/usr/share/singular/LIB/findifs.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | //////////////////////////////////////////////////////////////////////////////
version="version findifs.lib 4.0.0.0 Jun_2013 "; // $Id: d56248604e0535012373faef7e0ad53393269302 $
category="System and Control Theory";
info="
LIBRARY: findifs.lib Tools for the finite difference schemes
AUTHORS: Viktor Levandovskyy, levandov@math.rwth-aachen.de
OVERVIEW:
We provide the presentation of difference operators in a polynomial,
semi-factorized and a nodal form. Running @code{findifs_example();}
will demonstrate, how we generate finite difference schemes of linear PDEs
from given approximations.
Theory: The method we use have been developed by V. Levandovskyy and Bernd Martin. The
computation of a finite difference scheme of a given single linear partial
differential equation with constant coefficients with a given approximation
rules boils down to the computation of a Groebner basis of a submodule of
a free module with respect to the ordering, eliminating module components.
Support: SpezialForschungsBereich F1301 of the Austrian FWF
PROCEDURES:
findifs_example(); containes a guided explanation of our approach
decoef(P,n); decompose polynomial P into summands with respect to the number n
difpoly2tex(S,P[,Q]); present the difference scheme in the nodal form
exp2pt(P[,L]); convert a polynomial M into the TeX format, in nodal form
texcoef(n); converts the number n into TeX
npar(n); search for 'n' among the parameters and returns its number
magnitude(P); compute the square of the magnitude of a complex expression
replace(s,what,with); replace in s all the substrings with a given string
xchange(w,a,b); exchange two substrings in a given string
SEE ALSO: latex_lib, finitediff_lib
";
LIB "latex.lib";
LIB "poly.lib";
proc tst_findif()
{
example decoef;
example difpoly2tex;
example exp2pt;
example texcoef;
example npar;
example magnitude;
example replace;
example xchange;
}
// static procs:
// par2tex(s); convert special characters to TeX in s
// mon2pt(P[,L]); convert a monomial M into the TeX format, in nodal form
// 1. GLOBAL ASSUME: in the ring we have first Tx, then Tt: [FIXED, not needed anymore]!
// 2. map vars other than Tx,Tt to parameters instead or just ignore them [?]
// 3. clear the things with brackets
// 4. todo: content resp lcmZ, gcdZ
proc xchange(string where, string a, string b)
"USAGE: xchange(w,a,b); w,a,b strings
RETURN: string
PURPOSE: exchanges substring 'a' with a substring 'b' in the string w
NOTE:
EXAMPLE: example xchange; shows examples
"{
// replaces a<->b in where
// assume they are of the same size [? seems to work]
string s = "H";
string t;
t = replace(where,a,s);
t = replace(t,b,a);
t = replace(t,s,b);
return(t);
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dt,dh,A),Tt,dp;
poly p = (Tt*dt+dh+1)^2+2*A;
string s = texpoly("",p);
s;
string t = xchange(s,"dh","dt");
t;
}
static proc par2tex(string s)
"USAGE: par2tex(s); s a string
RETURN: string
PURPOSE: converts special characters to TeX in s
NOTE: the convention is the following:
'Tx' goes to 'T_x',
'dx' to '\\tri x' (the same for dt, dy, dz),
'theta', 'ro', 'A', 'V' are converted to greek letters.
EXAMPLE: example par2tex; shows examples
"{
// can be done with the help of latex_lib
// s is a tex string with a poly
// replace theta with \theta
// A with \lambda
// dt with \tri t
// dh with \tri h
// Tx with T_x, Ty with T_y
// Tt with T_t
// V with \nu
// ro with \rho
// dx with \tri x
// dy with \tri y
string t = s;
t = replace(t,"Tt","T_t");
t = replace(t,"Tx","T_x");
t = replace(t,"Ty","T_y");
t = replace(t,"dt","\\tri t");
t = replace(t,"dh","\\tri h");
t = replace(t,"dx","\\tri x");
t = replace(t,"dy","\\tri y");
t = replace(t,"theta","\\theta");
t = replace(t,"A","\\lambda");
t = replace(t,"V","\\nu");
t = replace(t,"ro","\\rho");
return(t);
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dt,theta,A),Tt,dp;
poly p = (Tt*dt+theta+1)^2+2*A;
string s = texfactorize("",p);
s;
par2tex(s);
string T = texfactorize("",p*(-theta*A));
par2tex(T);
}
proc replace(string s, string what, string with)
"USAGE: replace(s,what,with); s,what,with strings
RETURN: string
PURPOSE: replaces in 's' all the substrings 'what' with substring 'with'
NOTE:
EXAMPLE: example replace; shows examples
"{
// clear: replace in s, "what" with "with"
int ss = size(s);
int cn = find(s,what);
if ( (cn==0) || (cn>ss))
{
return(s);
}
int gn = 0; // global counter
int sw = size(what);
int swith = size(with);
string out="";
string tmp;
gn = 0;
while(cn!=0)
{
// "cn:"; cn;
// "gn"; gn;
tmp = "";
if (cn>gn)
{
tmp = s[gn..cn-1];
}
// "tmp:";tmp;
// out = out+tmp+" "+with;
out = out+tmp+with;
// "out:";out;
gn = cn + sw;
if (gn>ss)
{
// ( (gn>ss) || ((sw>1) && (gn >= ss)) )
// no need to append smth
return(out);
}
// if (gn == ss)
// {
// }
cn = find(s,what,gn);
}
// and now, append the rest of s
// out = out + " "+ s[gn..ss];
out = out + s[gn..ss];
return(out);
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dt,theta),Tt,dp;
poly p = (Tt*dt+theta+1)^2+2;
string s = texfactorize("",p);
s;
s = replace(s,"Tt","T_t"); s;
s = replace(s,"dt","\\tri t"); s;
s = replace(s,"theta","\\theta"); s;
}
proc exp2pt(poly P, list #)
"USAGE: exp2pt(P[,L]); P poly, L an optional list of strings
RETURN: string
PURPOSE: convert a polynomial M into the TeX format, in nodal form
ASSUME: coefficients must not be fractional
NOTE: an optional list L contains a string, which will replace the default
value 'u' for the discretized function
EXAMPLE: example exp2pt; shows examples
"{
// given poly in vars [now Tx,Tt are fixed],
// create Tex expression for points of lattice
// coeffs must not be fractional
string varnm = "u";
if (size(#) > 0)
{
if (typeof(#[1])=="string")
{
varnm = string(#[1]);
}
}
// varnm;
string rz,mz;
while (P!=0)
{
mz = mon2pt(P,varnm);
if (mz[1]=="-")
{
rz = rz+mz;
}
else
{
rz = rz + "+" + mz;
}
P = P-lead(P);
}
rz = rz[2..size(rz)];
return(rz);
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dh,dt),(Tx,Tt),dp;
poly M = (4*dh*Tx^2+1)*(Tt-1)^2;
print(exp2pt(M));
print(exp2pt(M,"F"));
}
static proc mon2pt(poly M, string V)
"USAGE: mon2pt(M,V); M poly, V a string
RETURN: string
PURPOSE: convert a monomial M into the TeX format, nodal form
EXAMPLE: example mon2pt; shows examples
"{
// searches for Tx, then Tt
// monomial to the lattice point conversion
// c*X^a*Y^b --> c*U^{n+a}_{j+b}
number cM = leadcoef(M);
intvec e = leadexp(M);
// int a = e[2]; // convention: first Tx, then Tt
// int b = e[1];
int i;
int a , b, c = 0,0,0;
int ia,ib,ic = 0,0,0;
int nv = nvars(basering);
string s;
for (i=1; i<=nv ; i++)
{
s = string(var(i));
if (s=="Tt") { a = e[i]; ia = i;}
if (s=="Tx") { b = e[i]; ib = i;}
if (s=="Ty") { c = e[i]; ic = i;}
}
// if (ia==0) {"Error:Tt not found!"; return("");}
// if (ib==0) {"Error:Tx not found!"; return("");}
// if (ic==0) {"Error:Ty not found!"; return("");}
// string tc = texobj("",c); // why not texpoly?
string tc = texcoef(cM);
string rs;
if (cM==-1)
{
rs = "-";
}
if (cM^2 != 1)
{
// we don't need 1 or -1 as coeffs
// rs = clTex(tc)+" ";
// rs = par2tex(rmDol(tc))+" ";
rs = par2tex(tc)+" ";
}
// a = 0 or b = 0
rs = rs + V +"^{n";
if (a!=0)
{
rs = rs +"+"+string(a);
}
rs = rs +"}_{j";
if (b!=0)
{
rs = rs +"+"+string(b);
}
if (c!=0)
{
rs = rs + ",k+";
rs = rs + string(c);
}
rs = rs +"}";
return(rs);
}
example
{
"EXAMPLE:"; echo=2;
ring r = (0,dh,dt),(Tx,Tt),dp;
poly M = (4*dh^2-dt)*Tx^3*Tt;
print(mon2pt(M,"u"));
poly N = ((dh-dt)/(dh+dt))*Tx^2*Tt^2;
print(mon2pt(N,"f"));
ring r2 = (0,dh,dt),(Tx,Ty,Tt),dp;
poly M = (4*dh^2-dt)*Tx^3*Ty^2*Tt;
print(mon2pt(M,"u"));
}
proc npar(number n)
"USAGE: npar(n); n a number
RETURN: int
PURPOSE: searches for 'n' among the parameters and returns its number
EXAMPLE: example npar; shows examples
"{
// searches for n amongst parameters
// and returns its number
int i,j=0,0;
list L = ringlist(basering);
list M = L[1][2]; // pars
string sn = string(n);
sn = sn[2..size(sn)-1];
for (i=1; i<=size(M);i++)
{
if (M[i] == sn)
{
j = i;
}
}
if (j==0)
{
"Incorrect parameter";
}
return(j);
}
example
{
"EXAMPLE:"; echo=2;
ring r = (0,dh,dt,theta,A),t,dp;
npar(dh);
number T = theta;
npar(T);
npar(dh^2);
}
proc decoef(poly P, number n)
"USAGE: decoef(P,n); P a poly, n a number
RETURN: ideal
PURPOSE: decompose polynomial P into summands with respect
to the presence of the number n in the coefficients
NOTE: n is usually a parameter with no power
EXAMPLE: example decoef; shows examples
"{
// decomposes polynomial into summands
// w.r.t. the presence of a number n in coeffs
// returns ideal
def br = basering;
int i,j=0,0;
int pos = npar(n);
if ((pos==0) || (P==0))
{
return(0);
}
pos = pos + nvars(basering);
// map all pars except to vars, provided no things are in denominator
number con = content(P);
con = numerator(con);
P = cleardenom(P); //destroys content!
P = con*P; // restore the numerator part of the content
list M = ringlist(basering);
list L = M[1..4];
list Pars = L[1][2];
list Vars = L[2] + Pars;
L[1] = L[1][1]; // characteristic
L[2] = Vars;
// for non-comm things: don't need nc but graded algebra
// list templ;
// L[5] = templ;
// L[6] = templ;
def @R = ring(L);
setring @R;
poly P = imap(br,P);
poly P0 = subst(P,var(pos),0);
poly P1 = P - P0;
ideal I = P0,P1;
setring br;
ideal I = imap(@R,I);
kill @R;
// check: P0+P1==P
poly Q = I[1]+I[2];
if (P!=Q)
{
"Warning: problem in decoef";
}
return(I);
// substract the pure part from orig and check if n is remained there
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dh,dt),(Tx,Tt),dp;
poly P = (4*dh^2-dt)*Tx^3*Tt + dt*dh*Tt^2 + dh*Tt;
decoef(P,dt);
decoef(P,dh);
}
proc texcoef(number n)
"USAGE: texcoef(n); n a number
RETURN: string
PURPOSE: converts the number n into TeX format
NOTE: if n is a polynomial, texcoef adds extra brackets and performs some space substitutions
EXAMPLE: example texcoef; shows examples
"{
// makes tex from n
// and uses substitutions
// if n is a polynomial, adds brackets
number D = denominator(n);
int DenIsOne = 0;
if ( D==number(1) )
{
DenIsOne = 1;
}
string sd = texpoly("",D);
sd = rmDol(sd);
sd = par2tex(sd);
number N = numerator(n);
string sn = texpoly("",N);
sn = rmDol(sn);
sn = par2tex(sn);
string sout="";
int i;
int NisPoly = 0;
if (DenIsOne)
{
sout = sn;
for(i=1; i<=size(sout); i++)
{
if ( (sout[i]=="+") || (sout[i]=="-") )
{
NisPoly = 1;
}
}
if (NisPoly)
{
sout = "("+sout+")";
}
}
else
{
sout = "\\frac{"+sn+"}{"+sd+"}";
}
return(sout);
}
example
{
" EXAMPLE:"; echo=2;
ring r = (0,dh,dt),(Tx,Tt),dp;
number n1,n2,n3 = dt/(4*dh^2-dt),(dt+dh)^2, 1/dh;
n1; texcoef(n1);
n2; texcoef(n2);
n3; texcoef(n3);
}
static proc rmDol(string s)
{
// removes $s and _no_ (s on appearance
int i = size(s);
if (s[1] == "$") { s = s[2..i]; i--;}
if (s[1] == "(") { s = s[2..i]; i--;}
if (s[i] == "$") { s = s[1..i-1]; i--;}
if (s[i] == ")") { s = s[1..i-1];}
return(s);
}
proc difpoly2tex(ideal S, list P, list #)
"USAGE: difpoly2tex(S,P[,Q]); S an ideal, P and optional Q are lists
RETURN: string
PURPOSE: present the difference scheme in the nodal form
ASSUME: ideal S is the result of @code{decoef} procedure
NOTE: a list P may be empty or may contain parameters, which will not
appear in denominators
@* an optional list Q represents the part of the scheme, depending
on other function, than the major part
EXAMPLE: example difpoly2tex; shows examples
"
{
// S = sum s_i = orig diff poly or
// the result of decoef
// P = list of pars (numbers) not to be divided with, may be empty
// # is an optional list of polys, repr. the part dep. on "f", not on "u"
// S = simplify(S,2); // destroys the leadcoef
// rescan S and remove 0s from it
int i;
ideal T;
int ss = ncols(S);
int j=1;
for(i=1; i<=ss; i++)
{
if (S[i]!=0)
{
T[j]=S[i];
j++;
}
}
S = T;
ss = j-1;
int GotF = 1;
list F;
if (size(#)>0)
{
F = #;
if ( (size(F)==1) && (F[1]==0) )
{
GotF = 0;
}
}
else
{
GotF = 0;
}
int sf = size(F);
ideal SC;
int sp = size(P);
intvec np;
int GotP = 1;
if (sp==0)
{
GotP = 0;
}
if (sp==1)
{
if (P[1]==0)
{
GotP = 0;
}
}
if (GotP)
{
for (i=1; i<=sp; i++)
{
np[i] = npar(P[i])+ nvars(basering);
}
}
for (i=1; i<=ss; i++)
{
SC[i] = leadcoef(S[i]);
}
if (GotF)
{
for (i=1; i<=sf; i++)
{
SC[ss+i] = leadcoef(F[i]);
}
}
def br = basering;
// map all pars except to vars, provided no things are in denominator
list M = ringlist(basering);
list L = M[1..4]; // erase nc part
list Pars = L[1][2];
list Vars = L[2] + Pars;
L[1] = L[1][1]; // characteristic
L[2] = Vars;
def @R = ring(L);
setring @R;
ideal SC = imap(br,SC);
if (GotP)
{
for (i=1; i<=sp; i++)
{
SC = subst(SC,var(np[i]),1);
}
}
poly q=1;
q = lcm(q,SC);
setring br;
poly q = imap(@R,q);
number lq = leadcoef(q);
// lq;
number tmp;
string sout="";
string vname = "u";
for (i=1; i<=ss; i++)
{
tmp = leadcoef(S[i]);
S[i] = S[i]/tmp;
tmp = tmp/lq;
sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(S[i])+")";
}
if (GotF)
{
vname = "p"; //"f";
for (i=1; i<=sf; i++)
{
tmp = leadcoef(F[i]);
F[i] = F[i]/tmp;
tmp = tmp/lq;
sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(F[i],vname)+")";
}
}
sout = sout[3..size(sout)]; //rm first +
return(sout);
}
example
{
"EXAMPLE:"; echo=2;
ring r = (0,dh,dt,V),(Tx,Tt),dp;
poly M = (4*dh*Tx+dt)^2*(Tt-1) + V*Tt*Tx;
ideal I = decoef(M,dt);
list L; L[1] = V;
difpoly2tex(I,L);
poly G = V*dh^2*(Tt-Tx)^2;
difpoly2tex(I,L,G);
}
proc magnitude(poly P)
"USAGE: magnitude(P); P a poly
RETURN: poly
PURPOSE: compute the square of the magnitude of a complex expression
ASSUME: i is the variable of a basering
EXAMPLE: example magnitude; shows examples
"
{
// check whether i is present among the vars
list L = ringlist(basering)[2]; // vars
int j; int cnt = 0;
for(j=size(L);j>0;j--)
{
if (L[j] == "i")
{
cnt = 1; break;
}
}
if (!cnt)
{
ERROR("a variable called i is expected in basering");
}
// i is present, check that i^2+1=0;
// if (NF(i^2+1,std(0)) != 0)
// {
// "Warning: i^2+1=0 does not hold. Reduce the output manually";
// }
poly re = subst(P,i,0);
poly im = (P - re)/i;
return(re^2+im^2);
}
example
{
"EXAMPLE:"; echo=2;
ring r = (0,d),(g,i,sin,cos),dp;
poly P = d*i*sin - g*cos +d^2*i;
NF( magnitude(P), std(i^2+1) );
}
static proc clTex(string s)
// removes beginning and ending $'s
{
string t;
if (size(s)>2)
{
// why -3?
t = s[2..(size(s)-3)];
}
return(t);
}
static proc simfrac(poly up, poly down)
{
// simplifies a fraction up/down
// into the form up/down = RT[1] + RT[2]/down
list LL = division(up,down);
list RT;
RT[1] = LL[1][1,1]; // integer part
RT[2] = L[2][1]; // new numerator
return(RT);
}
proc findifs_example()
"USAGE: findifs_example();
RETURN: nothing (demo)
PURPOSE: demonstration of our approach and this library
EXAMPLE: example findifs_example; shows examples
"
{
"* Equation: u_tt - A^2 u_xx -B^2 u_yy = 0; A,B are constants";
"* we employ three central differences";
"* the vector we act on is (u_xx, u_yy, u_tt, u)^T";
"* Set up the ring: ";
"ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp);";
ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp);
"* Set up the matrix with equation and approximations: ";
"matrix M[4][4] =";
" // direct equation:";
" -A^2, -B^2, 1, 0,";
" // central difference u_tt";
" 0, 0, -dt^2*Tt, (Tt-1)^2,";
" // central difference u_xx";
" -dx^2*Tx, 0, 0, (Tx-1)^2,";
" // central difference u_yy";
" 0, -dy^2*Ty, 0, (Ty-1)^2;";
matrix M[4][4] =
// direct equation:
-A^2, -B^2, 1, 0,
// central difference u_tt
0, 0, -dt^2*Tt, (Tt-1)^2,
// central difference u_xx
-dx^2*Tx, 0, 0, (Tx-1)^2,
// central difference u_yy
0, -dy^2*Ty, 0, (Ty-1)^2;
//=========================================
// CHECK THE CORRECTNESS OF EQUATIONS AS INPUT:
ring rX = (0,A,B,dt,dx,dy,Tx,Ty,Tt),(Uxx, Uyy,Utt, U),(c,Dp);
matrix M = imap(r,M);
vector X = [Uxx, Uyy, Utt, U];
"* Print the differential form of equations: ";
print(M*X);
// END CHECK
//=========================================
setring r;
"* Perform the elimination of module components:";
" module R = transpose(M);";
" module S = std(R);";
module R = transpose(M);
module S = std(R);
" * See the result of Groebner bases: generators are columns";
" print(S);";
print(S);
" * So, only the first column has its nonzero element in the last component";
" * Hence, this polynomial is the scheme";
" poly p = S[4,1];" ;
poly p = S[4,1]; // by elimination of module components
" print(p); ";
print(p);
list L; L[1]=A;L[2] = B;
ideal I = decoef(p,dt); // make splitting w.r.t. the appearance of dt
"* Create the nodal of the scheme in TeX format: ";
" ideal I = decoef(p,dt);";
" difpoly2tex(I,L);";
difpoly2tex(I,L); // the nodal form of the scheme in TeX
"* Preparations for the semi-factorized form: ";
poly pi1 = subst(I[2],B,0);
poly pi2 = I[2] - pi1;
" poly pi1 = subst(I[2],B,0);";
" poly pi2 = I[2] - pi1;";
"* Show the semi-factorized form of the scheme: 1st summand";
" factorize(I[1]); ";
factorize(I[1]); // semi-factorized form of the scheme: 1st summand
"* Show the semi-factorized form of the scheme: 2nd summand";
" factorize(pi1);";
factorize(pi1); // semi-factorized form of the scheme: 2nd summand
"* Show the semi-factorized form of the scheme: 3rd summand";
" factorize(pi1);";
factorize(pi2); // semi-factorized form of the scheme: 3rd summand
}
example
{
"EXAMPLE:"; echo=1;
findifs_example();
}
|