/usr/share/singular/LIB/control.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 | /////////////////////////////////////////////////////////////////////////
version="version control.lib 4.0.0.0 Jun_2013 "; // $Id: 018a6cff8b41a26f7eb46724ad9d483956bfb9aa $
category="System and Control Theory";
info="
LIBRARY: control.lib Algebraic analysis tools for System and Control Theory
AUTHORS: Oleksandr Iena, yena@mathematik.uni-kl.de
@* Markus Becker, mbecker@mathematik.uni-kl.de
@* Viktor Levandovskyy, levandov@mathematik.uni-kl.de
SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
and V. Levandovskyy), University of Kaiserslautern
PROCEDURES:
control(R); analysis of controllability-related properties of R (using Ext modules)
controlDim(R); analysis of controllability-related properties of R (using dimension)
autonom(R); analysis of autonomy-related properties of R (using Ext modules)
autonomDim(R); analysis of autonomy-related properties of R (using dimension)
leftKernel(R); a left kernel of R
rightKernel(R); a right kernel of R
leftInverse(R); a left inverse of R
rightInverse(R); a right inverse of R
colrank(M); a column rank of M as of matrix
genericity(M); analysis of the genericity of parameters
canonize(L); Groebnerification for modules in the output of control or autonomy procs
iostruct(R); computes an IO-structure of behavior given by a module R
findTorsion(R, I); generators of the submodule of a module R, annihilated by the ideal I
controlExample(s); set up an example from the mini database inside of the library
view(); well-formatted output of lists, modules and matrices
";
LIB "homolog.lib";
LIB "poly.lib";
LIB "primdec.lib";
LIB "matrix.lib";
//---------------------------------------------------------------
static proc Opt_Our()
"USAGE: Opt_Our();
RETURN: intvec, where previous options are stored
PURPOSE: save previous options and set customized options
"
{
intvec v;
v=option(get);
option(redSB);
option(redTail);
return (v);
}
//-------------------------------------------------------------------------
static proc space(int n)
"USAGE:spase(n); n is an integer (number of needed spaces)
RETURN: string consisting of n spaces
NOTE: the procedure is used in the procedure 'view' to have a better formatted output
"{
int i;
string s="";
for(i=1;i<=n;i++)
{
s=s+" ";
}
return(s);
}
//-----------------------------------------------------------------------------
proc view(def M)
"USAGE: view(M); M is of any type
RETURN: no return value
PURPOSE: procedure for (well-) formatted output of modules, matrices, lists of modules, matrices; shows everything even if entries are long
NOTE: in case of other types( not 'module', 'matrix', 'list') works just as standard 'print' procedure
EXAMPLE: example view; shows an example
"
{
// to be replaced with something more feasible
if ( (typeof(M)=="module")||(typeof(M)=="matrix") )
{
int @R=nrows(M);
int @C=ncols(M);
int i;
int j;
list MaxLength=list();
int Size=0;
int max;
string s;
for(i=1;i<=@C;i++)
{
max=0;
for(j=1;j<=@R;j++)
{
Size=size( string( M[j,i] ) );
if( Size>max )
{
max=Size;
}
}
MaxLength[i] = max;
}
for(i=1;i<=@R;i++)
{
s="";
for(j=1;j<@C;j++)
{
s=s+string(M[i,j])+space( MaxLength[j]-size( string( M[i,j] ) ) ) +",";
}
s=s+string(M[i,j])+space( MaxLength[j]-size( string( M[i,j] ) ) );
if (i!=@R)
{
s=s+",";
}
print(s);
}
return();
}
if(typeof(M)=="list")
{
int sz=size(M);
int i;
for(i=1;i<=sz;i++)
{
view(M[i]);
print("");
}
return();
}
print(M);
return();
}
example
{"EXAMPLE:";echo = 2;
ring r;
list L;
matrix M[1][3] = x2+x,y3-y,z5-4z+7;
L[1] = "a matrix:";
L[2] = M;
L[3] = "an ideal:";
L[4] = ideal(M);
view(L);
}
//--------------------------------------------------------------------------
proc rightKernel(matrix M)
"USAGE: rightKernel(M); M a matrix
RETURN: module
PURPOSE: computes the right kernel of matrix M (a module of all elements v such that Mv=0)
EXAMPLE: example rightKernel; shows an example
"{
return(modulo(M,std(0)));
}
example
{"EXAMPLE:";echo = 2;
ring r = 0,(x,y,z),dp;
matrix M[1][3] = x,y,z;
print(M);
matrix R = rightKernel(M);
print(R);
// check:
print(M*R);
}
//-------------------------------------------------------------------------
proc leftKernel(matrix M)
"USAGE: leftKernel(M); M a matrix
RETURN: module
PURPOSE: computes left kernel of matrix M (a module of all elements v such that vM=0)
EXAMPLE: example leftKernel; shows an example
"
{
return( transpose( modulo( transpose(M),std(0) ) ) );
}
example
{"EXAMPLE:";echo = 2;
ring r= 0,(x,y,z),dp;
matrix M[3][1] = x,y,z;
print(M);
matrix L = leftKernel(M);
print(L);
// check:
print(L*M);
}
//------------------------------------------------------------------------
proc leftInverse(module M)
"USAGE: leftInverse(M); M a module
RETURN: module
PURPOSE: computes such a matrix L, that LM = Id;
EXAMPLE: example leftInverse; shows an example
NOTE: exists only in the case when M is free submodule
"
{
// it works also for the NC case;
int NCols = ncols(M);
module Id = freemodule(NCols);
module N = transpose(M);
intvec old_opt=Opt_Our();
Id = std(Id);
matrix T;
// check the correctness (Id \subseteq M)
// via dimension: dim (M) = -1!
int d = dim_Our(N);
if (d != -1)
{
// No left inverse exists
return(matrix(0));
}
matrix T2 = lift(N, Id);
T2 = transpose(T2);
option(set,old_opt); // set the options back
return(T2);
}
example
{
"EXAMPLE:";echo =2;
// a trivial example:
ring r = 0,(x,z),dp;
matrix M[2][1] = 1,x2z;
print(M);
print( leftInverse(M) );
kill r;
// derived from the example TwoPendula:
ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
matrix U[3][1];
U[1,1]=(-L2)*Dt^4+(g)*Dt^2;
U[2,1]=(-L1)*Dt^4+(g)*Dt^2;
U[3,1]=(L1*L2)*Dt^4+(-g*L1-g*L2)*Dt^2+(g^2);
module M = module(U);
module L = leftInverse(M);
print(L);
// check
print(L*M);
}
//-----------------------------------------------------------------------
proc rightInverse(module R)
"USAGE: rightInverse(M); M a module
RETURN: module
PURPOSE: computes such a matrix L, that ML = Id
EXAMPLE: example rightInverse; shows an example
NOTE: exists only in the case when M is free submodule
"
{
// for comm case it suffices
if (isCommutative())
{
return(transpose(leftInverse(transpose(R))));
}
// for noncomm
def save = basering; def sop = opposite(save);
setring sop; module Mop = oppose(save,R);
Mop = transpose(Mop);
module L = leftInverse(Mop);
setring save; module L = oppose(sop,L);
L = transpose(L);
return(matrix(L));
}
example
{ "EXAMPLE:";echo =2;
// a trivial example:
ring r = 0,(x,z),dp;
matrix M[1][2] = 1,x2+z;
print(M);
print( rightInverse(M) );
kill r;
// derived from the TwoPendula example:
ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
matrix U[1][3];
U[1,1]=(-L2)*Dt^4+(g)*Dt^2;
U[1,2]=(-L1)*Dt^4+(g)*Dt^2;
U[1,3]=(L1*L2)*Dt^4+(-g*L1-g*L2)*Dt^2+(g^2);
module M = module(U);
module L = rightInverse(M);
print(L);
// check
print(M*L);
}
//-----------------------------------------------------------------------
static proc dim_Our(module R)
{
int d;
if (attrib(R,"isSB")<>1)
{
R = std(R);
}
d = dim(R);
return(d);
}
//-----------------------------------------------------------------------
static proc Ann_Our(module R)
{
return(Ann(R));
}
//-----------------------------------------------------------------------
static proc Ext_Our(int i, module R, list #)
{
// mimicking 'Ext_R' from homolog.lib
int ExtraArg = ( size(#)>0 );
if (ExtraArg)
{
return( Ext_R(i,R,#[1]) );
}
else
{
return( Ext_R(i,R) );
}
}
//------------------------------------------------------------------------
static proc is_zero_Our
{
//just a copy of 'is_zero' from "poly.lib" patched with GKdim
int d = dim_Our(std(#[1]));
int a = ( d==-1 );
if( size(#) >1 ) { list L=a,d; return(L); }
return(a);
// return( is_zero(R) ) ;
}
//------------------------------------------------------------------------
static proc control_output(int i, int NVars, module R, module Ext_1, list Gen)
"USAGE: control_output(i, NVars, R, Ext_1),
PURPOSE: where
@* i is integer (number of first nonzero Ext or a number of variables in a basering + 1 in case that all the Exts are zero),
@* NVars: integer, number of variables in a base ring,
@* R: module R (cokernel representation),
@* Ext_1: module, the first Ext(its cokernel representation)
RETURN: list with all the contollability properties of the system which is to be returned in 'control' procedure
NOTE: this procedure is used in 'control' procedure
"{
// TODO: NVars to be replaced with the global hom. dimension of basering!!!
// Is not clear what to do with gl.dim of qrings
string DofS = "dimension of the system:";
string Fn = "number of first nonzero Ext:";
string Gen_mes = "Parameter constellations which might lead to a non-controllable system:";
module RK = rightKernel(R);
int d=dim_Our(std(transpose(R)));
if (i==1)
{
return(
list ( Fn,
i,
"not controllable , image representation for controllable part:",
RK,
"kernel representation for controllable part:",
leftKernel( RK ),
"obstruction to controllability",
Ext_1,
"annihilator of torsion module (of obstruction to controllability)",
Ann_Our(Ext_1),
DofS,
d
)
);
}
if(i>NVars)
{
return( list( Fn,
-1,
"strongly controllable(flat), image representation:",
RK,
"left inverse to image representation:",
leftInverse(RK),
DofS,
d,
Gen_mes,
Gen)
);
}
//
//now i<=NVars
//
if( (i==2) )
{
return( list( Fn,
i,
"controllable, not reflexive, image representation:",
RK,
DofS,
d,
Gen_mes,
Gen)
);
}
if( (i>=3) )
{
return( list ( Fn,
i,
"reflexive, not strongly controllable, image representation:",
RK,
DofS,
d,
Gen_mes,
Gen)
);
}
}
//-------------------------------------------------------------------------
proc control(module R)
"USAGE: control(R); R a module (R is the matrix of the system of equations to be investigated)
RETURN: list
PURPOSE: compute the list of all the properties concerning controllability of the system (behavior), represented by the matrix R
NOTE: the properties and corresponding data like controllability, flatness, dimension of the system, degree of controllability, kernel and image representations, genericity of parameters, obstructions to controllability, annihilator of torsion submodule and left inverse are investigated
EXAMPLE: example control; shows an example
"
{
int i;
int NVars=nvars(basering);
// TODO: NVars to be replaced with the global hom. dimension of basering!!!
int ExtIsZero;
intvec v=Opt_Our();
module R_std=std(R);
module Ext_1 = std(Ext_Our(1,R_std));
ExtIsZero=is_zero_Our(Ext_1);
i=1;
while( (ExtIsZero) && (i<=NVars) )
{
i++;
ExtIsZero = is_zero_Our( Ext_Our(i,R_std) );
}
matrix T=lift(R,R_std);
list l=genericity(T);
option(set,v);
return( control_output( i, NVars, R, Ext_1, l ) );
}
example
{"EXAMPLE:";echo = 2;
// a WindTunnel example
ring A = (0,a, omega, zeta, k),(D1, delta),dp;
module R;
R = [D1+a, -k*a*delta, 0, 0],
[0, D1, -1, 0],
[0, omega^2, D1+2*zeta*omega, -omega^2];
R=transpose(R);
view(R);
view(control(R));
}
//--------------------------------------------------------------------------
proc controlDim(module R)
"USAGE: controlDim(R); R a module (R is the matrix of the system of equations to be investigated)
RETURN: list
PURPOSE: computes list of all the properties concerning controllability of the system (behavior), represented by the matrix R
EXAMPLE: example controlDim; shows an example
NOTE: the properties and corresponding data like controllability, flatness, dimension of the system, degree of controllability, kernel and image representations, genericity of parameters, obstructions to controllability, annihilator of torsion submodule and left inverse are investigated.
@* This procedure is analogous to 'control' but uses dimension calculations.
@* The implemented approach works for full row rank matrices only (the check is done automatically).
"
{
if( nrows(R) != colrank(transpose(R)) )
{
return ("controlDim cannot be applied, since R does not have full row rank");
}
intvec v = Opt_Our();
module R_std = std(R);
int d = dim_Our(R_std);
int NVars = nvars(basering);
int i = NVars-d;
module Ext_1 = std(Ext_Our(1,R_std));
matrix T = lift(R,R_std);
list l = genericity(T);
option(set, v);
return( control_output( i, NVars, R, Ext_1, l));
}
example
{"EXAMPLE:";echo = 2;
//a WindTunnel example
ring A = (0,a, omega, zeta, k),(D1, delta),dp;
module R;
R = [D1+a, -k*a*delta, 0, 0],
[0, D1, -1, 0],
[0, omega^2, D1+2*zeta*omega, -omega^2];
R=transpose(R);
view(R);
view(controlDim(R));
}
//------------------------------------------------------------------------
proc colrank(module M)
"USAGE: colrank(M); M a matrix/module
RETURN: int
PURPOSE: compute the column rank of M as of matrix
NOTE: this procedure uses Bareiss algorithm
"{
// NOte continued:
// which might not terminate in some cases
module M_red = bareiss(M)[1];
int NCols_red = ncols(M_red);
return (NCols_red);
}
example
{"EXAMPLE: ";echo = 2;
// de Rham complex
ring r=0,(D(1..3)),dp;
module R;
R=[0,-D(3),D(2)],
[D(3),0,-D(1)],
[-D(2),D(1),0];
R=transpose(R);
colrank(R);
}
//------------------------------------------------------------------------
static proc autonom_output( int i, int NVars, module RC, int R_rank )
"USAGE: proc autonom_output(i, NVars, RC, R_rank)
i: integer, number of first nonzero Ext or
just number of variables in a base ring + 1 in case that all the Exts are zero
NVars: integer, number of variables in a base ring
RC: module, kernel-representation of controllable part of the system
R_rank: integer, column rank of the representation matrix
PURPOSE: compute all the autonomy properties of the system which is to be returned in 'autonom' procedure
RETURN: list
NOTE: this procedure is used in 'autonom' procedure
"
{
int d=NVars-i;//that is the dimension of the system
string DofS="dimension of the system:";
string Fn = "number of first nonzero Ext:";
if(i==0)
{
return( list( Fn,
i,
"not autonomous",
"kernel representation for controllable part",
RC,
"column rank of the matrix",
R_rank,
DofS,
d )
);
}
if( i>NVars )
{
return( list( Fn,
-1,
"trivial",
DofS,
d )
);
}
//
//now i<=NVars
//
if( i==1 )
// in case that NVars==1 there is no sense to consider the notion
// of strongly autonomous behavior, because it does not imply
// that system is overdetermined in this case
{
return( list ( Fn,
i,
"autonomous, not overdetermined",
DofS,
d )
);
}
if( i==NVars )
{
return( list( Fn,
i,
"strongly autonomous(fin. dimensional),in particular overdetermined",
DofS,
d)
);
}
if( i<NVars )
{
return( list ( Fn,
i,
"overdetermined, not strongly autonomous",
DofS,
d)
);
}
}
//--------------------------------------------------------------------------
proc autonomDim(module R)
"USAGE: autonomDim(R); R a module (R is a matrix of the system of equations which is to be investigated)
RETURN: list
PURPOSE: computes the list of all the properties concerning autonomy of the system (behavior), represented by the matrix R
NOTE: the properties and corresponding data like autonomy resp. strong autonomy, dimension of the system, autonomy degree, kernel representation and (over)determinacy are investigated.
@* This procedure is analogous to 'autonom' but uses dimension calculations
EXAMPLE: example autonomDim; shows an example
"
{
int d;
int NVars = nvars(basering);
module RT = transpose(R);
module RC; //for computation of controllable part if if exists
int R_rank = ncols(R);
d = dim_Our( std(RT) ); //this is the dimension of the system
int i = NVars-d; //First non-zero Ext
if( d==0 )
{
RC = leftKernel(rightKernel(R));
R_rank=colrank(R);
}
return( autonom_output(i,NVars,RC,R_rank) );
}
example
{"EXAMPLE:"; echo = 2;
// Cauchy1 example
ring r=0,(s1,s2,s3,s4),dp;
module R= [s1,-s2],
[s2, s1],
[s3,-s4],
[s4, s3];
R=transpose(R);
view( R );
view( autonomDim(R) );
}
//----------------------------------------------------------
proc autonom(module R)
"USAGE: autonom(R); R a module (R is a matrix of the system of equations which is to be investigated)
RETURN: list
PURPOSE: find all the properties concerning autonomy of the system (behavior) represented by the matrix R
NOTE: the properties and corresponding data like autonomy resp. strong autonomy, dimension of the system, autonomy degree, kernel representation and (over)determinacy are investigated
EXAMPLE: example autonom; shows an example
"
{
int NVars=nvars(basering);
int ExtIsZero;
module RT=transpose(R);
module RC;
int R_rank=ncols(R);
ExtIsZero=is_zero_Our(Ext_Our(0,RT));
int i=0;
while( (ExtIsZero)&&(i<=NVars) )
{
i++;
ExtIsZero = is_zero_Our(Ext_Our(i,RT));
}
if (i==0)
{
RC = leftKernel(rightKernel(R));
R_rank=colrank(R);
}
return(autonom_output(i,NVars,RC,R_rank));
}
example
{"EXAMPLE:"; echo = 2;
// Cauchy
ring r=0,(s1,s2,s3,s4),dp;
module R= [s1,-s2],
[s2, s1],
[s3,-s4],
[s4, s3];
R=transpose(R);
view( R );
view( autonom(R) );
}
//----------------------------------------------------------
proc genericity(matrix M)
"USAGE: genericity(M); M is a matrix/module
RETURN: list (of strings)
PURPOSE: determine parametric expressions which have been assumed to be non-zero in the process of computing the Groebner basis
NOTE: the output list consists of strings. The first string contains the variables only, whereas each further string contains
a single polynomial in parameters.
@* We strongly recommend to switch on the redSB and redTail options.
@* The procedure is effective with the lift procedure for modules with parameters
EXAMPLE: example genericity; shows an example
"
{
// returns "-", if there are no parameters!
if (npars(basering)==0)
{
return("-");
}
list RT = evas_genericity(M); // list of strings
if ((size(RT)==1) && (RT[1] == ""))
{
return("-");
}
return(RT);
}
example
{ // TwoPendula
"EXAMPLE:"; echo = 2;
ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
module RR =
[m1*L1*Dt^2, m2*L2*Dt^2, -1, (M+m1+m2)*Dt^2],
[m1*L1^2*Dt^2-m1*L1*g, 0, 0, m1*L1*Dt^2],
[0, m2*L2^2*Dt^2-m2*L2*g, 0, m2*L2*Dt^2];
module R = transpose(RR);
module SR = std(R);
matrix T = lift(R,SR);
genericity(T);
//-- The result might be different when computing reduced bases:
matrix T2;
option(redSB);
option(redTail);
module SR2 = std(R);
T2 = lift(R,SR2);
genericity(T2);
}
//---------------------------------------------------------------
static proc victors_genericity(matrix M)
{
// returns "-", if there are no parameters!
if (npars(basering)==0)
{
return("-");
}
int plevel = printlevel-voice+2;
// M is a matrix over a ring with params and vars;
ideal I = ideal(M); // a list of entries
I = simplify(I,2); // delete 0's
// decompose every coeff in every poly
int i;
int s = size(I);
ideal NM;
poly p;
number num;
int cl=1;
intvec ZeroVec; ZeroVec[nvars(basering)] = 0;
intvec W;
ideal Numero, Denomiro;
int cNu=0; int cDe=0;
for (i=1; i<=s; i++)
{
// remove contents and add them as polys
p = I[i];
W = leadexp(p);
if (W == ZeroVec) // i.e. just a coef
{
num = denominator(leadcoef(p)); // from poly.lib
NM[cl] = numerator(leadcoef(p));
dbprint(p,"numerator:");
dbprint(p, string(NM[cl]));
cNu++; Numero[cNu]= NM[cl];
cl++;
NM[cl] = num; // denominator
dbprint(p,"denominator:");
dbprint(p, string(NM[cl]));
cDe++; Denomiro[cDe]= NM[cl];
cl++;
p = p - lead(p); // for the next cycle
}
if ( p!= 0)
{
num = content(p);
p = p/num;
NM[cl] = denominator(num);
dbprint(p,"content denominator:");
dbprint(p, string(NM[cl]));
cNu++; Numero[cNu]= NM[cl];
cl++;
NM[cl] = numerator(num);
dbprint(p,"content numerator:");
dbprint(p, string(NM[cl]));
cDe++; Denomiro[cDe]= NM[cl];
cl++;
}
// it seems that the next elements will not have real influence
while( p != 0)
{
NM[cl] = leadcoef(p); // should be all integer, i.e. non-rational
dbprint(p,"coef:");
dbprint(p, string(NM[cl]));
cl++;
p = p - lead(p);
}
}
NM = simplify(NM,4); // delete identical
string newvars = parstr(basering);
def save = basering;
string NewRing = "ring @NR =" +string(char(basering))+",("+newvars+"),Dp;";
execute(NewRing);
// get params as variables
// create a list of non-monomials
ideal @L;
ideal F;
ideal NM = imap(save,NM);
NM = simplify(NM,8); //delete multiples
poly p,q;
cl = 1;
int j, cf;
for(i=1; i<=size(NM);i++)
{
p = NM[i] - lead(NM[i]);
if (p!=0)
{
// L[cl] = p;
F = factorize(NM[i],1); //non-constant factors only
cf = 1;
// factorize every polynomial
// throw away every monomial from factorization (also constants from above ring)
for (j=1; j<=size(F);j++)
{
q = F[j]-lead(F[j]);
if (q!=0)
{
@L[cl] = F[j];
cl++;
}
}
}
}
// return the result [in string-format]
@L = simplify(@L,2+4+8); // skip zeroes, doubled and entries, diff. by a constant
list SL;
for (j=1; j<=size(@L);j++)
{
SL[j] = string(@L[j]);
}
setring save;
return(SL);
}
//---------------------------------------------------------------
static proc evas_genericity(matrix M)
{
// called from the main genericity proc
ideal I = ideal(M);
I = simplify(I,2+4);
int s = ncols(I);
ideal Den;
poly p;
int i;
for (i=1; i<=s; i++)
{
p = I[i];
while (p !=0)
{
Den = Den, denominator(leadcoef(p));
p = p-lead(p);
}
}
Den = simplify(Den,2+4);
string newvars = parstr(basering);
def save = basering;
string NewRing = "ring @NR =(" +string(char(basering))+"),("+newvars+"),Dp;";
execute(NewRing);
ideal F;
ideal Den = imap(save,Den);
Den = simplify(Den,2);
int s1 = ncols(Den);
for (i=1; i<=s1; i++)
{
Den[i] = normalize(Den[i]);
if ( Den[i] !=1)
{
F= F, factorize(Den[i],1);
}
}
F = simplify(F, 2+4+8);
ideal @L = F;
@L = simplify(@L,2);
list SL;
int c,j;
string Mono;
c = 1;
for (j=1; j<= ncols(@L);j++)
{
if (leadcoef(@L[j]) <0)
{
@L[j] = -1*@L[j];
}
if (((@L[j] - lead(@L[j]))==0 ) && (@L[j]!=0) ) //@L[j] is a monomial
{
Mono = Mono + string(@L[j])+ ","; // concatenation
}
else
{
c++;
SL[c] = string(@L[j]);
}
}
if (Mono!="")
{
Mono = Mono[1..size(Mono)-1]; // delete the last colon
}
SL[1] = Mono;
setring save;
return(SL);
}
//---------------------------------------------------------------
proc canonize(list L)
"USAGE: canonize(L); L a list
RETURN: list
PURPOSE: modules in the list are canonized by computing their reduced minimal (= unique up to constant factor w.r.t. the given ordering) Groebner bases
ASSUME: L is the output of control/autonomy procedures
EXAMPLE: example canonize; shows an example
"
{
list M = L;
intvec v=Opt_Our();
int s = size(L);
int i;
for (i=2; i<=s; i=i+2)
{
if (typeof(M[i])=="module")
{
M[i] = std(M[i]);
// M[i] = prune(M[i]); // mimimal embedding: no need yet
// M[i] = std(M[i]);
}
}
option(set, v); //set old values back
return(M);
}
example
{ // TwoPendula with L1=L2=L
"EXAMPLE:"; echo = 2;
ring r=(0,m1,m2,M,g,L),Dt,dp;
module RR =
[m1*L*Dt^2, m2*L*Dt^2, -1, (M+m1+m2)*Dt^2],
[m1*L^2*Dt^2-m1*L*g, 0, 0, m1*L*Dt^2],
[0, m2*L^2*Dt^2-m2*L*g, 0, m2*L*Dt^2];
module R = transpose(RR);
list C = control(R);
list CC = canonize(C);
view(CC);
}
//----------------------------------------------------------------
static proc elementof (int i, intvec v)
{
int b=0;
for(int j=1;j<=nrows(v);j++)
{
if(v[j]==i)
{
b=1;
return (b);
}
}
return (b);
}
//-----------------------------------------------------------------
proc iostruct(module R)
"USAGE: iostruct( R ); R a module
RETURN: list L with entries: string s, intvec v, module P and module Q
PURPOSE: if R is the kernel-representation-matrix of some system, then we output a input-ouput representation Py=Qu of the system, the components that have been chosen as outputs(intvec v) and a comment s
NOTE: the procedure uses Bareiss algorithm
EXAMPLE: example iostruct; shows an example
"
{
// NOTE cont'd
//which might not terminate in some cases
list L = bareiss(R);
int R_rank = ncols(L[1]);
int NCols=ncols(R);
intvec v=L[2];
int temp;
int NRows=nrows(v);
int i,j;
int b=1;
module P;
module Q;
int n=0;
while(b==1) //sort v through bubblesort
{
b=0;
for(i=1;i<NRows;i++)
{
if(v[i]>v[i+1])
{
temp=v[i];
v[i]=v[i+1];
v[i+1]=temp;
b=1;
}
}
}
P=R[v]; //generate P
for(i=1;i<=NCols;i++) //generate Q
{
if(elementof(i,v)==1)
{
i++;
continue;
}
Q=Q,R[i];
}
Q=simplify(Q,2);
string s="The following components have been chosen as outputs: ";
return (list(s,v,P,Q));
}
example
{"EXAMPLE:";echo = 2;
//Example Antenna
ring r = (0, K1, K2, Te, Kp, Kc),(Dt, delta), (c,dp);
module RR;
RR =
[Dt, -K1, 0, 0, 0, 0, 0, 0, 0],
[0, Dt+K2/Te, 0, 0, 0, 0, -Kp/Te*delta, -Kc/Te*delta, -Kc/Te*delta],
[0, 0, Dt, -K1, 0, 0, 0, 0, 0],
[0, 0, 0, Dt+K2/Te, 0, 0, -Kc/Te*delta, -Kp/Te*delta, -Kc/Te*delta],
[0, 0, 0, 0, Dt, -K1, 0, 0, 0],
[0, 0, 0, 0, 0, Dt+K2/Te, -Kc/Te*delta, -Kc/Te*delta, -Kp/Te*delta];
module R = transpose(RR);
view(iostruct(R));
}
//---------------------------------------------------------------
static proc smdeg(matrix N)
"USAGE: smdeg( N ); N a matrix
RETURN: intvec
PURPOSE: returns an intvec of length 2 with the index of an element of N with smallest degree
"
{
int n = nrows(N);
int m = ncols(N);
int d,d_temp;
intvec v;
int i,j; // counter
if (N==0)
{
v = 1,1;
return(v);
}
for (i=1; i<=n; i++)
// hier wird ein Element ausgewaehlt(!=0) und mit dessen Grad gestartet
{
for (j=1; j<=m; j++)
{
if( deg(N[i,j])!=-1 )
{
d=deg(N[i,j]);
break;
}
}
if (d != -1)
{
break;
}
}
for(i=1; i<=n; i++)
{
for(j=1; j<=m; j++)
{
d_temp = deg(N[i,j]);
if ( (d_temp < d) && (N[i,j]!=0) )
{
d=d_temp;
}
}
}
for (i=1; i<=n; i++)
{
for (j=1; j<=m;j++)
{
if ( (deg(N[i,j]) == d) && (N[i,j]!=0) )
{
v = i,j;
return(v);
}
}
}
}
//---------------------------------------------------------------
static proc NoNon0Pol(vector v)
"USAGE: NoNon0Pol(v), v a vector
RETURN: int
PURPOSE: returns 1, if there is only one non-zero element in v and 0 else
"{
int i,j;
int n = nrows(v);
for( j=1; j<=n; j++)
{
if (v[j] != 0)
{
i++;
}
}
if ( i!=1 )
{
i=0;
}
return(i);
}
//---------------------------------------------------------------
static proc extgcd_Our(poly p, poly q)
{
ideal J; //for extgcd-computations
matrix T; //----------"------------
list L;
// the extgcd-command has a bug in versions before 2-0-7
if ( system("version")<=2006 )
{
J = p,q; // J = N[k-1,k-1],N[k,k]; //J is of type ideal
L[1] = liftstd(J,T); //T is of type matrix
if(J[1]==p) //this is just for the case the SINGULAR swaps the
// two elements due to ordering
{
L[2] = T[1,1];
L[3] = T[2,1];
}
else
{
L[2] = T[2,1];
L[3] = T[1,1];
}
}
else
{
L=extgcd(p,q);
// L=extgcd(N[k-1,k-1],N[k,k]);
//one can use this line if extgcd-bug is fixed
}
return(L);
}
static proc normalize_Our(matrix N, matrix Q)
"USAGE: normalize_Our(N,Q), N, Q are two matrices
PURPOSE: normalizes N and divides the columns of Q through the leading coefficients of the columns of N
RETURN: normalized matrix N and altered Q(according to the scheme mentioned in purpose). If number of columns of N and Q do not coincide, N and Q are returned unchanged
NOTE: number of columns of N and Q must coincide.
"
{
if(ncols(N) != ncols(Q))
{
return (N,Q);
}
module M = module(N);
module S = module(Q);
int NCols = ncols(N);
number n;
for(int i=1;i<=NCols;i++)
{
n = leadcoef(M[i]);
if( n != 0 )
{
M[i]=M[i]/n;
S[i]=S[i]/n;
}
}
N = matrix(M);
Q = matrix(S);
return (N,Q);
}
//---------------------------------------------------------------
proc oldsmith( module M )
"USAGE: oldsmith(M); M a module/matrix
PURPOSE: computes the Smith normal form of a matrix
RETURN: a list of length 4 with the following entries:
@* [1]: the Smith normal form S of M,
@* [2]: the rank of M,
@* [3]: a unimodular matrix U,
@* [4]: a unimodular matrix V,
such that U*M*V=S. An warning is returned when no Smith form exists.
NOTE: Older experimental implementation. The Smith form only exists over PIDs (principal ideal domains). Use global ordering for computations!
"
{
if (nvars(basering)>1) //if more than one variable, return empty list
{
string s="The Smith-Form only exists for principal ideal domains";
return (s);
}
matrix N = matrix(M); //Typecasting
int n = nrows(N);
int m = ncols(N);
matrix P = unitmat(n); //left transformation matrix
matrix Q = unitmat(m); //right transformation matrix
int k, i, j, deg_temp;
poly tmp;
vector v;
list L; //for extgcd-computation
intmat f[1][n]; //to save degrees
matrix lambda[1][n]; //to save leadcoefficients
intmat g[1][m]; //to save degrees
matrix mu[1][m]; //to save leadcoefficients
int ii; //counter
while ((k!=n) && (k!=m) )
{
k++;
while ((k<=n) && (k<=m)) //outer while-loop for column-operations
{
while(k<=m ) //inner while-loop for row-operations
{
if( (n>m) && (k < n) && (k<m))
{
if( simplify((ideal(submat(N,k+1..n,k+1..m))),2)== 0)
{
return(N,k-1,P,Q);
}
}
i,j = smdeg(submat(N,k..n,k..m)); //choose smallest degree in the remaining submatrix
i=i+(k-1); //indices adjusted to the whole matrix
j=j+(k-1);
if(i!=k) //take the element with smallest degree in the first position
{
N=permrow(N,i,k);
P=permrow(P,i,k);
}
if(j!=k)
{
N=permcol(N,j,k);
Q=permcol(Q,j,k);
}
if(NoNon0Pol(N[k])==1)
{
break;
}
tmp=leadcoef(N[k,k]);
deg_temp=ord(N[k,k]); //ord outputs the leading degree of N[k,k]
for(ii=k+1;ii<=n;ii++)
{
lambda[1,ii]=leadcoef(N[ii,k])/tmp;
f[1,ii]=deg(N[ii,k])-deg_temp;
}
for(ii=k+1;ii<=n;ii++)
{
N = addrow(N,k,-lambda[1,ii]*var(1)^f[1,ii],ii);
P = addrow(P,k,-lambda[1,ii]*var(1)^f[1,ii],ii);
N,Q=normalize_Our(N,Q);
}
}
if (k>n)
{
break;
}
if(NoNon0Pol(transpose(N)[k])==1)
{
break;
}
tmp=leadcoef(N[k,k]);
deg_temp=ord(N[k,k]); //ord outputs the leading degree of N[k][k]
for(ii=k+1;ii<=m;ii++)
{
mu[1,ii]=leadcoef(N[k,ii])/tmp;
g[1,ii]=deg(N[k,ii])-deg_temp;
}
for(ii=k+1;ii<=m;ii++)
{
N=addcol(N,k,-mu[1,ii]*var(1)^g[1,ii],ii);
Q=addcol(Q,k,-mu[1,ii]*var(1)^g[1,ii],ii);
N,Q=normalize_Our(N,Q);
}
}
if( (k!=1) && (k<n) && (k<m) )
{
L = extgcd_Our(N[k-1,k-1],N[k,k]);
if ( N[k-1,k-1]!=L[1] ) //means that N[k-1,k-1] is not a divisor of N[k,k]
{
N=addrow(N,k-1,L[2],k);
P=addrow(P,k-1,L[2],k);
N,Q=normalize_Our(N,Q);
N=addcol(N,k,-L[3],k-1);
Q=addcol(Q,k,-L[3],k-1);
N,Q=normalize_Our(N,Q);
k=k-2;
}
}
}
if( (k<=n) && (k<=m) )
{
if( N[k,k]==0)
{
return(N,k-1,P,Q);
}
}
return(N,k,P,Q);
}
example
{
"EXAMPLE:";echo = 2;
option(redSB);
option(redTail);
ring r = 0,x,dp;
module M = [x2,x,3x3-4], [2x2-1,4x,5x2], [2x5,3x,4x];
print(M);
list P = oldsmith(M);
print(P[1]);
matrix N = matrix(M);
matrix B = P[3]*N*P[4];
print(B);
}
// see what happens when the matrix is already in Smith-Form
// module M = [x,0,0],[0,x2,0],[0,0,x3];
// list L = oldsmith(M);
// print(L[1]);
//matrix N=matrix(M);
//matrix B=L[3]*N*L[4];
//print(B);
//---------------------------------------------------------------
static proc list_tex(L, string name,link l,int nr_loop)
"USAGE: list_tex(L,name,l), where L is a list, name a string, l a link
writes the content of list L in a tex-file 'name'
RETURN: nothing
"
{
if(typeof(L)!="list") //in case L is not a list
{
texobj(name,L);
}
if(size(L)==0)
{
}
else
{
string t;
for (int i=1;i<=size(L);i++)
{
while(1)
{
if(typeof(L[i])=="string") //Fehler hier fuer normalen output->nur wenn string in liste dann verbatim
{
t=L[i];
if(nr_loop==1)
{
write(l,"\\begin\{center\}");
write(l,"\\begin\{verbatim\}");
}
write(l,t);
if(nr_loop==0)
{
write(l,"\\par");
}
if(nr_loop==1)
{
write(l,"\\end\{verbatim\}");
write(l,"\\end\{center\}");
}
break;
}
if(typeof(L[i])=="module")
{
texobj(name,matrix(L[i]));
break;
}
if(typeof(L[i])=="list")
{
list_tex(L[i],name,l,1);
break;
}
write(l,"\\begin\{center\}");
texobj(name,L[i]);
write(l,"\\end\{center\}");
write(l,"\\par");
break;
}
}
}
}
example
{
"EXAMPLE:";echo = 2;
}
//---------------------------------------------------------------
proc verbatim_tex(string s, link l)
"USAGE: verbatim_tex(s,l), where s is a string and l a link
PURPOSE: writes the content of s in verbatim-environment in the file
specified by link
RETURN: nothing
"
{
write(l,"\\begin{verbatim}");
write(l,s);
write(l,"\\end{verbatim}");
write(l,"\\par");
}
example
{
"EXAMPLE:";echo = 2;
}
//---------------------------------------------------------------
proc findTorsion(module R, ideal TAnn)
"USAGE: findTorsion(R, I); R an ideal/matrix/module, I an ideal
RETURN: module
PURPOSE: computes the Groebner basis of the submodule of R, annihilated by I
NOTE: especially helpful, when I is the annihilator of the t(R) - the torsion submodule of R. In this case, the result is the explicit presentation of t(R) as
the submodule of R
EXAMPLE: example findTorsion; shows an example
"
{
// motivation: let R be a module,
// TAnn is the annihilator of t(R)\subset R
// compute the generators of t(R) explicitly
ideal AS = TAnn;
module S = R;
if (attrib(S,"isSB")<>1)
{
S = std(S);
}
if (attrib(AS,"isSB")<>1)
{
AS = std(AS);
}
int nc = ncols(S);
module To = quotient(S,AS);
To = std(NF(To,S));
return(To);
}
example
{
"EXAMPLE:";echo = 2;
// Flexible Rod
ring A = 0,(D1, D2), (c,dp);
module R= [D1, -D1*D2, -1], [2*D1*D2, -D1-D1*D2^2, 0];
module RR = transpose(R);
list L = control(RR);
// here, we have the annihilator:
ideal LAnn = D1; // = L[10]
module Tr = findTorsion(RR,LAnn);
print(RR); // the module itself
print(Tr); // generators of the torsion submodule
}
proc controlExample(string s)
"USAGE: controlExample(s); s a string
RETURN: ring
PURPOSE: set up an example from the mini database by initalizing a ring and a module in a ring
NOTE: in order to see the list of available examples, execute @code{controlExample(\"show\");}
@* To use an example, one has to do the following. Suppose one calls the ring, where the example will be activated, A. Then, by executing
@* @code{def A = controlExample(\"Antenna\");} and @code{setring A;},
@* A will become a basering from the example \"Antenna\" with
the predefined system module R (transposed).
After that one can just execute @code{control(R);} respectively
@code{autonom(R);} to perform the control resp. autonomy analysis of R.
EXAMPLE: example controlExample; shows an example
"{
list E, S, D; // E=official name, S=synonym, D=description
E[1] = "Cauchy1"; S[1] = "cauchy1"; D[1] = "1-dimensional Cauchy equation";
E[2] = "Cauchy2"; S[2] = "cauchy2"; D[2] = "2-dimensional Cauchy equation";
E[3] = "Control1"; S[3] = "control1"; D[3] = "example of a simple noncontrollable system";
E[4] = "Control2"; S[4] = "control2"; D[4] = "example of a simple controllable system";
E[5] = "Antenna"; S[5] = "antenna"; D[5] = "antenna";
E[6] = "Einstein"; S[6] = "einstein"; D[6] = "Einstein equations in vacuum";
E[7] = "FlexibleRod"; S[7] = "flexible rod"; D[7] = "flexible rod";
E[8] = "TwoPendula"; S[8] = "two pendula"; D[8] = "two pendula mounted on a cart";
E[9] = "WindTunnel"; S[9] = "wind tunnel";D[9] = "wind tunnel";
E[10] = "Zerz1"; S[10] = "zerz1"; D[10] = "example from the lecture of Eva Zerz";
// all the examples so far
int i;
if ( (s=="show") || (s=="Show") )
{
print("The list of examples:");
for (i=1; i<=size(E); i++)
{
printf("name: %s, desc: %s", E[i],D[i]);
}
return();
}
string t;
for (i=1; i<=size(E); i++)
{
if ( (s==E[i]) || (s==S[i]) )
{
t = "def @A = ex"+E[i]+"();";
execute(t);
return(@A);
}
}
"No example found";
return();
}
example
{
"EXAMPLE:";echo = 2;
controlExample("show"); // let us see all available examples:
def B = controlExample("TwoPendula"); // let us set up a particular example
setring B;
print(R);
}
//----------------------------------------------------------
//
//Some example rings with defined systems
//----------------------------------------------------------
//autonomy:
//
//----------------------------------------------------------
static proc exCauchy1()
{
ring @r=0,(s1,s2),dp;
module R= [s1,-s2],
[s2, s1];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exCauchy2()
{
ring @r=0,(s1,s2,s3,s4),dp;
module R= [s1,-s2],
[s2, s1],
[s3,-s4],
[s4, s3];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exZerz1()
{
ring @r=0,(d1,d2),dp;
module R=[d1^2-d2],
[d2^2-1];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
//control
//----------------------------------------------------------
static proc exControl1()
{
ring @r=0,(s1,s2,s3),dp;
module R=[0,-s3,s2],
[s3,0,-s1];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exControl2()
{
ring @r=0,(s1,s2,s3),dp;
module R=[0,-s3,s2],
[s3,0,-s1],
[-s2,s1,0];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exAntenna()
{
ring @r = (0, K1, K2, Te, Kp, Kc),(Dt, delta), dp;
module R;
R = [Dt, -K1, 0, 0, 0, 0, 0, 0, 0],
[0, Dt+K2/Te, 0, 0, 0, 0, -Kp/Te*delta, -Kc/Te*delta, -Kc/Te*delta],
[0, 0, Dt, -K1, 0, 0, 0, 0, 0],
[0, 0, 0, Dt+K2/Te, 0, 0, -Kc/Te*delta, -Kp/Te*delta, -Kc/Te*delta],
[0, 0, 0, 0, Dt, -K1, 0, 0, 0],
[0, 0, 0, 0, 0, Dt+K2/Te, -Kc/Te*delta, -Kc/Te*delta, -Kp/Te*delta];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exEinstein()
{
ring @r = 0,(D(1..4)),dp;
module R =
[D(2)^2+D(3)^2-D(4)^2, D(1)^2, D(1)^2, -D(1)^2, -2*D(1)*D(2), 0, 0, -2*D(1)*D(3), 0, 2*D(1)*D(4)],
[D(2)^2, D(1)^2+D(3)^2-D(4)^2, D(2)^2, -D(2)^2, -2*D(1)*D(2), -2*D(2)*D(3), 0, 0, 2*D(2)*D(4), 0],
[D(3)^2, D(3)^2, D(1)^2+D(2)^2-D(4)^2, -D(3)^2, 0, -2*D(2)*D(3), 2*D(3)*D(4), -2*D(1)*D(3), 0, 0],
[D(4)^2, D(4)^2, D(4)^2, D(1)^2+D(2)^2+D(3)^2, 0, 0, -2*D(3)*D(4), 0, -2*D(2)*D(4), -2*D(1)*D(4)],
[0, 0, D(1)*D(2), -D(1)*D(2), D(3)^2-D(4)^2, -D(1)*D(3), 0, -D(2)*D(3), D(1)*D(4), D(2)*D(4)],
[D(2)*D(3), 0, 0, -D(2)*D(3),-D(1)*D(3), D(1)^2-D(4)^2, D(2)*D(4), -D(1)*D(2), D(3)*D(4), 0],
[D(3)*D(4), D(3)*D(4), 0, 0, 0, -D(2)*D(4), D(1)^2+D(2)^2, -D(1)*D(4), -D(2)*D(3), -D(1)*D(3)],
[0, D(1)*D(3), 0, -D(1)*D(3), -D(2)*D(3), -D(1)*D(2), D(1)*D(4), D(2)^2-D(4)^2, 0, D(3)*D(4)],
[D(2)*D(4), 0, D(2)*D(4), 0, -D(1)*D(4), -D(3)*D(4), -D(2)*D(3), 0, D(1)^2+D(3)^2, -D(1)*D(2)],
[0, D(1)*D(4), D(1)*D(4), 0, -D(2)*D(4), 0, -D(1)*D(3), -D(3)*D(4), -D(1)*D(2), D(2)^2+D(3)^2];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exFlexibleRod()
{
ring @r = 0,(D1, delta), dp;
module R;
R = [D1, -D1*delta, -1], [2*D1*delta, -D1-D1*delta^2, 0];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exTwoPendula()
{
ring @r=(0,m1,m2,M,g,L1,L2),Dt,dp;
module R = [m1*L1*Dt^2, m2*L2*Dt^2, -1, (M+m1+m2)*Dt^2],
[m1*L1^2*Dt^2-m1*L1*g, 0, 0, m1*L1*Dt^2],
[0, m2*L2^2*Dt^2-m2*L2*g, 0, m2*L2*Dt^2];
R=transpose(R);
export R;
return(@r);
}
//----------------------------------------------------------
static proc exWindTunnel()
{
ring @r = (0,a, omega, zeta, k),(D1, delta),dp;
module R = [D1+a, -k*a*delta, 0, 0],
[0, D1, -1, 0],
[0, omega^2, D1+2*zeta*omega, -omega^2];
R=transpose(R);
export R;
return(@r);
}
/* noncomm examples for leftInverse/rightInverse:
LIB "jacobson.lib";
ring w = 0,(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[3][3]=[d2,d+1,0],[d+1,0,d3-x2*d],[2d+1, d3+d2, d2];
list J=jacobson(m,0);
leftInverse(J[3]); // exist
rightInverse(J[3]);
leftInverse(J[1]); // zero
rightInverse(J[1]);
list JJ = jacobson(J[1],0);
leftInverse(JJ[3]); // exist
rightInverse(JJ[3]);
leftInverse(JJ[1]); // exist
rightInverse(JJ[1]);
leftInverse(JJ[2]); // zero
rightInverse(JJ[2]);
*/
|