/usr/share/singular/LIB/graal.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 | ////////////////////////////////////////////////////////////////////////////
version="version graal.lib 4.0.2.1 26.03.2015 "; // $Id: edb2a43e302b0b2ea2ad329148d6d68f0f7f6bf0 $
category="Commutative Algebra";
info="
LIBRARY: graal.lib localization at prime ideals and their associated graded rings
AUTHOR: Magdaleen Marais, magdaleen@aims.ac.za
Yue Ren, ren@mathematik.uni-kl.de
OVERVIEW:
This library is on a computational treatment of localizations at prime ideals
and their associated graded rings based on a work of Mora.
Not only does it construct a ring isomorphic to the localization of an affine
coordinate ring at a prime ideal,
the algorithms in this library aim to exploit the topology in the localization
by computing first and foremost in the associated graded ring and lifting
the result to the localization afterwards.
Features include a check for regularity and the resolution of ideals.
REFERENCES:
Mora, Teo: La queste del Saint Gr_a(A_L): A computational approach to local algebra
Marais, Magdaleen and Ren, Yue: Mora's holy graal: Algorithms for computing in localizations at prime ideals
PROCEDURES:
graalMixed(ideal L[,int t]); contruct graalBearer
dimensionOfLocalization(def L); dimension of the localization A_L of A at L
systemOfParametersOfLocalization(def L); system of parameter of the localization A_L of A at L
isLocalizationRegular(def L); test if localization A_L of A at L is regular
warkedPreimageStd(warkedModule wM); std for warkedModule
resolutionInLocalization(ideal I, def L); the resolution of I*A_L
";
LIB "general.lib"; // for watchdog
LIB "poly.lib"; // for hilbPoly
LIB "standard.lib"; // for res
proc mod_init()
{
/***
* graalBearer is a structure that contains those objects
* of the intermediate steps to computing the associated graded algebra
* that are worth saving for future computations. These are:
*
* ring A affine coordinate ring
* ideal L ideal cutting out the subvariety
* int s number of generators of L
* ring Q polynomial ring of the ambient space
* ideal H ideal such that A=Q/H
* ideal J preimage of L
* qring Q0y Q^0[Y1,...,Ys]
* ideal scriptI <Y1-f1,...,Ys-fs>, where f1,...,fs are the generators of L
* qring Al the ring A_L = Q0y/scriptI
* qring Ky K[Y1,...,Ys], where K quotient field of A/L
* ideal scriptIin I_in
* qring Graal associated graded ring, isomorphic to Ky/scriptIin
* map ina Al -> Graal, maps standard basis of ideals
* to standard basis of their respective initial ideals
**/
newstruct("graalBearer","int s, qring A, ideal L, ring Q, ideal H, ideal J, ring Q0, ideal J0, ring Q0y, ideal scriptI, qring Al, qring Ky, ideal scriptIin, map Q0yToKy, qring Graal, map ina");
system("install","graalBearer","print",graalBearer_print,1);
/***
* warkedModule is a structure built to hold two corresponding modules in Ay and Ky respectively.
* More precisely, it contains space for:
* graalBearer Gr a graalBearer containing all relevant global structures
* module modQ0y a module M over Q0y
* module stdmodQ0y a standard basis of M with respect to the weight w
* matrix qQ0y a transformation matrix over Q0y such that
* stdmodAy = qQ0y*modQ0y
* module modKy a module M_in over Ky
* module stdmodKy a standard basis of M_in
* matrix qKy a transformation Matrix over Ky such that
* stdmodKy = qKy*modKy
* intvec w an intvec containing the weights on M
* Note: "wark" is a scots noun for building
**/
newstruct("warkedModule","graalBearer Gr, module modQ0y, module stdmodQ0y, matrix qQ0y, module modKy, module stdmodKy, matrix qKy, intvec w");
system("install","warkedModule","print",warkedModule_print,1);
/***
* markedResolution is a structure built to hold two corresponding resolutions in Al and Graal respectively.
* More precisely, it contains space for:
* graalBearer Gr a graalBearer containing all relevant global structures
* ideal idealAl a standard basis of an ideal I in Al
* resolution resAl a resolution of I over Al
* resolution resGraal a resolution of inI, the initial ideal of I over Graal
* list weight a list containing weights on the modules in resAl
**/
newstruct("markedResolution","graalBearer Gr, ideal idealAl, resolution resAl, resolution resGraal, list weight");
system("install","markedResolution","print",markedResolution_print,1);
}
///////////////////////////////////////////////////////////////////////////////
/***
* returns the number of Y, each of them corresponding to a generator of J.
* we assume that the Ys are written in the first non-"c" block of our ordering,
* for example (Y(1..s),X(1..n)),(c,ds(s),dp(n))
* or (Y(1..s),X(1..n)),(ds(s),c,dp(n))
* but not (X(1..n),Y(1..s)),(c,dp(s),ds(n)).
**/
static proc numberOfYs()
{
list L = ringlist(basering);
if (L[3][1][1]!="c")
{
return(size(ringlist(basering)[3][1][2]));
}
else
{
return(size(ringlist(basering)[3][2][2]));
}
}
static proc yinitial(def F, list #)
{
int s;
if (size(#)>0 && typeof(#[1])=="int")
{ s = #[1]; }
else
{ s = numberOfYs(); }
if (typeof(F)=="poly")
{
int k = size(F);
poly inF = F[1];
intvec expv = leadexp(F);
int d = sum(intvec(expv[1..s]));
for (int i=2; i<=k; i++)
{
expv = leadexp(F[i]);
if (sum(intvec(expv[1..s])) == d)
{ inF = inF + F[i]; }
else
{ break; }
}
return(inF);
}
if (typeof(F)=="ideal")
{
int k = size(F);
ideal inF = yinitial(F[1]);
for (int i=2; i<=k; i++)
{ inF[i] = yinitial(F[i],s); }
return(inF);
}
}
/***
* suppose X(1),...,X(n) are the variables in the ring containing g,
* checks whether g contains the variables X(1),...,X(n-1).
**/
static proc containsVariablesApartFromLast(poly g)
{
intvec expv; int d; int s = nvars(basering)-1;
int i,j;
for (j=1; j<=size(g); j++)
{
expv = leadexp(g[j]);
for (i=1; i<=s; i++)
{
if (expv[i] > 0)
{ return(i); }
}
}
return(0);
}
/***
* assuming that the ordering is lexicographical,
* checks whether m is in general position with repect to it.
**/
static proc isInGeneralPosition(ideal m)
{
int n = nvars(basering);
if (n == 1)
{ return(1); }
int k = size(m);
if (k == n)
{
m = sort(m)[1]; poly g;
for (int i=2; i<=k; i++)
{
g = m[i];
if (leadmonom(g)!=var(k-i+1) || containsVariablesApartFromLast(g-lead(g)))
{ return(0); }
}
g = m[1];
if (containsVariablesApartFromLast(g))
{ return(0); }
return(1);
}
return(0);
}
/***
* finds a transformation of the last variable
* which maps m into general position with respect to the lexicographical ordering lp.
* returns the image of the last variable under the transformation and the image of m.
**/
static proc findGeneralPosition(ideal m)
{
list L = ringlist(basering);
int newRing = 0;
if (L[3][1][1]!="lp" || L[3][1][2]!=nvars(basering))
{
def origin = basering;
execute("ring ringForGeneralPosition = ("+charstr(basering)+"),("+varstr(basering)+"),lp;");
ideal m = fetch(origin,m);
newRing = 1;
}
ideal mGeneralPosition = std(m);
int n = nvars(basering); poly p = var(n);
while (!isInGeneralPosition(mGeneralPosition))
{ // apply generic coordinate change to the last variable,
// m -> mGeneralPosition, X_n |-> p
// until mGeneraliPosition is indeed in general position.
p = randomLast(5)[n];
mGeneralPosition = subst(m,var(n),p);
mGeneralPosition = std(mGeneralPosition);
}
if (newRing == 1)
{
setring origin;
ideal mGeneralPosition = fetch(ringForGeneralPosition,mGeneralPosition);
poly p = fetch(ringForGeneralPosition,p);
}
return(p,mGeneralPosition);
}
/***
* tries for t seconds to find a transformation of the last variable,
* which maps m into general position with respect to the lexicographical ordering lp.
* if successful, returns the image of the last variable as well as the image of m.
* if unsuccessful, returns (0,0) instead.
**/
static proc tryFindingGeneralPosition(ideal m, int t)
{
def p, mgp;
p, mgp = watchdog(t,"findGeneralPosition(ideal("+string(m)+"))");
if (typeof(p)=="string")
{ return(0,0); }
return(p,mgp);
}
/***
* if mgp is in general position with respect to the lexicographical ordering lp,
* sorts the generators such that their order is
* X(1) - g(1)
* X(2) - g(2)
* ...
* X(n-1) - g(n-1)
* g(n),
* where g(1),...,g(n-1) are polynomials in X(n).
**/
static proc sortIdealInGeneralPosition(ideal mgp)
{
int k = size(mgp);
ideal sortedMgp; sortedMgp[k]=0;
ASSUME(1,size(mgp)==nvars(basering));
for (int i=1; i<=k; i++)
{
poly g = mgp[i];
int j = containsVariablesApartFromLast(g);
if (j>0)
{ sortedMgp[j] = g; }
else
{ sortedMgp[k] = g; }
kill g;
kill j;
}
return(sortedMgp);
}
/***
* if mgp is in general position with respect to the lexicographical ordering lp,
* and sorted (see above), returns g(1),...,g(n-1).
**/
static proc getImagesOfPreviousX(ideal mgp)
{
def origin = basering;
def getImagesRing = changeord(list(list("lp",nvars(basering))));
setring getImagesRing;
ideal mgp = fetch(origin,mgp);
int k = size(mgp);
ideal imagesOfPreviousX; imagesOfPreviousX[k]=0;
for (int i=1; i<=k; i++)
{
poly g = mgp[i];
ASSUME(1,leadexp(g)[i]==1);
if (g!=0)
{ g = (lead(g)-g)/leadcoef(g); }
imagesOfPreviousX[i] = g;
kill g;
}
setring origin;
ideal imagesOfPreviousX = fetch(getImagesRing,imagesOfPreviousX);
return (imagesOfPreviousX);
}
proc graalMixed(ideal L, list #)
"
USAGE: graalMixed(L,t); L ideal, t int (optional)
RETURN: graalBearer with all the necessary structures for our machinery
if t specified and t>0, puts an upper time limit
on finding a necessary transformation to map an intermediate ideal into general position.
NOTE: assumes that the current basering is a domain and that L is a prime ideal.
EXAMPLE: example graalMixed; shows an example
"
{
graalBearer Gr;
/***
* store ring A and ideal L
**/
Gr.A = qring(basering); Gr.L = L;
int s = size(L); Gr.s = s;
/***
* construct ring Q and ideals H,J
**/
ideal H = ringlist(Gr.A)[4];
execute("ring Q = "+string(Gr.A)+";");
ideal H = fetch(Gr.A,H); H = sort(std(H))[1];
ideal J = fetch(Gr.A,L) + H; J = sort(std(J))[1];
Gr.Q = Q; Gr.H = H; Gr.J = J;
/***
* construct ring Q0 and ideal J0
**/
intvec maxIndepSet = indepSet(std(J));
int trdeg = sum(maxIndepSet);
int i; int n = nvars(Q);
if (trdeg > 0)
{
string pars = ","; string vars;
for (i=1; i<=n; i++)
{
if (maxIndepSet[i]>0)
{ pars = pars + string(var(i)) + ","; }
else
{ vars = vars + string(var(i)) + ","; }
}
pars = pars[1..size(pars)-1];
vars = vars[1..size(vars)-1];
}
else
{ string pars; string vars = varstr(basering); }
execute("ring Q0 = ("+charstr(basering)+pars+"),("+vars+"),dp;");
ideal J0 = imap(Q,J);
Gr.Q0 = Q0;
Gr.J0 = J0;
/***
* push J0 into general position
**/
if (size(#)==0)
{
poly p; ideal mgp;
p, mgp = findGeneralPosition(J0);
}
else
{
if ((#[1]==1) && (typeof(#[1])=="int"))
{
polg p; ideal mgp;
p, mgp = tryFindingGeneralPosition(J0,#[1]);
if (p == 0)
{
ERROR("timeout during computation of minimal polynomial");
return(Gr);
}
}
else
{
ERROR("graal: unexpected optional paramemters");
return(Gr);
}
}
n = nvars(Q0);
mgp = sortIdealInGeneralPosition(mgp);
ideal imageOfX = getImagesOfPreviousX(mgp);
imageOfX[n] = p;
for (i=1; i<n; i++)
{
imageOfX[n] = subst(imageOfX[n],var(i),imageOfX[i]);
}
poly g(n) = mgp[n];
/***
* construct Q0y, scriptI and Al
**/
string ostring = ordstr(basering);
ostring = ostring[1..size(ostring)-2];
execute("ring Q0y = ("+charstr(basering)+"),(Y(1..s),"+varstr(basering)+"),(ds(s),c,"+ostring+")");
setring Q0y;
ideal H = imap(Gr.A,H);
ideal J = imap(Gr.A,L);
ideal scriptI = H;
for (i=1; i<=s; i++)
{ scriptI = scriptI + poly(J[i]-Y(i)); }
scriptI = std(scriptI);
Gr.Q0y = Q0y;
Gr.scriptI = scriptI;
ideal inI = yinitial(scriptI,s);
attrib(inI,"isSB",1);
qring Al = scriptI;
Gr.Al = Al;
/***
* construct Ky and sigmainI
**/
execute("ring KKy = ("+charstr(Q0)+"),(Y(1..s),"+varstr(Q0,nvars(Q0))+"),(c,dp(s),dp(1));");
poly minpolyOfK = imap(Q0,g(n));
qring Ky = std(minpolyOfK);
ideal G = Y(1..s); ideal imageOfX = imap(Q0,imageOfX);
int j1=1;
for (i=1; i<=nvars(Q); i++)
{
if (maxIndepSet[i]==0)
{ G = G, imageOfX[j1]; j1++; }
// if (maxIndepSet[i]>0)
// { G = G, par(j2); j2++; }
// else
// { G = G, imageOfX[j1]; j1++; }
}
map Q0yToKy = Q0y,G;
Gr.Q0yToKy = Q0yToKy;
ideal scriptIin = Q0yToKy(inI);
ASSUME(2,isStandardBasis(scriptIin));
scriptIin = std(scriptIin);
Gr.Ky = qring(Ky);
Gr.scriptIin = scriptIin;
/***
* construct Graal
**/
qring Graal = scriptIin;
Gr.Graal = qring(Graal);
map in_a = Al,imap(Ky,G);
Gr.ina = in_a;
return(Gr);
}
example
{ "EXAMPLE:"; echo = 2;
// see [Mora] Example 6.5
ring Q = 0,(x,y,z),dp;
ideal H = y2-xz;
qring A = std(H);
ideal L = x3-yz,x2y-z2;
graalBearer Gr = graalMixed(L); Gr;
}
/***
* a print routine for graalBearers,
* will overwrite the default print routine for newstructs
**/
proc graalBearer_print(graalBearer Gr)
{
def A=Gr.A; setring A;
"affine coordinate ring: ";
" "+string(Gr.A);
ideal quotientIdeal = ringlist(Gr.A)[4];
if (quotientIdeal != 0)
{ " mod <"+string(quotientIdeal)+">"; }
"";
"ideal defining the subvariety: ";
" <"+string(Gr.L)+">";"";
def Al = Gr.Al; setring Al;
"Al: ";
" "+string(Gr.Al);
ideal quotientIdeal = ringlist(basering)[4];
if (quotientIdeal != 0)
{ " mod <"+string(quotientIdeal)+">"; }
kill quotientIdeal;
def Graal = Gr.Graal; setring Graal;
"graal: ";
" "+string(Gr.Graal);
ideal quotientIdeal = ringlist(basering)[4];
if (quotientIdeal != 0)
{ " mod <"+string(quotientIdeal)+">"; }
kill quotientIdeal;
" where ";
setring Gr.A;
for (int i=1; i<=Gr.s; i++)
{ " Y("+string(i)+") represents generator "+string(Gr.L[i]); }
setring Al;
list L = ringlist(basering);
int yEnd = size(L[3][1][2]);
ideal xAll; int n = nvars(basering);
for (i=1; yEnd+i<=n; i++)
{ xAll[i] = var(yEnd+i); }
string inaPrint = " and "+string(xAll)+" in Al are mapped to ";
kill L;
kill xAll;
setring Graal;
map ina = Gr.ina;
ideal xAllImages;
for (i=1; yEnd+i<=n; i++)
{ xAllImages[i] = ina[yEnd+i]; }
inaPrint + string(xAllImages)+" in Graal";
kill ina;
kill xAllImages;
}
/***
* a print routine for warkedModules,
* will overwrite the default print routine for newstructs
**/
proc warkedModule_print(warkedModule wM)
{
graalBearer Gr = wM.Gr;
def Q0y = Gr.Q0y; setring Q0y;
ideal quotientIdeal = ringlist(basering)[4];
"module over Q^0[Y] = "+string(basering)+" / <"+string(quotientIdeal)+">:";
print(matrix(wM.modQ0y));
"standard basis:";
print(matrix(wM.stdmodQ0y));
def Ky = Gr.Ky; setring Ky;
ideal quotientIdeal = ringlist(basering)[4];
"module over K[Y] = "+string(basering)+" / <"+string(quotientIdeal)+">:";
print(matrix(wM.modKy));
"weights on the unit vectors: "+string(wM.w);
}
/***
* a print routine for markedModules,
* will overwrite the default print routine for newstructs
**/
proc markedModule_print(markedModule M)
{
graalBearer Gr = M.Gr;
def Ay = Gr.Ky; setring Ay;
module G = M.G;
"module over Ay:";
print(G);
def Ky = Gr.Graal; setring Ky;
module H = M.H;
"module over Ky:";
print(H);
}
proc dimensionOfLocalization(def L)
"
USAGE: dimensionOfLocalization(L); L ideal or graalBearer
RETURN: int, the dimension of the localization A_L of A at L.
EXAMPLE: example dimensionOfLocalization; shows an example
"
{
if (typeof(L)=="ideal")
{
graalBearer Gr = graalMixed(L);
return(dimensionOfLocalization(Gr));
}
if (typeof(L)=="graalBearer")
{
graalBearer Gr = L;
def Ky = Gr.Ky; setring Ky;
ideal scriptIin = Gr.scriptIin;
return(dim(scriptIin));
}
ERROR("dimensionOfLocalization: unexpected parameters");
return(0);
}
example
{
"EXAMPLE:"; echo = 2;
ring Q = 0,(X(1),X(2)),dp;
ideal H = X(2)^2-(X(1)-1)*X(1)*(X(1)+1);
ideal J = std(X(1),X(2));
qring A = std(H);
ideal L = fetch(Q,J);
graalBearer Gr = graalMixed(L);
// def fA = Gr.fA; setring fA;
dimensionOfLocalization(Gr); // = 1
}
proc systemOfParametersOfLocalization(def L)
"
USAGE: systemOfParametersOfLocalization(def L); L ideal or graalBearer
RETURN: ideal, a system of parameter of the localization A_L of A at L.
EXAMPLE: example systemOfParameterOfLocalization; shows an example
"
{
if (typeof(L)=="ideal")
{
graalBearer Gr = graalMixed(L);
return(systemOfParametersOfIdealInLocalization(I, Gr));
}
if (typeof(L)=="graalBearer")
{
graalBearer Gr = L;
def Ky = Gr.Ky; setring Ky;
int delta = dimensionOfLocalization(Gr);
int s = Gr.s;
int i,j;
ideal H1 = Gr.scriptIin;
for (i=1; i<=delta; i++)
{
poly lambda(i);
for (j=1; j<=s; j++)
{
int c(i)(j) = random(0,10000);
lambda(i) = lambda(i) + c(i)(j)*Y(j);
}
H1 = H1 + lambda(i);
}
H1 = std(H1);
while (dim(H1) != 0)
{
H1 = Gr.scriptIin;
for (i=1; i<=delta; i++)
{
for (j=1; j<=s; j++)
{
c(i)(j) = random(0,10000);
lambda(i) = lambda(i) + c(i)(j)*Y(j);
}
H1 = H1 + lambda(i);
}
H1 = std(H1);
}
def Q = Gr.Q; setring Q;
ideal J = Gr.J; ideal ret;
for (i=1; i<=delta; i++)
{
poly a(i);
for (j=1; j<=s; j++)
{ a(i) = a(i)+c(i)(j)*J[i]; }
ret = ret + a(i);
}
def A = Gr.A; setring A;
return(std(fetch(Q,ret)));
}
ERROR("systemOfParametersOfLocalization: unexpected parameters");
return(0);
}
example
{
"EXAMPLE:"; echo = 2;
ring Q = 0,(X(1),X(2)),dp;
ideal H = X(2)^2-(X(1)-1)*X(1)*(X(1)+1);
ideal J = X(1),X(2);
qring A = std(H);
ideal L = fetch(Q,J);
graalBearer Gr = graalMixed(L);
systemOfParametersOfLocalization(Gr); // = 1
}
/***
* returns true, if g only contains the last variuable.
* returns false otherwise.
**/
static proc isPolyInLastVariable(poly g)
{
int k = size(g);
int n = nvars(basering);
for (int i=1; i<=k; i++)
{
intvec v = leadexp(g[i]);
v = v[1..n-1];
if (sum(v)>0)
{
return (0);
}
}
return (1);
}
proc isLocalizationRegular(def L)
"
USAGE: isLocalizationRegular(def L); L ideal or graalBearer
RETURN: int, 1 if the localization A_L of A at L is regular,
0 otherwise.
EXAMPLE: example isLocalizationRegular; shows an example
"
{
if (typeof(L)=="ideal")
{
graalBearer Gr = graalMixed(L);
return(isLocalizationRegular(Gr));
}
if (typeof(L)=="graalBearer")
{
graalBearer Gr = L;
def Ky = Gr.Ky; setring Ky;
ideal sscriptIin = Gr.scriptIin;
option(redSB);
sscriptIin = std(sscriptIin);
option(noredSB);
int i,j; poly gi; intvec expv;
int s = Gr.s;
for (i=1; i<=size(sscriptIin); i++)
{
gi = sscriptIin[i];
if (!isPolyInLastVariable(gi))
{
for (j=1; j<=size(gi); j++)
{
expv = leadexp(gi[i]);
if (sum(intvec(expv[1..s])) != 1)
{ return(0); }
}
}
}
return(1);
}
ERROR("isLocalizationRegular: unexpected parameters");
return(0);
}
example
{
"EXAMPLE:"; echo = 2;
ring Q = 0,(X(1),X(2)),dp;
ideal H = X(2)^2-(X(1)-1)*X(1)*(X(1)+1);
ideal J = X(1),X(2);
qring A = std(H);
ideal L = fetch(Q,J);
graalBearer Gr = graalMixed(L);
isLocalizationRegular(Gr); // = 1
}
/***
* returns the degree in Y
**/
static proc yDeg(poly g, list #)
{
int s;
if (size(#)>0 && typeof(#[1])=="int")
{ s = #[1]; }
else
{ s = numberOfYs(); }
intvec v = leadexp(g);
int d = 0;
for (int i=1; i<=s; i++)
{ d = d+v[i]; }
return (d);
}
/***
* normalizes g such that LT_>(g)=Y^\alpha for some \alpha\in\NN^n.
**/
static proc normalizeInY(vector g, graalBearer Gr, list #)
{
def origin = basering;
int s;
if (size(#)>0 && typeof(#[1])=="int")
{ s = #[1]; }
else
{ s = numberOfYs(); }
// get the coefficient before Y in the leading term
// first isolate the first non-zero component and computes its degree in Y
poly cg;
for (int i = 1; i<=nrows(g); i++)
{
if (g[i]!=0)
{
cg = g[i];
break;
}
}
int d = yDeg(cg,s);
// next, sum all terms with the same degree in Y
poly c = cg[1];
for (i = 2; i<=size(g); i++)
{
if (yDeg(cg[i],s)==d)
{ c = c+cg[i]; }
}
// and substitute all Y with 1
for (i=1; i<=s; i++)
{ c = subst(c,var(i),1); }
def Q0 = Gr.Q0;
setring Q0;
ideal J0 = Gr.J0;
ideal J0withC = imap(origin,c), J0;
list L = division(1,J0withC);
ASSUME(1,L[2]==0);
poly a = L[1][1,1];
kill J0;
kill J0withC;
kill L;
setring origin;
poly a = imap(Q0,a);
ideal scriptI = Gr.scriptI;
g = reduce(a*g,scriptI);
return (a,g);
}
/***
* removes all zero columns in matrix(G),
* and removes the corresponding columns in Q, if they exist.
**/
static proc removeZeroColumns(module G, matrix Q)
{
ASSUME(1,ncols(G)>ncols(Q));
module Gprime;
matrix Qprime[nrows(Q)][ncols(Q)];
int newSizeG = 0;
int newSizeQ = 0;
for (int i=1; i<=ncols(G); i++)
{
if (G[i]!=0)
{
newSizeG++;
Gprime[newSizeG] = G[i];
if (i<=ncols(Q))
{
newSizeQ++;
Qprime[1..nrows(Q),newSizeQ] = Q[1..nrows(Q),i];
}
}
}
matrix QQprime[nrows(Q)][newSizeQ] = Qprime[1..nrows(Q),1..newSizeQ];
return (Gprime,QQprime);
}
proc warkedPreimageStd(warkedModule wM)
"
USAGE: warkedPreimageStd(wM); M warkedModule
RETURN: given wM consisting of:
- wM.Gr a graalBearer containing all relevant global structures
- wM.modQ0y generating set G of a module M over Q0y
- wM.stdmodQ0y empty
- wM.qQ0y empty
- wM.modKy corresponding generating set H of M_in over Ky
- wM.stdmodKy empty
- wM.qKy empty
- wM.w weights on M
returns the same warkedModule, except following differences:
- wM.stdmodQ0y contains a subset G such that for any standard basis L of the kernel
G + L is a standard basis of modQ0y + kernel
- wM.qQ0y contains a transformation matrix such that
stdmodAy = QAy*modQ0y
- wM.stdmodKy contains a standardbasis of modKy
- wM.qKy contains a transformation matrix such that
stdmodKy = QKy*modKy
NOTE: the standard basis of modAy is computed by lifting a corresponding
Groebner basis of modKy
EXAMPLE: example warkedPreimageStd; shows an example
"
{
ASSUME(1,checkCorrespondence(wM));
graalBearer Gr = wM.Gr;
// intvec w = wM.w;
def Ky = Gr.Ky; setring Ky;
module H = wM.modKy;
/* add generators of the kernel to H */
int l = ncols(H);
int k = nrows(H);
int i,j;
ideal scriptIin = Gr.scriptIin;
H = H+freemodule(k)*scriptIin;
/* compute a standard basis of H
* and a corresponding transformation matrix */
matrix Qdash;
module Hdash = liftstd(H,Qdash);
/* drop factors before elements of scriptIin
* and single out all elements of Hdash
* whose leading monomial does not lie in scriptIin */
matrix QQ[l][size(Hdash)];
int ncolsQQ = 0;
module redLHdash = reduce(lead(Hdash),lead(scriptIin));
for (i=1; i<=size(Hdash); i++)
{
if (redLHdash[i] != 0)
{
ncolsQQ++;
QQ[1..l,ncolsQQ] = Qdash[1..l,i];
}
}
matrix Q[l][ncolsQQ] = QQ[1..l,1..ncolsQQ];
wM.qKy = Q;
wM.stdmodKy = Hdash;
def Q0y = Gr.Q0y; setring Q0y;
module G = wM.modQ0y;
matrix Q = imap(Ky,Q);
ideal scriptI = Gr.scriptI;
module Gdash = reduce(matrix(G)*Q,scriptI);
poly a;
for (i=1; i<=size(Gdash); i++)
{
a,Gdash[i] = normalizeInY(Gdash[i],Gr);
Q[1..l,i] = a*Q[1..l,i];
}
ASSUME(1,isStandardBases(Gdash));
Gdash = Gdash + freemodule(k)*scriptI;
Gdash = simplify(Gdash,32);
Gdash,Q = removeZeroColumns(Gdash,Q);
wM.qQ0y = Q;
wM.stdmodQ0y = Gdash;
return(wM);
}
example
{ "EXAMPLE:"; echo = 2;
ring Q = 0,(x,y,z),dp;
ideal H = y2-xz;
qring A = std(H);
ideal L = x3-yz,x2y-z2;
graalBearer Gr = graalMixed(L);
def Q0y = Gr.Q0y; setring Q0y;
module M = (Y(1)*y+y^2-1)*gen(1)+(Y(2)*z+z^2-1)*gen(2), Y(1)*y*gen(1)+Y(2)*z*gen(2);
/* This is M: */
print(matrix(M));
intvec w = 1,1,1;
warkedModule wM;
wM.Gr = Gr;
wM.modQ0y = M;
wM.w = w;
def Ky = Gr.Ky; setring Ky;
module Min = (y^2-1)*gen(1)+(z^2-1)*gen(2),Y(1)*y*gen(1)+Y(2)*z*gen(2);
/* This is M_in: */
print(matrix(Min));
wM.modKy = Min;
/* warkedPreimageStd yields the same standard basis as std: */
warkedModule wN = warkedPreimageStd(wM); wN;
setring Q0y;
module stdM = std(M);
print(matrix(stdM));
}
proc markedResolution_print(markedResolution mr)
{
graalBearer Gr = mr.Gr;
"resolution over Al:";
def Al = Gr.Al; setring Al;
resolution resAl = mr.resAl;
resAl;
for (int i=1; i<=ressize(resAl); i++)
{
"k="+string(i);
print(module(resAl[i]));
"";
}
"resolution over Graal:";
def Graal = Gr.Graal; setring Graal;
resolution resGraal = mr.resGraal;
resGraal;
for (i=1; i<=ressize(resGraal); i++)
{
"k="+string(i);
print(module(resGraal[i]));
"";
}
}
/***
* returns the size of a resolution.
**/
static proc ressize(resolution res)
{
for (int i=1; i<=size(res); i++)
{
if (res[i]==0)
{
return (i-1);
}
}
return (size(res));
}
/***
* given rh consisting of:
* - rh.Gr a graalBearer containing all relevant global structures
* - rh.idealAl a standard basis of an ideal I in Al
* - rh.resAl a resolution with only a single entry,
* generators of I corresponding to the generators of inI
* - rh.resGraal a resolution of inI, the initial ideal inI of I over Graal
* - rh.weights an empty list of weights for the modules in resAl
* liftRes lifts the given resolution of inI to a resolution of I
**/
static proc liftRes(markedResolution rh)
{
graalBearer Gr = rh.Gr;
/* before anything initiate a list with the generators of I
for the resolution over Al
and read out the resolution over Graal */
def Al = Gr.Al; setring Al;
ideal I = rh.idealAl;
list resAl = I;
def Graal = Gr.Graal; setring Graal;
resolution resGraal = rh.resGraal;
int k = ressize(resGraal);
ideal inI = resGraal[1];
/* before lifting the first segment of the resolution,
find suitable preimages of the generators of I and inI */
int i = 1;
def Ky = Gr.Ky; setring Ky;
ideal scriptIin = Gr.scriptIin;
ASSUME(1,reduce(std(scriptIin),scriptIin)==0); // check whether it is standard basis
attrib(scriptIin,"isSB",1); // and set corresponding flag to 1
ideal H(i) = imap(Graal,inI);
ASSUME(1,lead(H(i))==lead(reduce(H(i),scriptIin))); // H(i) should already be in reduced form,
// since inI was a standard basis
def Q0y = Gr.Q0y; setring Q0y;
ideal scriptI = Gr.scriptI;
ASSUME(1,reduce(std(scriptI),scriptI)==0); // check whether it is standard basis
attrib(scriptI,"isSB",1); // and set corresponding flag to 1
ideal G(i) = imap(Al,I);
ASSUME(1,lead(G(i))==lead(reduce(G(i),scriptI))); // G(i) should already be in reduced form,
// since I was a standard basis
/* lifting the first segment of the resolution,
* i.e. syzygies of the generators Theta of inI to
* syzygies of the generators Delta of I */
/* note that I already is already in standard bases form,
* which is why G(i)+scriptI is a standard bases */
/* next, we need a standard basis of the preimage of I */
setring Q0y;
ideal Gdash(i) = G(i) + scriptI;
ASSUME(2,isStandardBasis(Gdash(i)));
attrib(Gdash(i),"isSB",1);
matrix Q(i)[size(G(i))][size(Gdash(i))];
for (int j=1; j<=size(G(i)); j++)
{ Q(i)[j,j]=1; }
for (i=2; i<=k; i++)
{
setring Graal;
module syzTheta = resGraal[i];
// pick homogeneous representatives of hs eta in syzTheta
setring Ky;
module H(i) = imap(Graal,syzTheta);
H(i) = reduce(H(i),scriptIin);
// lift them to gs in Q0y, substitute elements of G for the unit vectors
// and reduce the result
setring Q0y;
module G(i) = imap(Ky,H(i));
module R = matrix(G(i-1))*matrix(G(i));
R = reduce(R,scriptI);
// compute a standard representation of the remainder
// with respect to G'
list L = division(R,Gdash(i-1));
matrix D = L[1];
ASSUME(1,L[2]==0);
ASSUME(1,isDiagonalMatrixOfOnes(L[3]));
// correct the gs by our result
matrix QD = Q(i-1)*D;
G(i) = module(matrix(G(i))-QD);
setring Al;
resAl[i] = imap(Q0y,G(i));
// extend it to standard basis GDash(i)
// and transformation matrix for next step
warkedModule wM;
wM.Gr = Gr;
setring Ky;
wM.modKy = H(i);
setring Q0y;
wM.modQ0y = G(i);
wM = warkedPreimageStd(wM);
matrix Q(i) = wM.qQ0y;
module Gdash(i) = wM.modQ0y;
// cleanup
setring Graal;
kill syzTheta;
setring Q0y;
kill R;
kill L;
kill D;
kill QD;
}
setring Al;
rh.resAl = resolution(resAl);
return(rh);
}
/***
* Given two ideals with the same generators modulo ordering
* returns an intvec that respresents a permutation of the generators
**/
static proc getPermutation(ideal I1, ideal I2)
{
ASSUME(1,size(I1)==size(I2));
int i,j;
intvec perm;
for (i=1; i<=size(I1); i++)
{
for (j=1; j<=size(I2); j++)
{
if (I1[i]==I2[j])
{
perm[i] = j;
}
}
}
for (i=1; i<=size(perm); i++)
{
ASSUME(1,perm[i]>0);
}
return(perm);
}
/***
* Given an intvec representing a permutation,
* permutes the generators of the ideal.
**/
static proc permuteGenerators(ideal I, intvec perm)
{
ASSUME(1,size(I)==size(perm));
ideal J;
for (int i=1; i<=size(perm); i++)
{
J[i]=I[perm[i]];
}
return (J);
}
proc resolutionInLocalization(ideal I, def L)
"
USAGE: resolutionInLocalization(I,L); I ideal, L ideal or graalBearer
RETURN: the resolution of I*A_L, where
A_L is the localization of the current basering (possibly a quotient ring)
at a prime ideal L.
EXAMPLE: example resolutionInLocalization; shows an example
"
{
if (typeof(L)=="ideal")
{
graalBearer Gr = graalMixed(L);
return(resolutionInLocalization(I,Gr));
}
if (typeof(L)=="graalBearer")
{
graalBearer Gr = L;
def origin = basering;
def Al = Gr.Al; setring Al;
ideal I = imap(origin,I);
I = std(I);
int s = Gr.s;
markedResolution mr;
mr.idealAl = I;
ideal inI = yinitial(I,s);
def Graal = Gr.Graal;
setring Graal;
ideal inI = Gr.ina(inI);
ASSUME(1,isStandardBasis(inI));
attrib(inI,"isSB",1);
resolution resInI = res(inI,0);
resInI = minres(resInI);
mr.Gr = Gr;
mr.resGraal = resInI;
ideal inJ = resInI[1];
intvec perm = getPermutation(inI,inJ);
setring Al;
mr.idealAl = permuteGenerators(I,perm);
mr = liftRes(mr);
return(mr);
}
ERROR("resolutionInLocalization: unexpected parameters");
return(0);
}
example
{ "EXAMPLE:"; echo = 2;
ring Q = 0,(x,y,z,w),dp;
ideal circle = (x-1)^2+y^2-3,z;
ideal twistedCubic = xz-y2,yw-z2,xw-yz,z;
ideal I = std(intersect(circle,twistedCubic));
// the resolution is more complicated due to the twisted cubic
res(I,0);
// however if we localize outside of the twisted cubic,
// it should become very easy again.
ideal L = std(I+ideal(x-1));
graalBearer Gr = graalMixed(L); Gr;
markedResolution mr = resolutionInLocalization(I,Gr);
mr;
}
/***
* debug code
**/
static proc isConstantUnit(poly p)
{
return(cleardenom(p)==1);
}
static proc isConstantMultiple(vector v, vector w)
{
module M = v,w;
M = simplify(M,8);
if (M[2]!=0)
{ return(0); }
return(1);
}
static proc checkColumnsUpToUnits(matrix M, matrix N)
{
if ((ncols(M)!=ncols(N)) && (nrows(M)!=nrows(N)))
{ return(0); }
if (nrows(M)==0)
{ return(1); }
int i,j;
vector v,w;
poly p,q;
for (i=ncols(M); i>0; i--)
{
v = M[i];
w = N[i];
if (!isConstantMultiple(v,w))
{ return(0); }
}
return(1);
}
/***
* returns 1, if wM.modAy and wM.modKy correspond to each other
* and wm.stdmodAy and wm.stdmodKy correspond to each other.
* returns 0 otherwise.
**/
static proc checkCorrespondence(warkedModule wM)
{
return (1);
graalBearer Gr = wM.Gr;
intvec w = wM.w;
def Ky = Gr.Ky;
setring Ky;
map Q0yToKy = Gr.Q0yToKy;
def Q0y = Gr.Q0y;
setring Q0y;
module G1 = wM.modQ0y;
if (G1 != 0)
{
G1 = vectorInitial(G1,w);
setring Ky;
module H10 = wM.modKy;
if (H10 != 0)
{
module H11 = Q0yToKy(G1);
if (matrix(H10)!=matrix(H11))
{ return(0); }
}
setring Q0y;
}
module G2 = wM.stdmodQ0y;
if (G2 != 0)
{
G2 = vectorInitial(G2,w);
setring Ky;
module H20 = wM.stdmodKy;
if (H20 != 0)
{
module H21 = Q0yToKy(G2);
if (matrix(H20)!=matrix(H21))
{ return(0); }
}
}
return(1);
}
/***
* checks whether U is a diagonal matrix consisting of 1's
**/
static proc isDiagonalMatrixOfOnes(matrix U)
{
if (nrows(U)!=ncols(U))
{ return(0); }
int j,j;
for (i=1; i<=nrows(U); i++)
{
for (j=1; j<=ncols(U); j++)
{
if (i==j && U[i,j]!=number(1))
{ return(0); }
if (i!=j && U[i,j]!=number(0))
{ return(0); }
}
}
return(1);
}
/***
* returns 1 if I is a standard basis, returns 0 otherwise,
**/
static proc isStandardBasis(ideal I)
{
ideal LI = lead(std(I));
attrib(LI,"isSB",1);
ideal LII = lead(I);
attrib(LII,"isSB",1);
/* checks whether lead(I) generates the leading ideal */
if (simplify(reduce(LI,LII),2)!=0)
{
ERROR("isStandardBasis: input ideal no standard basis!");
return(0);
}
/* the following case should never happen mathematically,
* left the check for sake of completeness */
if (simplify(reduce(LII,LI),2)!=0)
{
ERROR("isStandardBasis: input ideal no standard basis!");
return(0);
}
return(1);
}
|