the second exterior power of a vector bundle
EXAMPLE:  example chWedge2LP; shows an example
NOTE:     Implementation of the formula of Lascoux, the Schur polynomials are computed
          using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
  if(r<0) // if the rank is negative
  {
    print("The rank of a vector bundle can non be negative");
    return(1); // return 1 in this case
  }
  if(r==0) // if we deal with the zero bundle
  {
    return( 1 ); // return 1 in this case
  }
  //-------------------------------------------
  // from now on we are in the case r > 0
  //-------------------------------------------
  c=append_by_zeroes(r, c);
  c=c[1..r];
  list I; // the partition (0,1,...,r-1) will be stored here
  int i;
  for(i=0;i<=r-1;i++)
  {
    I=I+list(i);
  }
  list PU = partUnder(I); // compute the partitions under I
  int sz=size(PU); // get their number
  poly rez; // the result will be computed here
  list J;
  poly cf;
  // implement the Lascoux formula
  for(i=1;i<=sz;i++)
  {
    J=PU[i];
    cf = IJcoef(I,J)/bigint(2)^( r*(r-1) div 2-sum(J)  );
    rez = rez + cf * SchurCh(J, c );
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (c(1..3)), ws(1,2,3);
  list l=c(1..3);
  // the total Chern class of the second exterior power of a vector bundle of rank 3
  print(chWedge2LP(3, l));
}
//---------------------------------------------------------------------------------------

proc todd(list c, list #)
"USAGE:   todd(l [, n] );  l a list of polynomials, n integer
RETURN:   list of polynomials
PURPOSE:  computes [the first n] terms of the Todd class
EXAMPLE:  example todd; shows an example
NOTE:     returns an empty list if l is empty
"
{
  int n;
  # = integer_list(#)[1]; // take into account only the first integer entries that are positive
  if( size(#) == 0 ) // if there are no  optional parameters
  {
    n = size(c);
  }
  else
  {
    // set n to be 0, if the parameter is non-positive,
    // set n to the value of the parameter otherwise
    n = max( #[1], 0 );
    c = append_by_zeroes(n, c); // append c by zeroes if the length of c  is smaller than n
    if(n!=0) // throw away the redundant data if n is positive and smaller than the length of c
    {
      c = c[1..n];
    }
  }
  if(n==0) // return the empty list
  {
    return(list());
  }
  else // otherwise proceed as follows
  {
    def br@=basering; // remember the base ring
    // add  additional variables to the base ring
    execute("ring r@=(" + charstr(basering) +  "), ("+varstr(basering)+", a@, c@(1..n)), dp;" );
    execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
    list c=F(c); // embed c into the bigger ring
    list prev;
    list next;
    next=tdTerms(n, c@(1)); // the Todd class terms of a line budle
    list step = tdTerms(n, a@);
    int i, j, k;
    poly f;
    list hC=c@(1)-a@; // "old" first Chern class
    for(k=2;k<=n;k++) // do n-1 iterations
    {
      prev=next;
      next=list();
      hC=hC+list( c@(k)-a@*hC[k-1] ); // "old" k-th Chern class
      for(i=0;i<k;i++) // these terms have already been computed in the previous iterations
      {
        next = next + list(prev[i+1]);
      }
      for(i=k;i<=n;i++) // new values in terms of "old" Chern classes and the Chern root a
      {
        f=0;
        for(j=0; j<=i; j++)
        {
          f=f + step[j+1]*prev[i-j+1];
        }
        // substitute the old values of Chern classes
        // by their expressions in the new ones and the Chern root a
        for(j=1;j<k;j++)
        {
          f=subst(f, c@(j), hC[j] );
        }
        f=reduce(f, std(hC[k]) ); // eliminate the Chern root
        next = next + list(f);
      }
    }
    next = delete(next, 1); // throw away the zeroth term which is always equal to 1
    setring br@; // come back to the initial base ring
    execute("map FF = r@,"+varstr(br@)+",0, c[1..n];"); // define the specialization homomorphism
    return( FF( next ) ); // bring the result to the initial ring
  }
}
example
{
  "EXAMPLE:";echo =2;
  // the terms of the Todd class up to degree 5
  // in terms of the Chern classes c(1), c(2), c(3), c(4), c(5)
  ring r=0, (c(1..5)), dp;
  list l=c(1..5);
  print( todd( l ) );

  // in the same situation compute only first two terms
  print( todd(l, 2) );

  // compute the first 5 terms corresponding to the Chern clases c(1), c(2)
  l=c(1..2);
  print( todd(l, 5) );
}
//------------------------------------------------------------------------------------------

proc toddE(list c)
"USAGE:   toddE(l);  l a list of polynomials
RETURN:   polynomial
PURPOSE:  computes the highest relevant term of the Todd class
EXAMPLE:  example toddE; shows an example
NOTE:     returns an empty list if l is empty,
          very inefficient because the elimination is used, included for comparison with todd(c)
"
{
  int n=size(c);
  if(n==0) // return the empty list if c is empty
  {
    return(list());
  }
  else
  {
    def br@=basering; // remember the base ring
    // add additional variables a@(1..n), x@ to the base ring
    execute("ring r@=(" + charstr(basering) + "), ("+varstr(basering)+", a@(1..n), x@), ls;" );
    execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
    list c=F(c); // embed c into the bigger ring
    int i;
    int j;
    int k;
    poly E = a@(1); // to be the product of the Chern roots that will be eliminated later
    list ss=tdTerms( n, a@(1) );
    list next; // to be the terms of the Todd class corresponding to the next Chern root
    for(i=2;i<=n;i++) // compute the terms of the Todd class in terms of the Chern roots
    {
      E=E*a@(i); // to compute the product of variables to be eliminated
      next=tdTerms( n, a@(i) );
      for(j=n;j>=1;j--)
      {
        for(k=0;k<j;k++)
        {
          ss[j+1]=ss[j+1]+ss[k+1]*next[j-k+1];
        }
      }
    }
    ideal I=x@ - ss[n+1]; // formula for the highest degree term of the Todd class
    list sym=symm(list(a@(1..n))); // expressions for the Chern classes in terms of the Chern roots
    for(i=1;i<=n;i++)
    {
      I=I, c[i]-sym[i]; // add the relations
    }
    I=simplify(elim(I, E), 1); // eliminate the Chern roots
    poly rez=-subst(I[1],x@, 0); // get the required formula
    setring br@; // come back to the initial base ring
    // define the specialization homomorphism (all added variables are set to zero)
    execute( "map FF = r@,"+varstr(br@)+";" );
    poly rez=FF( rez ); // bring the result back to the initial base ring
    return(rez);
  }
}
example
{
  "EXAMPLE:";echo =2;
  // first  3 terms of the Todd class in terms of the Chern classes c(1), c(2), c(3)
  ring r=0, (c(1..3)), dp;
  list l;
  //first term
  l=c(1);
  print( toddE( l ) );
  // second term
  l=c(1..2);
  print( toddE( l ) );
  // third term
  l=c(1..3);
  print( toddE( l ) );
}
//---------------------------------------------------------------------------------

proc  Bern(int n)
"USAGE:   Bern(n);  n non-negative integer
RETURN:   list of numbers
PURPOSE:  computes the list of (second) Bernoulli numbers from B(0) to B(n)
EXAMPLE:  example Bern; shows an example
NOTE:     needs a base ring to be defined, returns an empty list if n is negative,
          uses the Akiyama-Tanigawa algorithm
"
{
  // the Akiyama-Tanigawa algorithm
  //could be replaced by a more efficient one
  list rez, steprez;
  int i, j;
  if(n<0) // if n is negative, return the empty list
  {
    return(list());
  }
  for(i=0;i<=n;i++)
  {
    steprez=steprez+list( 1/number(i+1) );
    for(j=i;j>=1;j--)
    {
      steprez[j]=j*(steprez[j]-steprez[j+1]);
    }
    rez=rez+list(steprez[1]);
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  // first 10 Bernoulli numbers: B(0), ..., B(9)
  ring r=0,(t), dp;
  print( Bern(9) );
}
//---------------------------------------------------------------------------------

proc tdCf(int n)
"USAGE:   tdCf(n);  n integer
RETURN:   list of rational numbers
PURPOSE:  computes up to degree n the coefficients of the Todd class of a line bundle
EXAMPLE:  example tdCf; shows an example
NOTE:
"
{
  list rez=Bern(n); // notice that Bern(n) is able to take care of negative n
  int i;
  for(i=1;i<=n+1;i++)
  {
  rez[i]=rez[i]/factorial(i-1);
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  // first 5 coefficients
  ring r=0,(t), dp;
  print( tdCf(4) );
}
//---------------------------------------------------------------------------------

proc tdTerms(int n, poly f)
"USAGE:   tdTerms(n, f);  n integer, f polynomial
RETURN:   list of polynomials
PURPOSE:  computes the terms of the Todd class of the line bundle with the Chern root f
EXAMPLE:  example tdTerms; shows an example
NOTE:
"
{
  list rez=Bern(n); // notice that Bern(n) takes care of negative n
  int i;
  for(i=1;i<=n+1;i++)
  {
  rez[i]=( rez[i]/factorial(i-1) )* f^(i-1);
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (t), ls;;
  // the terms of the Todd class of a line bundle with Chern root t up to degree 4
  print( tdTerms(4, t) );
}
//---------------------------------------------------------------------------------

proc tdFactor(int n, poly t)
"USAGE:   tdFactor(n, a);  n integer, a polynomial
RETURN:   polynomial
PURPOSE:  computes up to degree n the Todd class
          of the line bundle coresponding to the Chern root t
EXAMPLE:  example tdFactor; shows an example
NOTE:     returns 0 if n is negative
"
{
  int i;
  poly rez=0;
  list l=Bern(n); // get the coefficients
  for(i=0; i<=n; i++) // form the polynomial
  {
    rez=rez+(l[i+1]/factorial(i))*t^i;
  }
  return(rez);
}
example
{
  "EXAMPLE:";echo =2;
  // the Todd class up do degree 4
  ring r=0,(t), ls;
  print( tdFactor(4, t) );
}
//---------------------------------------------------------------------------------

proc cProj(int n)
"USAGE:   cProj(n);  n  integer
RETURN:   list of integers
PURPOSE:  computes the terms of positive degree of the total Chern class
          of the tangent bundle on the complex projective space
EXAMPLE:  example cProj; shows an example
NOTE:
"
{
  if(n<0)
  {
    print("The dimension of the projective space must be non-negative!");
    return(list()); // return the empty list in this case
  }
  else
  {
    list rez;
    int i;
    for(i=1;i<=n;i++)
    {
      rez=rez+list( binomial(n+1, i) );
    }
    return(rez);
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (t), dp;
  // the coefficients of the total Chern class of the complex projective line
  print( cProj(1) );

  // the coefficients of the total Chern class of the complex projective line
  print( cProj(2) );

  // the coefficients of the total Chern class of the complex projective line
  print( cProj(3) );
}
//------------------------------------------------------------------------------------------

proc chProj(int n)
"USAGE:   chProj(n);  n  integer
RETURN:   list of (rational) numbers
PURPOSE:  computes the terms of the Chern character of the tangent bundle
          on the complex projective space
EXAMPLE:  example chProj; shows an example
NOTE:
"
{
  if(n<0)
  {
    print("The dimension of the projective space must be non-negative!");
    return( list() ); // return the empty list in this case
  }
  else
  {
    list rez=list(number(n));
    int i;
    for(i=1;i<=n;i++)
    {
      rez=rez+list( (n+1)/factorial(i) );
    }
    return(rez);
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (t), dp;
  // the coefficients of the Chern character of the complex projective line
  print( chProj(1) );

  // the coefficients of the Chern character of the complex projective plane
  print( chProj(2) );

  // the coefficients of the Chern character of the complex 3-dimentional projectice space
  print( chProj(3) );
}
//------------------------------------------------------------------------------------------

proc tdProj(int n)
"USAGE:   tdProj(n);  n  integer
RETURN:   list of (rational) numbers
PURPOSE:  computes the terms of the Todd class
          of the (tangent bundle of the) complex projective space
EXAMPLE:  example tdProj; shows an example
NOTE:
"
{
  if(n<0)
  {
    print("The dimension of the projective space must be non-negative!");
    return( list() ); // return the empty list in this case
  }
  else
  {
    def br@=basering; // remember the base ring
    ring r@= 0, t@, lp; // ring with one variable t@
    ideal T=std( t@^(n+1) );
    poly f= tdFactor(n, t@);
    f=reduce( f^(n+1), T);
    matrix C = coeffs(f, t@);
    list rez;
    int i;
    for(i=0;i<=n;i++)
    {
     rez=rez+list(C[i+1, 1]);
    }
    setring br@; // come back to the initial base ring
    map FF= r@, 0 ; // define the specialization homomorphism t@=0
    return(FF(rez)); // bring the result to the base ring
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring r=0, (t), dp;

  // the coefficients of the Todd class of the complex projective line
  print( tdProj(1) );

  // the coefficients of the Todd class of the complex projective line
  print( tdProj(2) );

  // the coefficients of the Todd class of the complex projective line
  print( tdProj(3) );
}
//------------------------------------------------------------------------------------------

proc eulerChProj(int n, def r, list c)
"USAGE:   eulerChProj(n, r, c);  n  integer, r polynomial (or integer), c list of polynomials
RETURN:   polynomial
PURPOSE:  computes the Euler characteristic of a vector bundle on P_n
          in terms of its rank and Chern classses
EXAMPLE:  example eulerChProj; shows an example
NOTE:
"
{
  if(n<0)
  {
    print("The dimension of the projective space must be non-negative!");
    return(0); // return zero in this case
  }
  else
  {
    int sz=size(c);
    list td = tdProj(n); // terms of the Todd class of P_n
    int N = min( n, sz );
    int i;
    list ch = list(r) + chAll(c); // terms of the Chern character of the vector bundle
    return( rHRR(n, ch, td) );
  }
}
example
{
  "EXAMPLE:";echo =2;
  ring h=0, (r, c(1..3)),  ws(0,1,2,3);
  list l=c(1..3);
  // the Euler characteristic of a vector bundle on the projective line
  print( eulerChProj(1, r, l) );

  // the Euler characteristic of a vector bundle on the projective plane
  print( eulerChProj(2, r, l) );

  // the Euler characteristic of a vector bundle on P_3
  print( eulerChProj(3, r, l) );

  // assume now that we have a bundle framed at a subplane of P_3
  // this implies c(1)=c(2)=0
  l= 0, 0, c(3);

  // the Euler characteristic is
  print( eulerChProj(3, r, l) );
  // which implies that c(3) must be even in this case
}
//-------------------------------------------------------

proc chNumbersProj(int n)
"USAGE:   chNumbersProj(n);  n  integer
RETURN:   list of integers
PURPOSE:  computes the Chern numbers of the projective space P_n
EXAMPLE:  example chNumbersProj; shows an example
NOTE:
"
{
  return( chNumbers( n, cProj(n) ) );
}
example
{
  "EXAMPLE:";echo =2;
  ring h=0, (t), dp;
  // The Chern numbers of the projective plane P_2:
  print( chNumbersProj(2) );

  // The Chern numbers of P_3:
  print( chNumbersProj(3) );
}
//-------------------------------------------------------

proc classpoly(list l, poly t)
"USAGE:   classpoly(l, t);   l list of polynomials, t polynomial
RETURN:   polynomial
PURPOSE:  computes the polynomial in t with coefficients being the entries of l
EXAMPLE:  example classpoly; shows an example
NOTE:
"
{
  int n=size(l);
  poly pow=1; // powers of t will be compured here
  poly rez=0; // result will be computed here
  int i;
  for(i=1; i<=n; i++)
  {
    pow=pow*t; // compute the required power of t
    // add the i-th entry of l multiplied by the corresponding power of t to the result
    rez=rez + l[i]*pow;
  }
  return( rez );
}
example
{
  "EXAMPLE:";echo=2;
  ring r=0, (c(1..5), t), ds;
  list l=c(1..5);
  // get the polynomial c(1)*t + c(2)*t^2 + ... + c(5)*t^5
  print( classpoly(l, t) );
}
//----------------------------------------------------------------------------------------

proc chernPoly(list c, poly t)
"USAGE:   chernPoly(c, t);   c list of polynomials, t polynomial
RETURN:   polynomial
PURPOSE:  computes the Chern polynomial in t
EXAMPLE:  example chernPoly; shows an example
NOTE: does the same as toddPoly(...)
"
{
  return( 1+classpoly(c, t) );
}
example
{
  "EXAMPLE:";echo=2;
  ring r=0, (c(1..5), t), ds;
  list l=c(1..5);
  // get the Chern polynomial 1 + c(1)*t + c(2)*t^2 + ... + c(5)*t^5
  print( chernPoly(l, t) );
}
//----------------------------------------------------------------------------------------

proc chernCharPoly(poly r, list ch, poly t)
"USAGE:   chernCharPoly(r, ch, t);   r polynomial, ch list of polynomials, t polynomial
RETURN:   polynomial
PURPOSE:  computes the polynomial in t corresponding to the Chern character
EXAMPLE:  example chernpoly; shows an example
NOTE:
"
{
  return( r+classpoly(ch, t) );
}
example
{
  "EXAMPLE:";echo=2;
  ring h=0, (r, ch(1..5), t), ds;
  list l=ch(1..5);
  // get the polynomial r + ch(1)*t + ch(2)*t^2 + ... + ch(5)*t^5
  print( chernCharPoly(r, l, t) );
}
//----------------------------------------------------------------------------------------

proc toddPoly(list td, poly t)
"USAGE:   toddPoly(td, t);   td list of polynomials, t polynomial
RETURN:   polynomial
PURPOSE:  computes the polynomial in t corresponding to the Todd class
EXAMPLE:  example toddPoly; shows an example
NOTE:     does the same as chernPoly(...)
"
{
  return( 1+classpoly(td, t) );
}
example
{
  "EXAMPLE:"; echo=2;
  ring r=0, (td(1..5), c(1..5), t), ds;
  list l=td(1..5);
  // get the polynomial 1 + td(1)*t + td(2)*t^2 + ... + td(5)*t^5
  print( toddPoly(l, t) );
}
//---------------------------------------------------------------------------------------

proc rHRR(int N, list ch, list td)
"USAGE:   rHRR( N, ch, td);  N integer, ch, td  lists of polynomials
RETURN:   polynomial
PURPOSE:  computes the the main ingredient of the right-hand side
          of the Hirzebruch-Riemann-Roch formula
EXAMPLE:  example rHRR; shows an example
NOTE:     in order to get the right-hand side of the HRR formula
          one needs to be able to compute the degree of the output of this procedure
"
{
  poly rez; // to be the result
  int i;
  int nch=size(ch); // length of ch
  int ntd=size(td); // length of td
  for(i=1; i<=N+1; i++) // compute the highest degree term of ch.td
  {
    if( (i<=nch) && (N-i+2 <= ntd) )
    {
      rez = rez + ch[i]*td[N-i+2];
    }
  }
  return(rez);
}
example
{
  "EXAMPLE:"; echo=2;
  ring r=0, (td(0..3), ch(0..3)), dp;
  // Let ch(0), ch(1), ch(2), ch(3) be the terms of the Chern character
  // of a vector bundle E on a 3-fold X.
  list c = ch(0..3);
  // Let td(0), td(1), td(2), td(3) be the terms of the Todd class of X.
  list t = td(0..3);
  // Then the highest term of the product ch(E).td(X) is:
  print( rHRR(3, c, t) );
}
//---------------------------------------------------------------------------------------

proc SchurS(list I, list S)
"USAGE:   SchurS(I, S);  I list of integers representing a partition, S list of polynomials
RETURN:   poly
PURPOSE:  computes the Schur polynomial in the Segre classes S,
          i.e., in the  complete homogeneous symmetric polynomials, with respect to the partition I
EXAMPLE:  example SchurS; shows an example
NOTE:     if S are the Segre classes of the tautological bundle on a grassmanian,
          this gives the cohomology class of a Schubert cycle
"
{
  int m=size(I); // size of I
  S=list(1)+S; // add the zeroth Segre class
  int szS=size(S); // size of S
  int h,k;
  int in; // variable for the index of the required Segre class
  // construct the required m x m matrix from the first determinantal (Jacobi-Trudi) formula
  matrix M[m][m];
  for(h=1;h<=m;h++)
  {
    for(k=1;k<=m;k++)
    {
      in=I[k]+k-h; // compute the index
      if(in<0) // if it is negative, assume the corresponding Segre class to be zero
      {
        M[h,k]=0;
      }
      else
      {
        if(in>=szS) // if it is bigger than the number of the highest available Segre class in S
        {
          M[h, k]=0; // assume the corresponding Segre class is zero
        }
        else // otherwise
        {
          M[h, k]= S[in+1]; // use a value from S for the corresponding Segre class
        }
      }
    }
  }
  return(det(M)); // return the determinant of the computed matrix
}
example
{
  "EXAMPLE:"; echo=2;
  // The Schur polynomial corresponding to the partition 1,2,3
  // and the Segre classes 1, s(1), s(2),..., s(5)
  ring r=0,(s(1..5)), dp;
  list I=1,2,3;
  list S=s(1..5);
  print( SchurS(I, S) );
  // compare this with the Schur polynomial computed using Chern classes
  list C=chern(S);
  print( SchurCh(I, C) );
}
//---------------------------------------------------------------------------------------

proc SchurCh(list I, list C)
"USAGE:   SchurCh(I, C);  I list of integers representing a partition, C list of polynomials
RETURN:   poly
PURPOSE:  computes the Schur polynomial in the Chern classes C,
          i.e., in the elementary symmetric polynomials, with respect to the partition I
EXAMPLE:  example SchurCh; shows an example
NOTE:     if C are the Chern classes of the tautological bundle on a grassmanian,
          this gives the cohomology class of a Schubert cycle
"
{
  I=dualPart(I); // dual partition to I
  int m=size(I); // size of I
  C=list(1)+C; // add the zeroth Chern class
  int szC=size(C); // size of C
  int h,k;
  int in; // variable for the index of the required Chern class
  // construct the required m x m matrix from the second determinantal (Jacobi-Trudi) formula
  matrix M[m][m];
  for(h=1;h<=m;h++)
  {
    for(k=1;k<=m;k++)
    {
      in=I[k]+k-h; // compute the index
      if(in<0) // if it is negative, assume the corresponding Chern class to be zero
      {
        M[h,k]=0;
      }
      else
      {
        if(in>=szC) // if it is bigger than the number of the highest available Chern class in C
        {
          M[h, k]=0; // assume the corresponding Chern class is zero
        }
        else // otherwise
        {
          M[h, k]= C[in+1]; // use a value from C for the corresponding Chern class
        }
      }
    }
  }
  return(det(M)); // return the determinant of the computed matrix
}
example
{
  "EXAMPLE:"; echo=2;
  // The Schur polynomial corresponding to the partition 1,2,3
  // and the Chern classes c(1), c(2), c(3)
  ring r=0,(c(1..3)), dp;
  list I=1,2,3;
  list C=c(1..3);
  print( SchurCh(I, C) );
  // Compare this with the Schur polynomial computed using Segre classes
  list S=segre(list(c(1..3)), 5);
  print(SchurS(I,S));
}
//---------------------------------------------------------------------------------------

proc part(int m, int n)
"USAGE:   part( m, n );  m positive integer, n non-negative integer
RETURN:   list of lists
PURPOSE:  computes all partitions of integers not exceeding n into m non-negative summands
EXAMPLE:  example part; shows an example
NOTE:     if n is negative or m is non-positive, the list with one empty entry is returned
"
{
  if( n<0 ) // if n is negative
  {
    return(list(list())); // return the list with one empty entry
  }
  if(n==0) // if n equals 0, there is only one partition of 0 into m non-negative summands
  {
    return(list(listSame(0,m))); // return the list with one entry consistion of m zeroes
  }
  // otherwise proceed recursively
  list rez=part(m, n-1); // get all partitions for n-1
  int i;
  for(i=1;i<=m;i++) // for every i between 1 and m, add the partitions with exactly
  {
    rez=rez + appendToAll( part(m-i, n-1), listSame(n, i) ); // i summands equal to n
  }
  return(rez); // return the result
}
example
{
  "EXAMPLE:"; echo=2;
  // partitions into 3 summands of numbers not exceeding 1
  print( part(3, 1) );
}
//---------------------------------------------------------------------------------------

proc dualPart(list I, list #)
"USAGE:   dualPart( I [,N] );  I list of integers, N integer
RETURN:   list of integers
PURPOSE:  computes the partition dual (conjugate) to I
EXAMPLE:  example dualPart; shows an example
NOTE:     the result is extended by zeroes to length N if an optional integer
          parameter N is given and the length of the computed  dual partition
          is smaller than N
"
{
  int m= size(I); // size of I
  if(m==0) // if I is the empty list
  {
    print("You are trying to compute the dual of the empty partition!");
    print("The partition with one zero is returned.");
    return(list(0));
  }
  // compute the dual partition
  list J; // the result will be computed here
  int i;
  int j=I[1];
  int k;
  for(k=1;k<=j;k++)
  {
    J=list(m)+J;
  }
  for(i=2;i<=m;i++)
  {
    j=I[i]-I[i-1];
    for(k=1;k<=j;k++)
    {
      J=list(m-i+1)+J;
    }
  }
  if(size(J)==0) // if the dual partition J is empty (if I consists of zeroes)
  {
    J = list(0); // add zero to the result
  }
  if(size(#)>0) // if there is an optional parameter N
  {
    if( is_integer( #[1] ) ) // if the parameter is an integer,
    {
      if( size(J) < #[1] ) // if N  is bigger than the lebgth of J,
      {
        J=listSame(0, #[1]-size(J))+J; // extend J by zeroes to length N
      }
    }
  }
  return(J); // return the result
}
example
{
  "EXAMPLE:"; echo =2;
  // dual partition to (1, 3, 4):
  list I = 1, 3, 4;
  print( dualPart(I) );
}
//---------------------------------------------------------------------------------------

proc PartC(list I, int m)
"USAGE:   PartC( I, m);  I list of integers, m integer
RETURN:   list of integers
PURPOSE:  commputes the complement of a partition with respect to m
EXAMPLE:  example PartC; shows an example
NOTE:     returns the zero partition if the maximal element of the partition is smaller than m
"
{
  int n=size(I); // size of I
  if( m<I[n] ) // if m is smaller than the last term of I,
  {
    // give a warning
    print("You are trying to compute a complement of a partition with respect");
    print("to a number that is smaller than the maximal summand of the partition!");
    print("The zero partition is returned.");
    return(list(0)); // and return the zero partition
  }
  list J; // the result will be computed here
  int i;
  for(i=n;i>=1;i--) // invert the order of numbers
  {
    J=J+list(m-I[i]); // and substitute them by their complemenst to m
  }
  return(J); // return the result
}
example
{
  "EXAMPLE:"; echo =2;
  // Complement of the partition (1, 3, 4) with respect to 5
  list I = 1, 3, 4;
  print( PartC(I, 5) );
}
//---------------------------------------------------------------------------------------

proc partOver(int n, list J)
"USAGE:   partOver( n, J);  n integer, J list of integers (partition)
RETURN:   list of lists
PURPOSE:  computes the partitions over a given one  with summands not exceeding n
EXAMPLE:  example partOver; shows an example
NOTE:
"
{
  int m=size(J); // size of J
  if( m==0 ) // if J is an empty list
  {
    // give a warning
    print("You are trying to compute partitions over an empty partition!");
    return( list() ); // and return the emty list
  }
  if( J[m] > n ) // if the biggest summand of the partition is bigger than n
  {
    return( list( ) ); // return the emty list
  }
  if( J[m] == 0 ) // if J consists of zeroes
  {
    return( part(m,n) ); // return all partitions of n into m summands
  }
  // now J is non-empty, contains con-zero summands, has partitions over it
  list rez1; // the result will be computed here
  int i,j;
  if(m==1) // if J has only one element
  {
    for(j=J[1]; j<=n; j++) // run through the integers from J[1] to n
    {
      rez1=rez1 + list(j); // add the corresponding one element lists to the result
    }
    return(rez1); // return the result
  }
  // now J has at least two elements
  // get the partitions over the partition without the last summand
  list rez = partOver(n, delete(J, m));
  int sz=size(rez); // number of such partitions
  list P;
  int last;
  for(i=1; i<=sz; i++) // run trough all such partitions
  {
    P=rez[i]; // for each partition P of this type
    last = max( P[size(P)], J[m] );
    for(j = last;j<= n;j++) // run through the integers exceding the last summands of P and J
    {
      // append them to P at the end and add the resulting partition to the result
      rez1=rez1 + list(P+list(j));
    }
  }
  return(rez1); // return the result
}
example
{
  "EXAMPLE:"; echo =2;
  // Partitions over the partition (3, 3, 4) with summands not exceeding 4
  list I = 3, 3, 4;
  print( partOver(4, I) );
}
//---------------------------------------------------------------------------------------

proc partUnder(list J)
"USAGE:   partUnder(J);  J list of integers (partition)
RETURN:   list of lists
PURPOSE:  computes the partitions under a given one
EXAMPLE:  example partUnder; shows an example
NOTE:
"
{
  int m=size(J); // size of J
  if(m==0) // if J is empty
  {
    return(list()); // return an empty list
  }
  list rez1; // the result will be computed here
  int i;
  if(m==1) // if J contains only one element
  {
    for(i=0; i<=J[1]; i++)
    {
      rez1=rez1+list(list(i));
    }
  }
  // now J contains at least two elements
  list rez;
  int Jlast=J[m]; // last element of J
  rez = partUnder(delete(J, m)); // partitions under J without the last element
  int j;
  int sz=size(rez); // their number
  list P;
  int last;
  for(i=1; i<=sz; i++) // for every such partition
  {
    P = rez[i];
    last = P[size(P)];
    for(j = last;j<=Jlast ;j++) // for every number between its last entry and the last entry of J
    {
      // append that number to the end of the partition
      // and append the resulting partition to the final result
      rez1 = rez1 + list(P+list(j));
    }
  }
  return(rez1);
}
example
{
  "EXAMPLE:"; echo =2;
  // Partitions under the partition (0, 1, 1)
  list I = 0, 1, 1;
  print( partUnder(I) );
}
//----------------------------------------------------------------------------------------
// The procedures below are for the internal usage only
//----------------------------------------------------------------------------------------

static proc append_by_zeroes(int N, list c)
"USAGE:   append_by_zeroes( N, c);  N integer, c a list
RETURN:   list
PURPOSE:  appends by zeroes up to the length N
EXAMPLE:  example append_by_zeroes; shows an example
NOTE:
"
{
  int n=size(c);
  if(N>n) // if N is greater than the length of c, append c by zeroes up to the length N
  {
    int i;
    for(i=n+1;i<=N;i++)
    {
      c=c+list( poly(0) );
    }
  }
  return(c);
}
example
{
  "EXAMPLE:";echo =2;
  ring r = 0, (x, y, z), dp;
  list l=(x, y, z);
  //append the list by two zeroes and get a list of lenght 5
  print( append_by_zeroes(5, l) );
}
//-----------------------------------------------------------------------

static proc is_integer(def r)
"USAGE:   is_integer(r);  r any type
RETURN:   1 or 0
PURPOSE:  checks whether r is of type int or bigint
EXAMPLE:  example is_integer; shows an example
NOTE: returns 1 if r is of type int or bigint, otherwise returns 0
"
{
  if( (typeof(r)=="int") || (typeof(r)=="bigint") )
  {
    return(1);
  }
  else
  {
    return(0);
  }
}
example
{
  "EXAMPLE:";echo =2;
  // test on int, bigint, poly
  ring r;
  int i=12;
  bigint j=16;
  poly f=x;
  print( is_integer(i) );
  print( is_integer(j) );
  print( is_integer(f) );
}
//------------------------------------------------------------------------------------

static proc integer_list(list l)
"USAGE:   integer_list(l);  l list
RETURN:   list
PURPOSE:  gets the first positive ingerer entries of l, computes their maximum;
          used for adjusting the lists of optional parameters that are suposed to be integers
EXAMPLE:  example integer_list; shows an example
NOTE:     used in chWedge(...) and chSymm(...)
"
{
  int M=0;
  int n=size(l);
  if(n==0)
  {
    return(list(l, M));
  }
  // now n>0
  list rez; // the result will be computed here
  int i=1;
  while( is_integer( l[i] ) ) // take only the first integer entries of l
  {
    if(l[i]>0) // if they are positive
    {
      rez=rez+list( l[i] );
      if(l[i]>M) // adjust the maximum if necessary
      {
        M=l[i];
      }
      i++;
    }
    else // otherwise get out from the loop
    {
      break;
    }
  }
  return( list( rez, M)   );
}
example
{
  "EXAMPLE:";echo =2;
  // the first integer entries of 1,2,3,t are 1,2,3
  ring r=0,(t), ls;
  list l=1,2,3, t;
  print( integer_list(l) );
}
//---------------------------------------------------------------------------------------

static proc appendToAll(list L, list A)
"USAGE:   appendToAll( L, A );  L list of lists, A list
RETURN:   list
PURPOSE:  appends A to every entry of L
EXAMPLE:  example appendToAll; shows an example
NOTE:
"
{
  int n=size(L);
  int i;
  for(i=1;i<=n;i++) // run through all elements of L
  {
    L[i]=L[i]+A; // and append A to each of them
  }
  return(L);
}
example
{
  "EXAMPLE:"; echo=2;
  // Consider two lists
  list l1, l2;
  l1=1,2;
  l2=3,4;
  // The first one is
  print(l1);
  // The second one is
  print(l2);
  // Now consider the list with entries l1 and l2
  list L= l1, l2;
  print(L);
  // and consider a list A
  list A = 7,9;
  print(A);
  // append A to all entries of L
  print( appendToAll(L, A) );
}
//---------------------------------------------------------------------------------------

static proc listSame(int n, int k)
"USAGE:   listSame( n, k );  n integer, k non-negative integer
RETURN:   list
PURPOSE:  list with k entries each equal to n
EXAMPLE:  example listSame; shows an example
NOTE:     if k is negative or zero, the empty list is returned
"
{
  list rez;
  int i;
  for(i=1;i<=k;i++) // create a list with k entries, each equal to n
  {
    rez=rez+list(n);
  }
  return(rez);
}
example
{
  "EXAMPLE:"; echo=2;
  // list of 5 zeroes
  print( listSame(0, 5) );
}
//---------------------------------------------------------------------------------------

static proc IJcoef(list I, list J)
"USAGE:   IJcoef( I, J);  J, J lists of integers
RETURN:   bigint
PURPOSE:  computes the coefficient used in the formula of Lascoux
EXAMPLE:  example IJcoef; shows an example
NOTE:     these coefficients are denoted (I, J) in the paper of Lascoux
"
{
  int m = size(I);
  if(m != size(J)) // if the sizes of I and J are different
  {
    // give a warning
    print("The sizes of the partitions are different!");
    print("Zero is returned.");
    return( bigint(0) ); // and return zero
  }
  // now the sizes of I and J are equal m
  int h, k;
  bigintmat M[m][m]; // construct the required matrix
  for(h=1; h<=m; h++)
  {
    for(k=1; k<=m; k++)
    {
      M[h,k] = binomial( I[k]+k-1, J[h]+h-1 );
    }
  }
  return( det(M) ); // and return its determinant
}
example
{
  "EXAMPLE:"; echo =2;
  // The coefficient corresponding to the partitions (1, 3, 4) and (0, 3, 3)
  list I = 1, 3, 4;
  list J = 1, 3, 3;
  print( IJcoef(I, J) );
}
//---------------------------------------------------------------------------------------