/usr/share/singular/LIB/deflation.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | //////////////////////////////////////////////////////////////////////////////
version="version deflation.lib 4.0.2.0 30.03.2015 "; // $Id: b90f2975b975dd9ceb012aefb8b5c3d24f5cdfd7 $
category="Numerical Analysis";
info="
LIBRARY: deflation.lib Various deflation methods
AUTHOR: Adrian Koch (kocha at rhrk.uni-kl.de)
REFERENCES:
- Jonathan Hauenstein, Bernard Mourrain, Agnes Szanto; Certifying isolated singular
points and their multiplicity structure
- Jonathan Hauenstein, Charles Wampler; Isosingular Sets and Deflation; published in
Foundations of Computational Mathematics, Volume 13, Issue 3, 2013, on pages 371-403
- Anton Leykin, Jan Verschelde, Ailing Zhao; Newtons method with deflation for isolated
singularities of polynomial systems; published in Theoretical Computer Science,
Volume 359, 2006, on pages 111-122
PROCEDURES:
deflateHMS(F,ro,co,[..]); deflation algorithm by Hauenstein, Mourrain, and Szanto
deflateHW1(F,ro,co); isosingular deflation: uses determinants - by Hauenstein and Wampler
deflateHW2(F,rk,[..]); isosingular deflation: strong, intrinsic - by Hauenstein and Wampler
deflateLVZ(F,rk,[..]); deflation algorithm by Leykin, Verschelde, and Zhao
KEYWORDS: deflation
";
LIB "linalg.lib";
LIB "primdec.lib";
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Method C //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
static proc getLambda(matrix A, matrix B)
{
//computes the composite matrix whose columns we use to augment the original
//polynomial system
matrix C=-adjoint(A)*B;
int c=ncols(C);
matrix L=transpose(C);
L=concat(L,diag(1,c));
return(transpose(L));
}
static proc process_choice_for_i(int a, int c)
{
//a contains the choice, c is the maximum element of the set i = 1,...,c
//if a is -1, returns random value between 1 and c
//if a is 0, returns c
//if a > c, returns c
//if 1< a <c, returns a
if(a == -1)
{
return(random(1,c));
}
if(a == 0)
{
return(c);
}
if(a <= c)
{
if(a >= 1)
{
return(a);
}
}
if(a > c)
{
return(c);
}
ERROR("Input (to control the choice of which element of i to use) invalid." +
" Must be an integer >= -1");
}
static proc append_var_list(int nv, list RL, list VN)
{
//nv the number of new variables, RL the ringlist, VN the new variable names and,
//possibly, the no brackets option
int nb;
if(VN[1] == "no parentheses")
{
nb=1;
VN=delete(VN,1);
}
int i;
list vl;
if(size(VN) < nv)
{
string st=VN[1];
if(nb == 0)
{
for(i=1; i<=nv; i++)
{
vl=vl+list(st+"("+string(i)+")");
}
}
if(nb == 1)
{
for(i=1; i<=nv; i++)
{
vl=vl+list(st+string(i));
}
}
}
if(size(VN) >= nv)
{
for(i=1; i<=nv; i++)
{
vl=vl+list(VN[i]);
}
}
RL[2]=RL[2]+vl;
return(RL);
}
static proc remove_constants(ideal H);
{
//remove contants and scalar multiples from H
H=1,H;
H=simplify(H,2+4+8);
H=H[2..size(H)];
return(H);
}
static proc exhaust_options(ideal F, int a, matrix la, matrix J)
{
int i;
int c=ncols(la);
matrix N[nrows(la)][1];
ideal H;
int sF=size(F);
for(i=1; i<=c; i++)
{
if(i == a)
{
//we already checked that one
i++;
continue;
}
N=submat(la,1..nrows(la),i);
H=ideal(J*N);
H=remove_constants(H);
F=F,H;
F=simplify(F,14);
if(size(F) > sF){ return(F); }
}
print("Deflation unsuccessful: return value is the (possibly simplified) original system.");
return(F);
}
proc deflateHMS(ideal F, intvec ro, intvec co, list #)
"USAGE: deflateHMS(F, ro, co [, m [, S ]]);
ideal F: system of polynomial equations
intvecs ro and co: contain the row (respectively column) indices of a full
rank submatrix of the Jacobian of F at the point at which you want to deflate F
(if the rank is 0, make ro and co equal to the intvec containing only 0)
integer m: parameter influencing a choice made in the algorithm
string (or list of strings) S: parameter(s) influencing the output
RETURN: ring: a ring containing the ideal AUGF, representing the augmented system
REMARK: This deflation method augments the given polynomial system to a system which is
defined in the original ring. However, if the rank is 0, we add additional
variables representing the entries of a random column vector L of length nv,
where nv is the number of variables of the original polynomial ring. The system F
is then augmented by the entries of J*L, where J is the Jacobian of F.
We use these additional variables, instead of just choosing some random numbers,
so that the user would have full control over the type of random numbers: one
can just substitute the variables later on.
For more information about this deflation method see
section 3 of Jonathan Hauenstein, Bernard Mourrain, Agnes Szanto; Certifying
isolated singular points and their multiplicity structure.
We use the integer c as defined in that paper. During the algorithm, we have to
choose a subset of {1,...,c}, which is then used to generate the augmentation
of F. In this implementation, we only use subsets containing exactly one element.
The choice can be controlled by the optional argument m.
NOTE: The optional argument m controls which element of {1,...,c} will be chosen during
the procedure:
if m is -1, the procedure chooses a random value between 1 and c
if m is 0, the procedure chooses c
if m > c, the procedure chooses c
if 1< m <c, the procedure chooses m
If no optional argument is given, the procedure chooses a random value.
if the given m leads the procedure to adding only polynomials which are 0 or
scalar multiples of the polynomials in the original system, the procedure
automatically goes through 1,...,c until something useful is added (or returns
the original system and prints a message if the deflation was unsuccessful).
With the optional argument S you can influence the names that will be given to
the additional variables.
If S is of type string, say \"L\", then the variable names will be L(1),...,L(nv).
If S is a list of strings, it should be of the following form:
[\"no parentheses\",] s_1 [,...,s_n]. If the list consists of two
elements \"no parentheses\" and \"L\", the variables are named as
above, but without the parentheses. If the list contains enough strings, that is
if you specify strings s_1,...,s_nv, then exactly these strings will be used as
the names of the variables. (If you specify less than nv names, only s_1 is used.
If you specify more than nv, only s_1,...,s_nv are used.)
The procedure does not check for naming conflicts prior to defining the
extended ring, so please make sure that there are none.
You should only specify an S if you have also specified an m.
If no S is given, the added variables are named L(1),...,L(nv).
EXAMPLE: example deflateHMS; shows an example
"
{
int chi=-1;
if(size(#) > 0)
{
chi=#[1];
}
if(size(#) <= 1)
{
list VN="L";
}
if(size(#) == 2)
{
list VN=#[2];
}
if(size(#) > 2)
{
list VN=delete(#,1);
}
F=simplify(F,2+4+8);
matrix J=jacob(F);
int nv=nvars(basering);
def br=basering;
list RL=ringlist(br);
if( ro[1]*co[1] == 0 )
{
//ie if the rank is 0
//then we need a random vector
//so we construct a ring with additional variables, such that the random values
//can be chosen later on and substituted for these variables
RL=append_var_list(nv,RL,VN);
def bigR=ring(RL);
setring bigR;
matrix N[nv][1];
int i;
for(i=1; i<=nv; i++)
{
N[i,1]=var(nv+i);
}
matrix J=imap(br,J);
J=J*N;
ideal AUGF=imap(br,F);
AUGF=AUGF,ideal(J);
//int CHNG=nv;
export(AUGF);
//export(CHNG);
return(bigR);
}
else
{
intvec cc=complementary_ro_co_vecs(co,ncols(J));
matrix A=submat(J,ro,co);
matrix B=submat(J,ro,cc);
matrix la=getLambda(A,B);
int i=process_choice_for_i(chi,ncols(la));
matrix N[nrows(la)][1]=submat(la,1..nrows(la),i);
ideal H=ideal(J*N);
H=remove_constants(H);
int sF=size(F);
F=F,H;
F=simplify(F,14);
//gets rid of zero generators and copies of earlier listed generators
//and polys which are scalar multiples of earlier listed polys
if(size(F) == sF)
{
//we did not add a polynomial which is not 0 and not a scalar multiple
//of an earlier listed polynomial
F=exhaust_options(F,i,la,J);
}
def outR=ring(RL);
setring outR;
ideal AUGF=imap(br,F);
//int CHNG=0;
export(AUGF);
//export(CHNG);
return(outR);
}
}
example
{ "EXAMPLE:"; echo=2;
ring ojika3=0,(x,y,z),dp;
ideal F=x+y+z-1, 2x3+5y2-10z+5z3+5, 2x+2y+z2-1;
intvec ro=1,2;
intvec co=1,3;
def R1=deflateHMS(F,ro,co);
R1;
setring R1;
AUGF;
ring cbms1=0,(x,y,z),dp;
ideal F=x3-yz, y3-xz, z3-xy;
ro=0;
co=0;
int m=-1;
def R2=deflateHMS(F,ro,co,m,"L");
R2;
setring R2;
AUGF;
}
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Method B //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
static proc complementary_ro_co_vecs(intvec v, int m)
{
intvec c;
intvec b;
int j;
b[m]=0;
int i;
for(i=1; i<=size(v); i++)
{
b[v[i]]=1;
}
for(i=1; i<=m; i++)
{
if(b[i] == 0)
{
j++;
c[j]=i;
}
}
return(c);
}
static proc certain_submats(matrix M, intvec ro, intvec co)
{
//ro and co the row ,respectively column, indices of the matrix we want to have as
//part of the returned submatrices
list S;
intvec rn, cn;//the row and column indices used to obtain the next submatrix
intvec rc=complementary_ro_co_vecs(ro,nrows(M));
intvec cc=complementary_ro_co_vecs(co,ncols(M));
int sr=size(ro)+1;
int sc=size(co)+1;
int i,j;
for(i=1; i<=size(rc); i++)
{
rn=ro;
rn[sr]=rc[i];
for(j=1; j<=size(cc); j++)
{
cn=co;
cn[sc]=cc[j];
S = S + list(submat(M,rn,cn));
}
}
return(S);
}
static proc det_augment(ideal F, intvec ro, intvec co)
{
//returns the polynomials with which we want to augment F
//namely the determinants of all r+1 x r+1 submatrices of the Jacobian of F
//containing the r x r submatrix specified by ro and co
matrix J=jacob(F);
if(ro[1]*co[1] == 0)
{
//meaning the rank is 0
//then return the 1x1 minors, that is the entries of J
return(ideal(J));
}
list S=certain_submats(J,ro,co);
ideal A=det(S[1]);
int i;
for(i=2; i<=size(S); i++)
{
A=A,det(S[i]);
}
return(A);
}
proc deflateHW1(ideal F, intvec ro, intvec co)
"USAGE: deflateHW1(F, ro, co);
ideal F: system of polynomial equations
intvecs ro and co: contain the row (respectively column) indices of a full
rank submatrix of the Jacobian of F at the point at which you want to deflate F
(if the rank is 0, make ro and co equal to the intvec containing only 0)
RETURN: ideal: an augmented polynomial system
ASSUME: ro and co have the same number of elements, say rk.
REMARK: This deflation method adds to F the determinants of the (rk+1) x (rk+1)
submatrices of the Jacobian of F containing the rows and columns specified in
ro and co
EXAMPLE: example deflateHW1; shows an example
"
{
//does one iteration of deflation, then returns the augmented system
//ro and co the row, respectively column, indices of the matrix we want to have as
//part of the submatrices we use to augment F
ideal A=det_augment(F,ro,co);
F=F,A;
F=simplify(F,2+4+8);//erases the zeroes, copies, scalar multiples
return(F);
}
example
{ "EXAMPLE:"; echo=2;
ring ojika3=0,(x,y,z),dp;
ideal F=x+y+z-1, 2x3+5y2-10z+5z3+5, 2x+2y+z2-1;
intvec ro=1,2;//number of elements is rk=2
intvec co=1,3;
ideal AUGF=deflateHW1(F,ro,co);//considers 3x3 submatrices of the Jacobian J of F,
//that is J itself
AUGF;
//the only polynomial we added is the determinant of J
det(jacob(F));
}
//////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////// strong intrinsic deflation /////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
static proc makeB(int N, int d)
{
//fills an NxN matrix with newly added variables
//column by column, from left to right, each column from top to bottom
matrix B[N][N];
int i,j;
for(j=1; j<=N; j++)
{
for(i=1; i<=N; i++)
{
B[i,j]=var(N+(N-d)*d+(j-1)*N+i);
}
}
return(B);
}
static proc makeIX(int N, int d)
{
//constructs the composite matrix which has the identity matrix on top and
//Xi on the bottom. Xi is filled with the newly added variables; column by column,
//from left to right, each column from top to bottom
matrix I=diag(1,d);
matrix X[N-d][d];
int i,j;
for(j=1; j<=d; j++)
{
for(i=1; i<=N-d; i++)
{
X[i,j]=var(N+(j-1)*(N-d)+i);
}
}
I=concat(I,transpose(X));
I=transpose(I);
return(I);
}
proc deflateHW2(ideal F, int rk, list #)
"USAGE: deflateHW2(F, rk [, SXi, SB]);
ideal F: system of polynomial equations
int rk: the rank of the Jacobian of F at the point at which you want to deflate
strings (or lists of strings) SXi, SB: parameters influencing the output
RETURN: ring: a ring containing the ideal AUGF, representing the augmented system
REMARK: This deflation method augments the given polynomial system to a system which is
defined in the original ring if rk = 0.
If rk > 0, the augmented system is defined in an extended ring and a random
matrix B is used in the computations. More precisely:
- rk*(nv-rk) new variables are added to the original ring
- the random matrix B has dimensions nv*nv
NOTE: If rk = 0: the returned ring R is the same as the basering.
If rk > 0: the returned ring R is the basering plus additional variables.
More precisely, we add rk*(nv-rk) + nv*nv variables, where nv is the number of
variables in the basering. They have the following purpose:
- the first rk*(nv-rk) correspond to the new variables of the extended ring
( lets say that these variables are called Xi_1,...,Xi_(rk*(nv-rk)) )
- the last nv*nv variables correspond to the entries of the random matrix B
This way, you have more options: you can substitute the variables corresponding
to the entries of B by random numbers you generated yourself.
With the optional arguments you can influence the names that will be given to the
additional variables. If you give any optional arguments, you should give exactly
two of them. The first controls the names of the Xi_j, the second the names
of the entries of B.
If an optional argument is of type string, say \"X\", then the variable names
controlled by this argument will be X(1),...,X(# of variables).
If an optional argument is given as a list of strings, it should be of the
following form: [\"no parentheses\",] s_1 [,...,s_n]. If the list consists of two
elements \"no parentheses\" and \"X\", the variables are named as
above, but without the parentheses. If the list contains enough strings, that is
if you specify strings s_1,...,s_n with n=rk*(nv-rk) or n=nv*nv (depending on
which of the variable names are being controlled), then exactly these strings
will be used as the names of the variables. (If you specify less than n names,
only s_1 is used. If you specify more than n, only s_1,...,s_n are used.)
The procedure does not check for naming conflicts prior to defining the
extended ring, so please make sure that there are none.
If no optional arguments are given, the new variables are named X(1),...,X(rk+1),
the entries of B are named B(1),...,B(nv*(rk+1)).
As for the order in which B is filled with variables:
- B is filled with variables column by column, from left to right, filling the
columns from top to bottom
EXAMPLE: example deflateHW2; shows an example
"
{
list vnb="B";
list vnxi="X";
if(size(#) > 0)
{
if(size(#) > 2)
{
ERROR("Too many optional arguments (there should be exactly two, if any).");
}
if(size(#) == 1)
{
ERROR("Too few optional arguments (there should be exactly two, if any).");
}
if(typeof(#[1]) != typeof(#[2]))
{
//ERROR("The optional arguments must be of the same type.");
}
vnb=#[2];
vnxi=#[1];
}
matrix J=jacob(F);
int N=ncols(J);//number of variables
int d=N-rk;
int nv=nvars(basering);
def br=basering;
list RL=ringlist(br);
if( rk > 0 )
{
RL=append_var_list((N-d)*d,RL,vnxi);
RL=append_var_list(N*N,RL,vnb);
def bigR=ring(RL);
setring bigR;
matrix J=imap(br,J);
matrix B=makeB(N,d);
matrix IX=makeIX(N,d);
J=J*B*IX;
ideal AUGF=imap(br,F);
AUGF=AUGF,ideal(J);
AUGF=simplify(AUGF,2+4+8);//remove zeroes, copies, scalar multiples
export(AUGF);
return(bigR);
}
if( rk == 0 )
{
def outR=ring(RL);
setring outR;
matrix J=imap(br,J);
ideal AUGF=imap(br,F);
AUGF=AUGF,ideal(J);
AUGF=simplify(AUGF,2+4+8);
export(AUGF);
return(outR);
}
}
example
{ "EXAMPLE:"; echo=2;
ring ojika3=0,(x,y,z),dp;
ideal F=x+y+z-1, 2x3+5y2-10z+5z3+5, 2x+2y+z2-1;
int rk=2;
list L="X",list("no parentheses", "B");
def R=deflateHW2(F,rk,L);
R;
setring R;
AUGF;
}
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Method A //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
proc deflateLVZ(ideal F, int rk, list #)
"USAGE: deflateLVZ(F, rk [, Sl, SB, Sh]);
ideal F: system of polynomial equations
int rk: the rank of the Jacobian of F at the point at which you want to deflate
strings (or lists of strings) Sl, SB, Sh: parameters influencing the output
RETURN: ring: a ring containing the ideal AUGF, representing the augmented system
REMARK: This deflation method augments the given polynomial system to a system defined
in an extended polynomial ring (new variables: lambda_i), and uses two random
elements in its computations: a matrix B and a (column) vector h.
More precisely:
- the original polynomial ring is extended by rk+1 variables
- the random matrix B has dimensions nv x rk+1, where nv is the number of
variables in the original ring
- the random vector h has length rk+1
NOTE: The returned ring R is the same as the basering plus additional variables.
More precisely, we add (nv+2)*(rk+1) variables, where nv is the number of
variables in the basering. They have the following purpose:
- the first rk+1 correspond to the variables lambda_i of the extended ring
- the next nv*(rk+1) variables correspond to the entries of the random matrix B
- the last rk+1 variables correspond to the entries of the random vector h
This way, the user has more options: he can substitute the variables
corresponding to the random elements by random numbers he generated himself.
With the optional arguments you can influence the names that will be given to the
additional variables. If you give any optional arguments, you should give exactly
three of them. The first controls the names of the lambda_i, the second the names
of the entries of B, and the third controls the names given to the entries of h.
If an optional argument is of type string, say \"X\", then the variable names
controlled by this argument will be X(1),...,X(# of variables).
If an optional argument is given as a list of strings, it should be of the
following form: [\"no parentheses\",] s_1 [,...,s_n]. If the list consists of two
elements \"no parentheses\" and \"X\", the variables are named as
above, but without the parentheses. If the list contains enough strings, that is
if you specify strings s_1,...,s_n with n=rk+1 or n=nv*(rk+1) (depending on which
of the variable names are being controlled), then exactly these strings will be
used as the names of the variables. (If you specify less than n names, only s_1
is used. If you specify more than n, only s_1,...,s_n are used.)
The procedure does not check for naming conflicts prior to defining the
extended ring, so please make sure that there are none.
If no optional arguments are given, the new variables are named l(1),...,l(rk+1),
the entries of B are named B(1),...,B(nv*(rk+1)), and the entries of h are named
h(1),...,h(rk+1).
As for the order in which B and h are filled with variables:
- B is filled with variables column by column, from left to right, filling the
columns from top to bottom
- the column vector h is filled from top to bottom
EXAMPLE: example deflateLVZ; shows an example
"
{
if(size(#) != 3)
{
if(size(#) != 0)
{
ERROR("If any optional arguments are given, there have to be exactly three of them.");
}
list Vl="l";
list VB="B";
list Vh="h";
}
if(size(#) == 3)
{
list Vl=#[1];
list VB=#[2];
list Vh=#[3];
}
matrix J=jacob(F);
def br=basering;
list RL=ringlist(basering);
int nv=nvars(basering);
RL=append_var_list(rk+1,RL,Vl);
RL=append_var_list( nv*(rk+1) ,RL,VB);
RL=append_var_list(rk+1,RL,Vh);
def outr=ring(RL);
setring outr;
matrix J=imap(br,J);
ideal F=imap(br,F);
matrix B[nv][rk+1];
int ii,jj;
for(jj=1; jj<=rk+1; jj++)
{
for(ii=1; ii<=nv; ii++)
{
B[ii,jj]=var( nv+rk+1 + (jj - 1)*(rk+1) + ii );
}
}
matrix la[rk+1][1];
for(ii=1; ii<=rk+1; ii++)
{
la[ii,1]=var( nv + ii );
}
matrix h[rk+1][1];
for(ii=1; ii<=rk+1; ii++)
{
h[ii,1]=var( nv+rk+1 + nv*(rk+1) + ii );
}
matrix C=J*B;
ideal G=ideal(C*la);
matrix H=transpose(la)*h;
kill h;
poly h=H[1,1]-1;
ideal AUGF=F,G,h;
export(AUGF);
return(outr);
}
example
{ "EXAMPLE:"; echo=2;
ring ojika3=0,(x,y,z),dp;
ideal F=x+y+z-1, 2x3+5y2-10z+5z3+5, 2x+2y+z2-1;
int rk=2;
list L="l",list("no parentheses", "B"), list("ha","he","ho");
def R=deflateLVZ(F,rk,L);
R;
setring R;
AUGF;
}
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Examples //////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//These are some benchmark-examples. You can find most of them in the literature listed
//under references.
//Every examples listed consists of a polynomial system of equations and one ore two
//points at which we want to deflate the system. The examples which are given
//exactly can be handled with Singular (that is, symbolically). However, the purpose of
//the procedures in this library is to use information which was computed numerically
//- such as the (numerical) rank of the Jacobian of the polynomial system at a certain
//point -
//and then do symbolical manipulations of the polynomial system in order to deflate it.
//For the Cyclic-9 problem, for example, you will probably want to compute the necessary
//information numerically.
/*
ring cbms1=0,(x,y,z),dp;
list p=0,0,0;
ideal F=x3-yz, y3-xz, z3-xy;
ring cbms2=0,(x,y,z),dp;
list p=0,0,0;
ideal F=x3-3x2y+3xy2-y3-z2, z3-3z2x+3zx2-x3-y2, y3-3y2z+3yz2-z3-x2;
ring mth191=0,(x,y,z),dp;
list p=0,1,0;
ideal F=x3+y2+z2-1, x2+y3+z2-1, x2+y2+z3-1;
ring decker2=0,(x,y),dp;
list p=0,0;
ideal F=x+y3, x2y-y4;
ring ojika2=0,(x,y,z),dp;
list p=0,0,1;
list q=1,0,0;
ideal F=x2+y+z-1, x+y2+z-1, x+y+z2-1;
ring ojika3=0,(x,y,z),dp;
list p=0,0,1;
list q=poly(-5)/2,poly(5)/2,1;
ideal F=x+y+z-1, 2x3+5y2-10z+5z3+5, 2x+2y+z2-1;
ring caprasse=(0,a),(x,y,z,w),dp;
minpoly=a2+3;
list p=2,-a,2,a;
ideal F=-x3z + 4xy2z + 4x2yw + 2y3w + 4x2 - 10y2 + 4xz - 10yw + 2,
-xz3 + 4yz2w + 4xzw2 + 2yw3 + 4xz + 4z2 - 10yw - 10w2 + 2,
y2z + 2xyw - 2x - z, 2yzw + xw2 - x - 2z;
ring KSS=0,x(1..5),dp;
int i; ideal F; poly f;
poly g=sum(maxideal(1));
for(i=1; i<=5; i++)
{
f=var(i)^2 + g - 2*var(i) - 4;
F=F,f;
}
F=simplify(F,2);
list p=1,1,1,1,1;
ring C9=(0,I),(x0,x1,x2,x3,x4,x5,x6,x7,x8),dp;
ideal F=x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,
x0*x1 + x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x6 + x6*x7 + x7*x8 + x8*x0,
x0*x1*x2 + x1*x2*x3 + x2*x3*x4 + x3*x4*x5 + x4*x5*x6 + x5*x6*x7
+ x6*x7*x8 + x7*x8*x0 + x8*x0*x1,
x0*x1*x2*x3 + x1*x2*x3*x4 + x2*x3*x4*x5 + x3*x4*x5*x6 + x4*x5*x6*x7
+ x5*x6*x7*x8 + x6*x7*x8*x0 + x7*x8*x0*x1 + x8*x0*x1*x2,
x0*x1*x2*x3*x4 + x1*x2*x3*x4*x5 + x2*x3*x4*x5*x6 + x3*x4*x5*x6*x7
+ x4*x5*x6*x7*x8 + x5*x6*x7*x8*x0 + x6*x7*x8*x0*x1 + x7*x8*x0*x1*x2
+ x8*x0*x1*x2*x3,
x0*x1*x2*x3*x4*x5 + x1*x2*x3*x4*x5*x6 + x2*x3*x4*x5*x6*x7 + x3*x4*x5*x6*x7*x8
+ x4*x5*x6*x7*x8*x0 + x5*x6*x7*x8*x0*x1 + x6*x7*x8*x0*x1*x2 + x7*x8*x0*x1*x2*x3
+ x8*x0*x1*x2*x3*x4,
x0*x1*x2*x3*x4*x5*x6 + x1*x2*x3*x4*x5*x6*x7 + x2*x3*x4*x5*x6*x7*x8
+ x3*x4*x5*x6*x7*x8*x0 + x4*x5*x6*x7*x8*x0*x1 + x5*x6*x7*x8*x0*x1*x2
+ x6*x7*x8*x0*x1*x2*x3 + x7*x8*x0*x1*x2*x3*x4 + x8*x0*x1*x2*x3*x4*x5,
x0*x1*x2*x3*x4*x5*x6*x7 + x1*x2*x3*x4*x5*x6*x7*x8 + x2*x3*x4*x5*x6*x7*x8*x0
+ x3*x4*x5*x6*x7*x8*x0*x1 + x4*x5*x6*x7*x8*x0*x1*x2 + x5*x6*x7*x8*x0*x1*x2*x3
+ x6*x7*x8*x0*x1*x2*x3*x4 + x7*x8*x0*x1*x2*x3*x4*x5 + x8*x0*x1*x2*x3*x4*x5*x6,
x0*x1*x2*x3*x4*x5*x6*x7*x8 - 1;
poly z0= poly(-9396926) - 3520201*I; z0=z0/10000000;
poly z1=poly(-24601472) - 8954204*I; z1=z1/10000000;
poly z2= poly(-3589306) - 1306401*I; z2=z2/10000000;
list p=z0,z1,z2,z0,-z2,-z1,z0,-z2,-z1;
ring DZ1=0,(x,y,z,w),dp;
list p=0,0,0,0;
ideal F=x4-yzw, y4-xzw, z4-xyw, w4-xyz;
ring DZ2=0,(x,y,z),dp;
list p=0,0,-1;
ideal F=x4, x2y+y4, z+z2-7x3-8x2;
*/
|