/usr/share/singular/LIB/cimonom.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | //////////////////////////////////////////////////////////////////////////////
version="version cimonom.lib 4.0.0.0 Jun_2013 "; // $Id: e11a453b266bcdb659f84fafd1624269e6d55c4b $
category="Commutative Algebra";
info="
LIBRARY: cimonom.lib Determines if the toric ideal of an affine monomial curve is a complete intersection
AUTHORS: I.Bermejo, ibermejo@ull.es
@* I.Garcia-Marco, iggarcia@ull.es
@* J.-J.Salazar-Gonzalez, jjsalaza@ull.es
OVERVIEW:
A library for determining if the toric ideal of an affine monomial curve is a complete intersection with NO
NEED of computing explicitly a system of generators of such ideal. It also contains procedures to obtain the
minimum positive multiple of an integer which is in a semigroup of positive integers.
The procedures are based on a paper by Isabel Bermejo, Ignacio Garcia and Juan Jose Salazar-Gonzalez: 'An
algorithm to check whether the toric ideal of an affine monomial curve is a complete intersection', Preprint.
SEE ALSO: Integer programming
PROCEDURES:
BelongSemig(n,v[,sup]); checks whether n is in the semigroup generated by v;
MinMult(a,b); computes k, the minimum positive integer such that k*a is in the semigroup of
positive integers generated by the elements in b.
CompInt(d); checks wether I(d) is a complete intersection or not.
";
LIB "general.lib";
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//
proc BelongSemig(bigint n, intvec v, list #)
"
USAGE: BelongSemig (n,v[,sup]); n bigint, v and sup intvec
RETURN: In the default form, it returns 1 if n is in the semigroup generated by
the elements of v or 0 otherwise. If the argument sup is added and in case
n belongs to the semigroup generated by the elements of v, it returns
a monomial in the variables {x(i) | i in sup} of degree n if we set
deg(x(sup[j])) = v[j].
ASSUME: v and sup positive integer vectors of same size, sup has no
repeated entries, x(i) has to be an indeterminate in the current ring for
all i in sup.
EXAMPLE: example BelongSemig; shows some examples
"
{
//--------------------------- initialisation ---------------------------------
int i, j, num;
bigint PartialSum;
num = size(v);
int e = size(#);
if (e > 0)
{
intvec sup = #[1];
poly mon;
}
for (i = 1; i <= nrows(v); i++)
{
if ((n % v[i]) == 0)
{
// ---- n is multiple of v[i]
if (e)
{
mon = x(sup[i])^(int(n/v[i]));
return(mon);
}
else
{
return (1);
}
}
}
if (num == 1)
{
// ---- num = 1 and n is not multiple of v[1] --> FALSE
return(0);
}
intvec counter;
counter[num] = 0;
PartialSum = 0;
intvec w = sort(v)[1];
intvec cambio = sort(v)[2];
// ---- Iterative procedure to determine if n is in the semigroup generated by v
while (1)
{
if (n >= PartialSum)
{
if (((n - PartialSum) % w[1]) == 0)
{
// ---- n belongs to the semigroup generated by v,
if (e)
{
// ---- obtain the monomial.
mon = x(sup[cambio[1]])^(int((n - PartialSum) / w[1]));
for (j = 2; j <= num; j++)
{
mon = mon * x(sup[cambio[j]])^(counter[j]);
}
return(mon);
}
else
{
// ---- returns true.
return (1);
}
}
}
i = num;
while (!defined(end))
{
if (i == 1)
{
// ---- Stop, n is not in the semigroup
return(0);
}
if (i > 1)
{
// counters control
if (counter[i] >= ((n - PartialSum) / w[i]))
{
PartialSum = PartialSum - (counter[i]*w[i]);
counter[i] = 0;
i--;
}
else
{
counter[i] = counter[i] + 1;
PartialSum = PartialSum + w[i];
int end;
}
}
}
kill end;
}
}
example
{ "EXAMPLE:";
ring r=0,x(1..5),dp;
int a = 125;
intvec v = 13,17,51;
intvec sup = 2,4,1;
BelongSemig(a,v,sup);
BelongSemig(a,v);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
proc MinMult(int a, intvec b)
"
USAGE: MinMult (a, b); a integer, b integer vector.
RETURN: an integer k, the minimum positive integer such that ka belongs to the
semigroup generated by the integers in b.
ASSUME: a is a positive integer, b is a positive integers vector.
EXAMPLE: example MinMult; shows some examples.
"
{
//--------------------------- initialisation ---------------------------------
int i, j, min, max;
int n = nrows(b);
if (n == 1)
{
// ---- trivial case
return(b[1]/gcd(a,b[1]));
}
max = b[1];
for (i = 2; i <= n; i++)
{
if (b[i] > max)
{
max = b[i];
}
}
int NumNodes = a + max; //----Number of nodes in the graph
int dist = 1;
// ---- Auxiliary structures to obtain the shortest path between the nodes 1 and a+1 of this graph
intvec queue = 1;
intvec queue2;
// ---- Control vector:
// control[i] = 0 -> node not reached yet
// control[i] = 1 -> node in queue1
// control[i] = 2 -> node in queue2
// control[i] = 3 -> node already processed
intvec control;
control[1] = 3; // Starting node
control[a + max] = 0; // Ending node
int current = 1; // Current node
int next; // Node connected to corrent by arc (current, next)
int ElemQueue, ElemQueue2;
int PosQueue = 1;
// Algoritmo de Dijkstra
while (1)
{
if (current <= a)
{
// ---- current <= a, arcs are (current, current + b[i])
for (i = 1; i <= n; i++)
{
next = current + b[i];
if (next == a+1)
{
kill control;
kill queue;
kill queue2;
return (dist);
}
if ((control[next] == 0)||(control[next] == 2))
{
control[next] = 1;
queue = queue, next;
}
}
}
if (current > a)
{
// ---- current > a, the only possible ars is (current, current - a)
next = current - a;
if (control[next] == 0)
{
control[next] = 2;
queue2[nrows(queue2) + 1] = next;
}
}
PosQueue++;
if (PosQueue <= nrows(queue))
{
current = queue[PosQueue];
}
else
{
dist++;
if (control[a+1] == 2)
{
return(dist);
}
queue = queue2[2..nrows(queue2)];
current = queue[1];
PosQueue = 1;
queue2 = 0;
}
control[current] = 3;
}
}
example
{ "EXAMPLE:";
"int a = 46;";
"intvec b = 13,17,59;";
"MinMult(a,b);";
int a = 46;
intvec b = 13,17,59;
MinMult(a,b);
"// 3*a = 8*b[1] + 2*b[2]"
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
proc CompInt(intvec d)
"
USAGE: CompInt(d); d intvec.
RETURN: 1 if the toric ideal I(d) is a complete intersection or 0 otherwise.
ASSUME: d is a vector of positive integers.
NOTE: If printlevel > 0, additional info is displayed in case
I(d) is a complete intersection:
if printlevel >= 1, it displays a minimal set of generators of the toric
ideal formed by quasihomogeneous binomials. Moreover, if printlevel >= 2
and gcd(d) = 1, it also shows the Frobenius number of the semigroup
generated by the elements in d.
EXAMPLE: example CompInt; shows some examples
"
{
//--------------------------- initialisation ---------------------------------
int i,j,k,l,divide,equal,possible;
int n = nrows(d);
int max = 2*n - 1;
ring r = 0, x(1..n), dp;
int level = printlevel - voice + 2;
// ---- To decide how much extra information calculate and display
if (level > 1)
{
int e = d[1];
for (i = 2; i <= n; i++)
{
e = gcd(e,d[i]);
}
if (e <> 1)
{
print ("// Semigroup generated by d is not numerical!");
}
}
if (level > 0)
{
ideal id;
vector mon;
mon[max] = 0;
if ((level > 1)&&(e == 1))
{
bigint frob = 0;
}
}
// ---- Trivial cases: n = 1,2 (it is a complete intersection).
if (n == 1)
{
print("// Ideal is (0)");
return (1);
}
if (n == 2)
{
if (level > 0)
{
intvec d1 = d[1];
intvec d2 = d[2];
int f1 = MinMult(d[1],d2);
int f2 = MinMult(d[2],d1);
id = x(1)^(f1) - x(2)^(f2);
print ("// Toric ideal:");
id;
if ((level > 1)&&(e == 1))
{
frob = d[1]*f1 - d[1] - d[2];
print ("// Frobenius number of the numerical semigroup:");
frob;
}
}
return (1);
}
// ---- For n >= 3 (non-trivial cases)
matrix mat[max][n];
intvec using, bound, multiple;
multiple[max] = 0;
bound[max] = 0;
using[max] = 0;
for (i = 1; i <= n; i++)
{
using[i] = 1;
multiple[i] = 0;
mat[i,i] = 1;
}
if (level > 1)
{
if (e == 1)
{
for (i = 1; i <= n; i++)
{
frob = frob - d[i];
}
}
}
int new, new1, new2;
for (i = 1; i <= n; i++)
{
for (j = 1; j < i; j++)
{
if (i <> j)
{
new = gcd(d[i],d[j]);
new1 = d[j]/new;
new2 = d[i]/new;
if (!bound[i] ||(new1 < bound[i]))
{
bound[i] = new1;
}
if (!bound[j] ||(new2 < bound[j]))
{
bound[j] = new2;
}
}
}
}
// ---- Begins the inductive part
for (i = 1; i < n; i++)
{
// ---- n-1 stages
for (j = 1; j < n + i; j++)
{
if ((using[j])&&(multiple[j] == 0))
{
possible = 0;
for (k = 1; (k < n + i)&&(!possible); k++)
{
if ((using[k])&&(k != j)&&(bigint(bound[k])*d[k] == bigint(bound[j])*d[j]))
{
possible = 1;
}
}
if (possible)
{
// ---- If possible == 1, then c_j has to be computed
intvec aux;
// ---- auxiliary vector containing all d[l] in use except d[j]
k = 1;
for (l = 1; l < n + i; l++)
{
if (using[l] && (l != j))
{
aux[k] = d[l];
k++;
}
}
multiple[j] = MinMult(d[j], aux);
kill aux;
if (j <= n)
{
if (level > 0)
{
mon = mon + (x(j)^multiple[j])*gen(j);
}
}
else
{
// ---- if j > n, it has to be checked if c_j belongs to a certain semigroup
intvec aux, sup;
k = 1;
for (l = 1; l <= n; l++)
{
if (mat[j, l] <> 0)
{
sup[k] = l;
aux[k] = d[l];
k++;
}
}
if (level > 0)
{
mon = mon + (BelongSemig(bigint(multiple[j])*d[j], aux, sup))*gen(j);
if (mon[j] == 0)
{
// ---- multiple[j]*d[j] does not belong to the semigroup generated by aux,
// ---- then it is NOT a complete intersection
return (0);
}
}
else
{
if (!BelongSemig(bigint(multiple[j])*d[j], aux))
{
// ---- multiple[j]*d[j] does not belong to the semigroup generated by aux,
// ---- then it is NOT a complete intersection
return (0);
}
}
kill sup;
kill aux;
}
// ---- Searching if there exist k such that multiple[k]*d[k]= multiple[j]*d[j]
equal = 0;
for (k = 1; k < n+i; k++)
{
if ((k <> j) && multiple[k] && using[k])
{
if (d[j]*bigint(multiple[j]) == d[k]*bigint(multiple[k]))
{
// found
equal = k;
break;
}
}
}
// ---- if equal = 0 no coincidence
if (!equal)
{
if (j == n + i - 1)
{
// ---- All multiple[k]*d[k] in use are different -> NOT complete intersection
return (0);
}
}
else
{
// ---- Next stage is prepared
if (level > 0)
{
//---- New generator of the toric ideal
id[i] = mon[j] - mon[equal];
if ((level > 1)&&(e == 1))
{
frob = frob + bigint(multiple[j])*d[j];
}
}
//---- Two exponents are removed and one is added
using[j] = 0;
using[equal] = 0;
using[n + i] = 1;
d[n + i] = gcd(d[j], d[equal]); //---- new exponent
for (l = 1; l <= n; l++)
{
mat[n + i, l] = mat[j, l] + mat[equal, l];
}
// Bounds are reestablished
for (l = 1; l < n+i; l++)
{
if (using[l])
{
divide = gcd(d[l],d[n+i]);
new = d[n+i] / divide;
if ((multiple[l])&&(multiple[l] > new))
{
return (0);
}
if (new < bound[l])
{
bound[l] = new;
}
new = d[l] / divide;
if ( !bound[n+i] || (new < bound[n+i]))
{
bound[n+i] = new;
}
}
}
break;
}
}
}
if (j == n + i - 1)
{
// ---- All multiple[k]*d[k] in use are different -> NOT complete intersection
return (0);
}
}
}
if (level > 0)
{
"// Toric ideal: ";
id;
if ((level > 1)&&(e == 1))
{
"// Frobenius number of the numerical semigroup: ";
frob;
}
}
return(1);
}
example
{ "EXAMPLE:";
printlevel = 0;
intvec d = 14,15,10,21;
CompInt(d);
printlevel = 3;
d = 36,54,125,150,225;
CompInt(d);
d = 45,70,75,98,147;
CompInt(d);
};
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
|