/usr/share/singular/LIB/elim.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | ///////////////////////////////////////////////////////////////////////////////
version="version elim.lib 4.0.0.1 Jan_2014 "; // $Id: a6da1d3bce92babf2df6bbdb98cac0228cf05c77 $
category="Commutative Algebra";
info="
LIBRARY: elim.lib Elimination, Saturation and Blowing up
PROCEDURES:
blowup0(j[,s1,s2]) create presentation of blownup ring of ideal j
elimRing(p) create ring with block ordering for elimating vars in p
elim(id,..) variables .. eliminated from id (ideal/module)
elim1(id,p) variables .. eliminated from id (different algorithm)
elim2(id,..) variables .. eliminated from id (different algorithm)
nselect(id,v) select generators not containing variables given by v
sat(id,j) saturated quotient of ideal/module id by ideal j
select(id,v) select generators containing all variables given by v
select1(id,v) select generators containing one variable given by v
(parameters in square brackets [] are optional)
";
LIB "inout.lib";
LIB "general.lib";
LIB "poly.lib";
LIB "ring.lib";
///////////////////////////////////////////////////////////////////////////////
proc blowup0 (ideal J,ideal C, list #)
"USAGE: blowup0(J,C [,W]); J,C,W ideals
@* C = ideal of center of blowup, J = ideal to be blown up,
W = ideal of ambient space
ASSUME: inclusion of ideals : W in J, J in C.
If not, the procedure replaces J by J+W and C by C+J+W
RETURN: a ring, say B, containing the ideals C,J,W and the ideals
@* - bR (ideal defining the blown up basering)
@* - aS (ideal of blown up ambient space)
@* - eD (ideal of exceptional divisor)
@* - tT (ideal of total transform)
@* - sT (ideal of strict transform)
@* - bM (ideal of the blowup map from basering to B)
@* such that B/bR is isomorphic to the blowup ring BC.
PURPOSE: compute the projective blowup of the basering in the center C, the
exceptional locus, the total and strict tranform of J,
and the blowup map.
The projective blowup is a presentation of the blowup ring
BC = R[C] = R + t*C + t^2*C^2 + ... (also called Rees ring) of the
ideal C in the ring basering R.
THEORY: If basering = K[x1,...,xn] and C = <f1,...,fk> then let
B = K[x1,...,xn,y1,...,yk] and aS the preimage in B of W
under the map B -> K[x1,...,xn,t], xi -> xi, yi -> t*fi.
aS is homogeneous in the variables yi and defines a variety
Z=V(aS) in A^n x P^(k-1), the ambient space of the blowup of V(W).
The projection Z -> A^n is an isomorphism outside the preimage
of the center V(C) in A^n and is called the blowup of the center.
The preimage of V(C) is called the exceptional set, the preimage of
V(J) is called the total transform of V(J). The strict transform
is the closure of (total transform minus the exceptional set).
@* If C = <x1,...,xn> then aS = <yi*xj - yj*xi | i,j=1,...,n>
and Z is the blowup of A^n in 0, the exceptional set is P^(k-1).
NOTE: The procedure creates a new ring with variables y(1..k) and x(1..n)
where n=nvars(basering) and k=ncols(C). The ordering is a block
ordering where the x-block has the ordering of the basering and
the y-block has ordering dp if C is not homogeneous
resp. the weighted ordering wp(b1,...bk) if C is homogeneous
with deg(C[i])=bi.
SEE ALSO:blowUp, blowUp2
EXAMPLE: example blowup0; shows examples
"{
def br = basering;
list l = ringlist(br);
int n,k,i = nvars(br),ncols(C),0;
ideal W;
if (size(#) !=0)
{ W = #[1];}
J = J,W;
//J = interred(J+W);
//------------------------- create rings for blowup ------------------------
//Create rings tr = K[x(1),...,x(n),t] and nr = K[x(1),...,x(n),y(1),...,y(k)]
//and map Bl: nr --> tr, x(i)->x(i), y(i)->t*fi.
//Let ord be the ordering of the basering.
//We change the ringlist l by changing l[2] and l[3]
//For K[t,x(1),...,x(n),t]
// - l[2]: the variables to x(1),...,x(n),t
// - l[3]: the ordering to a block ordering (ord,dp(1))
//For K[x(1),...,x(n),y(1),...,y(k)]
// - l[2]: the variables to x(1),...,x(n),y(1),...,y(k),
// - l[3]: the ordering to a block ordering (ord,dp) if C is
// not homogeneous or to (ord,wp(b1,...bk),ord) if C is
// homogeneous with deg(C[i])=bi;
//--------------- create tr = K[x(1),...,x(n),t] ---------------------------
int s = size(l[3]);
for ( i=n; i>=1; i--)
{
l[2][i]="x("+string(i)+")";
}
l[2]=insert(l[2],"t",n);
l[3]=insert(l[3],list("dp",1),s-1);
def tr = ring(l);
//--------------- create nr = K[x(1),...,x(n),y(1),...,y(k)] ---------------
l[2]=delete(l[2],n+1);
l[3]=delete(l[3],s);
for ( i=k; i>=1; i--)
{
l[2][n+i]="y("+string(i)+")";
}
//---- change l[3]:
l[3][s+1] = l[3][s]; // save the module ordering of the basering
intvec w=1:k;
intvec v; // containing the weights for the varibale
if( homog(C) )
{
for( i=k; i>=1; i--)
{
v[i]=deg(C[i]);
}
if (v != w)
{
l[3][s]=list("wp",v);
}
else
{
l[3][s]=list("dp",v);
}
}
else
{
v=1:k;
l[3][s]=list("dp",v);
}
def nr = ring(l);
//-------- create blowup map Bl: nr --> tr, x(i)->x(i), y(i)->t*fi ---------
setring tr;
ideal C = fetch(br,C);
ideal bl = x(1..n);
for( i=1; i<=k; i++) { bl = bl,t*C[i]; }
map Bl = nr,bl;
ideal Z;
//------------------ compute blown up objects and return -------------------
setring nr;
ideal bR = preimage(tr,Bl,Z); //ideal of blown up affine space A^n
ideal C = fetch(br,C);
ideal J = fetch(br,J);
ideal W = fetch(br,W);
ideal aS = interred(bR+W); //ideal of ambient space
ideal tT = interred(J+bR+W); //ideal of total transform
ideal eD = interred(C+J+bR+W); //ideal of exceptional divisor
ideal sT = sat(tT,C)[1]; //ideal of strict transform
ideal bM = x(1..n); //ideal of blowup map br --> nr
export(bR,C,J,W,aS,tT,eD,sT,bM);
return(nr);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = x2+y3;
ideal C = x,y; //center of blowup
def B1 = blowup0(f,C);
setring B1;
aS; //ideal of blown up ambient space
tT; //ideal of total transform of f
sT; //ideal of strict transform of f
eD; //ideal of exceptional divisor
bM; //ideal of blowup map r --> B1
ring R = 0,(x,y,z),ds;
poly f = y2+x3+z5;
ideal C = y2,x,z;
ideal W = z-x;
def B2 = blowup0(f,C,W);
setring B2;
B2; //weighted ordering
bR; //ideal of blown up R
aS; //ideal of blown up R/W
sT; //strict transform of f
eD; //ideal of exceptional divisor
//Note that the different affine charts are {y(i)=1}
}
//////////////////////////////////////////////////////////////////////////////
proc elimRing ( poly vars, list #)
"USAGE: elimRing(vars [,w,str]); vars = product of variables to be eliminated
(type poly), w = intvec (specifying weights for all variables),
str = string either \"a\" or \"b\" (default: w=ringweights, str=\"a\")
RETURN: a list, say L, with R:=L[1] a ring and L[2] an intvec.
The ordering in R is an elimination ordering for the variables
appearing in vars depending on \"a\" resp. \"b\". Let w1 (resp. w2)
be the intvec of weights of the variables to be eliminated (resp. not
to be eliminated).
The monomial ordering of R has always 2 blocks, the first
block corresponds to the (given) variables to be eliminated.
@* If str = \"a\" the first block is a(w1,0..0) and the second block is
wp(w) resp. ws(w) if the first variable not to be eliminated is local.
@* If str = \"b\" the 1st block has ordering wp(w1) and the 2nd block
is wp(w2) resp. ws(w2) if the first variable not to be eliminated is
local.
@* If the basering is a quotient ring P/Q, then R is also a quotient ring
with Q replaced by a standard basis of Q w.r.t. the new ordering
(parameters are not touched).
@* The intvec L[2] is the intvec of variable weights (or the given w)
with weights <= 0 replaced by 1.
PURPOSE: Prepare a ring for eliminating vars from an ideal/moduel by
computing a standard basis in R with a fast monomial ordering.
This procedure is used by the procedure elim.
EXAMPLE: example elimRing; shows an example
"
{
def BR = basering;
int nvarBR = nvars(BR);
list BRlist = ringlist(BR);
//------------------ set resp. compute ring weights ----------------------
int ii;
intvec @w; //to store weights of all variables
@w[nvarBR] = 0;
@w = @w + 1; //initialize @w as 1..1
string str = "a"; //default for specifying elimination ordering
if (size(#) == 0) //default values
{
@w = ringweights(BR); //compute the ring weights (proc from ring.lib)
}
if (size(#) == 1)
{
if ( typeof(#[1]) == "intvec" )
{
@w = #[1]; //take the given weights
}
if ( typeof(#[1]) == "string" )
{
str = #[1]; //string for specifying elimination ordering
}
}
if (size(#) >= 2)
{
if ( typeof(#[1]) == "intvec" and typeof(#[2]) == "string" )
{
@w = #[1]; //take the given weights
str = #[2]; //string for specifying elimination ordering
}
if ( typeof(#[1]) == "string" and typeof(#[2]) == "intvec" )
{
str = #[1]; //string for specifying elimination ordering
@w = #[2]; //take the given weights
}
}
for ( ii=1; ii<=size(@w); ii++ )
{
if ( @w[ii] <= 0 )
{
@w[ii] = 1; //replace non-positive weights by 1
}
}
//------ get variables to be eliminated together with their weights -------
intvec w1,w2; //for ringweights of first (w1) and second (w2) block
list v1,v2; //for variables of first (to be liminated) and second block
for( ii=1; ii<=nvarBR; ii++ )
{
if( vars/var(ii)==0 ) //treat variables not to be eliminated
{
w2 = w2,@w[ii];
v2 = v2+list(string(var(ii)));
if ( ! defined(local) )
{
int local = (var(ii) < 1);
}
}
else
{
w1 = w1,@w[ii];
v1 = v1+list(string(var(ii)));
}
}
if ( size(w1) <= 1 )
{
return(BR);
}
if ( size(w2) <= 1 )
{
ERROR("## elimination of all variables is not possible");
}
w1 = w1[2..size(w1)];
w2 = w2[2..size(w2)];
BRlist[2] = v1 + v2; //put variables to be eliminated in front
//-------- create elimination ordering with two blocks and weights ---------
//Assume that the first r of the n variables are to be eliminated.
//Then, in case of an a-ordering (default), the new ring ordering will be
//of the form (a(1..1,0..0),dp) with r 1's and n-r 0's or (a(w1,0..0),wp(@w))
//if there are varaible weights which are not 1.
//In the case of a b-ordering the ordering will be a block ordering with two
//blocks of the form (dp(r),dp(n-r)) resp. (wp(w1),dp(w2))
list B3; //this will become the list for new ordering
//----- b-ordering case:
if ( str == "b" )
{
if( w1==1 ) //weights for vars to be eliminated are all 1
{
B3[1] = list("dp", w1);
}
else
{
B3[1] = list("wp", w1);
}
if( w2==1 ) //weights for vars not to be eliminated are all 1
{
if ( local )
{
B3[2] = list("ds", w2);
}
else
{
B3[2] = list("dp", w2);
}
}
else
{
if ( local )
{
B3[2] = list("ws", w2);
}
else
{
B3[2] = list("wp", w2);
}
}
}
//----- a-ordering case:
else
{
//define first the second block
if( @w==1 ) //weights for all vars are 1
{
if ( local )
{
B3[2] = list("ls", @w);
}
else
{
B3[2] = list("dp", @w);
}
}
else
{
if ( local )
{
B3[2] = list("ws", @w);
}
else
{
B3[2] = list("wp", @w);
}
}
//define now the first a-block of the form a(w1,0..0)
intvec @v;
@v[nvarBR] = 0;
@v = @v+w1;
B3[1] = list("a", @v);
}
BRlist[3] = B3;
//----------- put module ordering always at the end and return -------------
BRlist[3] = insert(BRlist[3],list("C",intvec(0)),size(B3));
def eRing = ring(quotientList(BRlist));
list result = eRing, @w;
return (result);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z,u,v),(c,lp);
def P = elimRing(yu); P;
intvec w = 1,1,3,4,5;
elimRing(yu,w);
ring S = (0,a),(x,y,z,u,v),ws(1,2,3,4,5);
minpoly = a2+1;
qring T = std(ideal(x+y2+v3,(x+v)^2));
def Q = elimRing(yv)[1];
setring Q; Q;
}
///////////////////////////////////////////////////////////////////////////////
proc elim (def id, list #)
"USAGE: elim(id,arg[,s]); id ideal/module, arg can be either an intvec v or
a product p of variables (type poly), s a string determining the
method which can be \"slimgb\" or \"std\" or, additionally,
\"withWeigts\".
RETURN: ideal/module obtained from id by eliminating either the variables
with indices appearing in v or the variables appearing in p.
Works also in a qring.
METHOD: elim uses elimRing to create a ring with an elimination ordering for
the variables to be eliminated and then applies std if \"std\"
is given, or slimgb if \"slimgb\" is given, or a heuristically chosen
method.
@* If the variables in the basering have weights these weights are used
in elimRing. If a string \"withWeigts\" as (optional) argument is given
@sc{Singular} computes weights for the variables to make the input as
homogeneous as possible.
@* The method is different from that used by eliminate and elim1;
depending on the example, any of these commands can be faster.
NOTE: No special monomial ordering is required, i.e. the ordering can be
local or mixed. The result is a SB with respect to the ordering of
the second block used by elimRing. E.g. if the first var not to be
eliminated is global, resp. local, this ordering is dp, resp. ds
(or wp, resp. ws, with the given weights for these variables).
If printlevel > 0 the ring for which the output is a SB is shown.
SEE ALSO: eliminate, elim1
EXAMPLE: example elim; shows an example
"
{
if (size(#) == 0)
{
ERROR("## specify variables to be eliminated");
}
int pr = printlevel - voice + 2; //for ring display if printlevel > 0
def BR = basering;
intvec save_opt=option(get);
list lER; //for list returned by elimRing
//-------------------------------- check input -------------------------------
poly vars;
int ne; //for number of vars to be eliminated
int ii;
if (size(#) > 0)
{
if ( typeof(#[1]) == "poly" )
{
vars = #[1];
for( ii=1; ii<=nvars(BR); ii++ )
{
if ( vars/var(ii) != 0)
{ ne++; }
}
}
if ( typeof(#[1]) == "intvec" or typeof(#[1]) == "int")
{
ne = size(#[1]);
vars=1;
for( ii=1; ii<=ne; ii++ )
{
vars=vars*var(#[1][ii]);
}
}
}
string method; //for "std" or "slimgb" or "withWeights"
if (size(#) >= 2)
{
if ( typeof(#[2]) == "string" )
{
if ( #[2] == "withWeights" )
{
intvec @w = weight(id); //computation of weights
}
if ( #[2] == "std" ) { method = "std"; }
if ( #[2] == "slimgb" ) { method = "slimgb"; }
}
else
{
ERROR("expected `elim(ideal,intvec[,string])`");
}
if (size(#) == 3)
{
if ( typeof(#[3]) == "string" )
{
if ( #[3] == "withWeights" )
{
intvec @w = weight(id); //computation of weights
}
if ( #[3] == "std" ) { method = "std"; }
if ( #[3] == "slimgb" ) { method = "slimgb"; }
}
}
if ( method == "" )
{
ERROR("expected \"std\" or \"slimgb\" or \"withWeights\" as the optional string parameters");
}
}
//-------------- create new ring and map objects to new ring ------------------
if ( defined(@w) )
{
lER = elimRing(vars,@w); //in this case lER[2] = @w
}
else
{
lER = elimRing(vars);
intvec @w = lER[2]; //in this case w is the intvec of
//variable weights as computed in elimRing
}
def ER = lER[1];
setring ER;
def id = imap(BR,id);
poly vars = imap(BR,vars);
//---------- now eliminate in new ring and map back to old ring ---------------
//if possible apply std(id,hi,w) where hi is the first hilbert function
//of id with respect to the weights w. If w is not defined (i.e. good weights
//@w are computed then id is only approximately @w-homogeneous and
//the hilbert driven std cannot be used directly; however, stdhilb
//homogenizes first and applies the hilbert driven std to the homogenization
option(redThrough);
if (typeof(id)=="matrix")
{
id = matrix(stdhilb(module(id),method,@w));
}
else
{
id = stdhilb(id,method,@w);
}
//### Todo: hier sollte id = groebner(id, "hilb"); verwendet werden.
//da z.Zt. (Jan 09) groebener bei extra Gewichtsvektor a(...) aber stets std
//aufruft und ausserdem "withWeigts" nicht kennt, ist groebner(id, "hilb")
//zunaechst nicht aktiviert. Ev. nach Ueberarbeitung von groebner aktivieren
id = nselect(id,1..ne);
if ( pr > 0 )
{
"// result is a SB in the following ring:";
ER;
}
option(set,save_opt);
setring BR;
return(imap(ER,id));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,u,v,w),dp;
ideal i=x-u,y-u2,w-u3,v-x+y3;
elim(i,3..4);
elim(i,uv);
int p = printlevel;
printlevel = 2;
elim(i,uv,"withWeights","slimgb");
printlevel = p;
ring S = (0,a),(x,y,z,u,v),ws(1,2,3,4,5);
minpoly = a2+1;
qring T = std(ideal(ax+y2+v3,(x+v)^2));
ideal i=x-u,y-u2,az-u3,v-x+ay3;
module m=i*gen(1)+i*gen(2);
m=elim(m,xy);
show(m);
}
///////////////////////////////////////////////////////////////////////////////
proc elim2 (def id, intvec va)
"USAGE: elim2(id,v); id ideal/module, v intvec
RETURNS: ideal/module obtained from id by eliminating variables in v
NOTE: no special monomial ordering is required, result is a SB with
respect to ordering dp (resp. ls) if the first var not to be
eliminated belongs to a -p (resp. -s) blockordering
This proc uses 'execute' or calls a procedure using 'execute'.
SEE ALSO: elim1, eliminate, elim
EXAMPLE: example elim2; shows examples
"
{
//---- get variables to be eliminated and create string for new ordering ------
int ii; poly vars=1;
for( ii=1; ii<=size(va); ii++ ) { vars=vars*var(va[ii]); }
if( attrib(basering,"global")) { string ordering = "),dp;"; }
else { string ordering = "),ls;"; }
string mpoly=string(minpoly);
//-------------- create new ring and map objects to new ring ------------------
def br = basering;
string str = "ring @newr = ("+charstr(br)+"),("+varstr(br)+ordering;
execute(str);
if (mpoly!="0") { execute("minpoly="+mpoly+";"); }
def i = imap(br,id);
poly vars = imap(br,vars);
//---------- now eliminate in new ring and map back to old ring ---------------
i = eliminate(i,vars);
setring br;
return(imap(@newr,i));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,u,v,w),dp;
ideal i=x-u,y-u2,w-u3,v-x+y3;
elim2(i,3..4);
module m=i*gen(1)+i*gen(2);
m=elim2(m,3..4);show(m);
}
///////////////////////////////////////////////////////////////////////////////
proc elim1 (def id, list #)
"USAGE: elim1(id,arg); id ideal/module, arg can be either an intvec v or a
product p of variables (type poly)
RETURN: ideal/module obtained from id by eliminating either the variables
with indices appearing in v or the variables appearing in p
METHOD: elim1 calls eliminate but in a ring with ordering dp (resp. ls)
if the first var not to be eliminated belongs to a -p (resp. -s)
ordering.
NOTE: no special monomial ordering is required.
This proc uses 'execute' or calls a procedure using 'execute'.
SEE ALSO: elim, eliminate
EXAMPLE: example elim1; shows examples
"
{
def br = basering;
if ( size(ideal(br)) != 0 )
{
ERROR ("elim1 cannot eliminate in a qring");
}
//------------- create product vars of variables to be eliminated -------------
poly vars;
int ii;
if (size(#) > 0)
{
if ( typeof(#[1]) == "poly" ) { vars = #[1]; }
if ( typeof(#[1]) == "intvec" or typeof(#[1]) == "int")
{
vars=1;
for( ii=1; ii<=size(#[1]); ii++ )
{
vars=vars*var(#[1][ii]);
}
}
}
//---- get variables to be eliminated and create string for new ordering ------
for( ii=1; ii<=nvars(basering); ii++ )
{
if( vars/var(ii)==0 ) { poly p = 1+var(ii); break;}
}
if( ord(p)==0 ) { string ordering = "),ls;"; }
if( ord(p)>0 ) { string ordering = "),dp;"; }
//-------------- create new ring and map objects to new ring ------------------
string str = "ring @newr = ("+charstr(br)+"),("+varstr(br)+ordering;
execute(str);
def id = fetch(br,id);
poly vars = fetch(br,vars);
//---------- now eliminate in new ring and map back to old ring ---------------
id = eliminate(id,vars);
setring br;
return(imap(@newr,id));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,t,s,z),dp;
ideal i=x-t,y-t2,z-t3,s-x+y3;
elim1(i,ts);
module m=i*gen(1)+i*gen(2);
m=elim1(m,3..4); show(m);
}
///////////////////////////////////////////////////////////////////////////////
proc nselect (def id, intvec v)
"USAGE: nselect(id,v); id = ideal, module or matrix, v = intvec
RETURN: generators (or columns) of id not containing the variables with index
an entry of v
SEE ALSO: select, select1
EXAMPLE: example nselect; shows examples
"
{
if (typeof(id) != "ideal")
{
if (typeof(id)=="module" || typeof(id)=="matrix")
{
module id1 = module(id);
}
else
{
ERROR("// *** input must be of type ideal or module or matrix");
}
}
else
{
ideal id1 = id;
}
int j,k;
int n,m = size(v), ncols(id1);
for( k=1; k<=m; k++ )
{
for( j=1; j<=n; j++ )
{
if( size(id1[k]/var(v[j]))!=0 )
{
id1[k]=0; break;
}
}
}
if(typeof(id)=="matrix")
{
return(matrix(simplify(id1,2)));
}
return(simplify(id1,2));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,t,s,z),(c,dp);
ideal i=x-y,y-z2,z-t3,s-x+y3;
nselect(i,3);
module m=i*(gen(1)+gen(2));
m;
nselect(m,3..4);
nselect(matrix(m),3..4);
}
///////////////////////////////////////////////////////////////////////////////
proc sat (def id, ideal j)
"USAGE: sat(id,j); id=ideal/module, j=ideal
RETURN: list of an ideal/module [1] and an integer [2]:
[1] = saturation of id with respect to j (= union_(k=1...) of id:j^k)
[2] = saturation exponent (= min( k | id:j^k = id:j^(k+1) ))
NOTE: [1] is a standard basis in the basering
DISPLAY: saturation exponent during computation if printlevel >=1
EXAMPLE: example sat; shows an example
"{
int ii,kk;
def i=id;
id=std(id);
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
while( ii<=size(i) )
{
dbprint(p-1,"// compute quotient "+string(kk+1));
i=quotient(id,j);
for( ii=1; ii<=size(i); ii++ )
{
if( reduce(i[ii],id,1)!=0 ) break;
}
id=std(i); kk++;
}
dbprint(p-1,"// saturation becomes stable after "+string(kk-1)+" iteration(s)","");
list L = id,kk-1;
return (L);
}
example
{ "EXAMPLE:"; echo = 2;
int p = printlevel;
ring r = 2,(x,y,z),dp;
poly F = x5+y5+(x-y)^2*xyz;
ideal j = jacob(F);
sat(j,maxideal(1));
printlevel = 2;
sat(j,maxideal(2));
printlevel = p;
}
///////////////////////////////////////////////////////////////////////////////
proc select (def id, intvec v)
"USAGE: select(id,n[,m]); id = ideal/module/matrix, v = intvec
RETURN: generators/columns of id containing all variables with index
an entry of v
NOTE: use 'select1' for selecting generators/columns containing at least
one of the variables with index an entry of v
SEE ALSO: select1, nselect
EXAMPLE: example select; shows examples
"
{
if (typeof(id) != "ideal")
{
if (typeof(id)=="module" || typeof(id)=="matrix")
{
module id1 = module(id);
}
else
{
ERROR("// *** input must be of type ideal or module or matrix");
}
}
else
{
ideal id1 = id;
}
int j,k;
int n,m = size(v), ncols(id1);
for( k=1; k<=m; k++ )
{
for( j=1; j<=n; j++ )
{
if( size(id1[k]/var(v[j]))==0)
{
id1[k]=0; break;
}
}
}
if(typeof(id)=="matrix")
{
return(matrix(simplify(id1,2)));
}
return(simplify(id1,2));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,t,s,z),(c,dp);
ideal i=x-y,y-z2,z-t3,s-x+y3;
ideal j=select(i,1);
j;
module m=i*(gen(1)+gen(2));
m;
select(m,1..2);
select(matrix(m),1..2);
}
///////////////////////////////////////////////////////////////////////////////
proc select1 (def id, intvec v)
"USAGE: select1(id,v); id = ideal/module/matrix, v = intvec
RETURN: generators/columns of id containing at least one of the variables
with index an entry of v
NOTE: use 'select' for selecting generators/columns containing all variables
with index an entry of v
SEE ALSO: select, nselect
EXAMPLE: example select1; shows examples
"
{
if (typeof(id) != "ideal")
{
if (typeof(id)=="module" || typeof(id)=="matrix")
{
module id1 = module(id);
module I;
}
else
{
ERROR("// *** input must be of type ideal or module or matrix");
}
}
else
{
ideal id1 = id;
ideal I;
}
int j,k;
int n,m = size(v), ncols(id1);
for( k=1; k<=m; k++ )
{ for( j=1; j<=n; j++ )
{
if( size(subst(id1[k],var(v[j]),0)) != size(id1[k]) )
{
I = I,id1[k]; break;
}
}
}
if(typeof(id)=="matrix")
{
return(matrix(simplify(I,2)));
}
return(simplify(I,2));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,t,s,z),(c,dp);
ideal i=x-y,y-z2,z-t3,s-x+y3;
ideal j=select1(i,1);j;
module m=i*(gen(1)+gen(2)); m;
select1(m,1..2);
select1(matrix(m),1..2);
}
/*
///////////////////////////////////////////////////////////////////////////////
// EXAMPLEs
///////////////////////////////////////////////////////////////////////////////
// Siehe auch file 'tst-elim' mit grossem Beispiel;
example blowup0;
example elimRing;
example elim;
example elim1;
example nselect;
example sat;
example select;
example select1;
//===========================================================================
// Rationale Normalkurve vom Grad d im P^d bzw. im A^d:
//homogen s:t -> (t^d:t^(d-1)s: ...: s^d), inhomogen t ->(t^d:t^(d-1): ...:t)
//------------------- 1. Homogen:
//Varianten der Methode
int d = 5;
ring R = 0,(s,t,x(0..d)),dp;
ideal I;
for( int ii=0; ii<=d; ii++) {I = I,ideal(x(ii)-t^(d-ii)*s^ii); }
int tt = timer;
ideal eI = elim(I,1..2,"std");
ideal eI = elim(I,1..2,"slimgb");
ideal eI = elim(I,st,"withWeights");
ideal eI = elim(I,st,"std","withWeights");
//komplizierter
int d = 50;
ring R = 0,(s,t,x(0..d)),dp;
ideal I;
for( int ii=0; ii<=d; ii++) {I = I,ideal(x(ii)-t^(d-ii)*s^ii); }
int tt = timer;
ideal eI = elim(I,1..2); //56(44)sec (slimgb 22(17),hilb 33(26))
timer-tt; tt = timer;
ideal eI = elim1(I,1..2); //71(53)sec
timer-tt; tt = timer;
ideal eI = eliminate(I,st); //70(51)sec (wie elim1)
timer-tt;
timer-tt; tt = timer;
ideal eI = elim(I,1..2,"withWeights"); //190(138)sec
//(weights73(49), slimgb43(33), hilb71(53)
timer-tt;
//------------------- 2. Inhomogen
int d = 50;
ring r = 0,(t,x(0..d)),dp;
ideal I;
for( int ii=0; ii<=d; ii++) {I = I+ideal(x(ii)-t^(d-ii)); }
int tt = timer;
ideal eI = elim(I,1,); //20(15)sec (slimgb13(10), hilb6(5))
ideal eI = elim(I,1,"std"); //17sec (std 11, hilb 6)
timer-tt; tt = timer;
ideal eI = elim1(I,t); //8(6)sec
timer-tt; tt = timer;
ideal eI = eliminate(I,t); //7(6)sec
timer-tt;
timer-tt; tt = timer;
ideal eI = elim(I,1..1,"withWeights"); //189(47)sec
//(weights73(42), slimgb43(1), hilb70(2)
timer-tt;
//===========================================================================
// Zufaellige Beispiele, homogen
system("random",37);
ring R = 0,x(1..6),lp;
ideal I = sparseid(4,3);
int tt = timer;
ideal eI = elim(I,1); //108(85)sec (slimgb 29(23), hilb79(61)
timer-tt; tt = timer;
ideal eI = elim(I,1,"std"); //(139)sec (std 77, hilb 61)
timer-tt; tt = timer;
ideal eI = elim1(I,1); //(nach 45 min abgebrochen)
timer-tt; tt = timer;
ideal eI = eliminate(I,x(1)); //(nach 45 min abgebrochen)
timer-tt; tt = timer;
// Zufaellige Beispiele, inhomogen
system("random",37);
ring R = 32003,x(1..5),dp;
ideal I = sparseid(4,2,3);
option(prot,redThrough);
intvec w = 1,1,1,1,1,1;
int tt = timer;
ideal eI = elim(I,1,w); //(nach 5min abgebr.) hilb schlaegt nicht zu
timer-tt; tt = timer; //BUG!!!!!!
int tt = timer;
ideal eI = elim(I,1); //(nach 5min abgebr.) hilb schlaegt nicht zu
timer-tt; tt = timer; //BUG!!!!!!
ideal eI = elim1(I,1); //8(7.8)sec
timer-tt; tt = timer;
ideal eI = eliminate(I,x(1)); //8(7.8)sec
timer-tt; tt = timer;
BUG!!!!
// Zufaellige Beispiele, inhomogen, lokal
system("random",37);
ring R = 32003,x(1..6),ds;
ideal I = sparseid(4,1,2);
option(prot,redThrough);
int tt = timer;
ideal eI = elim(I,1); //(haengt sich auf)
timer-tt; tt = timer;
ideal eI = elim1(I,1); //(0)sec !!!!!!
timer-tt; tt = timer;
ideal eI = eliminate(I,x(1)); //(ewig mit ...., abgebrochen)
timer-tt; tt = timer;
ring R1 =(32003),(x(1),x(2),x(3),x(4),x(5),x(6)),(a(1,0,0,0,0,0),ds,C);
ideal I = imap(R,I);
I = std(I); //(haengt sich auf) !!!!!!!
ideal eI = elim(I,1..1,"withWeights"); //(47)sec (weights42, slimgb1, hilb2)
timer-tt;
ring R1 =(32003),(x(1),x(2),x(3),x(4),x(5),x(6)),(a(1,0,0,0,0,0),ds,C);
ideal I = imap(R,I);
I = std(I); //(haengt sich auf) !!!!!!!
ideal eI = elim(I,1..1,"withWeights"); //(47)sec (weights42, slimgb1, hilb2)
timer-tt;
*/
|