/usr/share/singular/LIB/hdepth.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | //////////////////////////////////////////////////////////////////////////////
version="version hdepth.lib 4.0.0.0 Jun_2013"; //
category="Commutative Algebra";
info="
LIBRARY: hdepth.lib Procedures for computing hdepth_1
AUTHORS: Popescu, A., popescu@mathematik.uni-kl.de
SEE ALSO: 'An algorithm to compute the Hilbert depth', Adrian Popescu, arxiv/AC/1307.6084
KEYWORDS: hdepth, library
PROCEDURES:
hdepth(M [,debug]); hdepth_1 computation of a module M (wrt Z-grading)
hdepth_p(g, d, debug) the minimum number t <= d s.t. 1/g^t is positive
";
///////////////////////////////////////////////////////////////////////////////////
static proc myinverse(poly p, int bound)
"USAGE: myinverse(p,bound), p polynomial in one variable with p(0) nonzero, bound a nonnegative integer
RETURN: poly, the inverse of the poly p in the power series ring till order bound
"
{
if(bound<=1)
{
ERROR("My inverse : negative bound in the inverse");
}
if(p == 0)
{
ERROR("My inverse : p is 0");
}
poly original;
original = p;
if(leadcoef(p) == 0)
{
ERROR("My inverse : the power series is not a unit.");
}
poly q = 1/p[1];
poly res = q;
p = q * (p[1] - jet(p,bound));
poly s = p;
while(p != 0)
{
res = res + q * p;
p = jet(p*s,bound);
}
//TEST
if(jet(original*res,bound) != poly(1))
{
ERROR("Myinverse does not work properly.");
}
return(res);
}
///////////////////////////////////////////////////////////////////////////////////
static proc hilbconstruct(intvec v)
"USAGE: hilbconstruct(v), v is the result of hilb(M,2)
RETURN: poly, the Hilbert Series of M
AASUME: the ring when called is R = 0,t,ds;
"
{
poly f;
int i;
for(i=0;i<size(v)-1;i++)
{
f=f+v[i+1]*t^i;
}
return(f);
}
///////////////////////////////////////////////////////////////////////////////////
static proc positiv(poly f)
"USAGE: positiv(f), f is a polynomial
RETURN: int, 1 if all the coefficients of f are positive, 0 else
"
{
int pos=1;
while( (f!=0) && (pos==1) )
{
if(leadcoef(f)<0)
{
pos=0;
}
f=f-lead(f);
}
return(pos);
}
///////////////////////////////////////////////////////////////////////////////////
static proc sumcoef(poly f)
"USAGE: sumcoef(f), f is a polynomial
RETURN: number, the sum of the coefficients
"
{
number c;
while(f!=0)
{
c = c+leadcoef(f);
f=f-lead(f);
}
return(int(c));
}
///////////////////////////////////////////////////////////////////////////////////
proc hdepth_p(poly g, int d, int debug)
"USAGE: hdepth_p(g,d,debug), g is the Hilbert Series of a module M and d is the dimension of M, for debug = 0 the steps will be printed.
RETURN: int, the minimum number t <= d s.t. 1/g^t is positive
"
{
int dd = d;
if(debug == 0)
{"G(t)=",g;}
if(positiv(g)==1)
{
if(debug == 0)
{return("hdepth =",dd);}
else
{return(dd);}
}
poly f=g;
number ag;
int c1;
int bound;
bound = deg(g);
while(dd >= 0)
{
dd = dd-1;
f = jet( g*myinverse( (1-t)^(d-dd),2*bound ) , bound );
if(positiv(f) == 1)
{
if(debug == 0)
{
"G(t)/(1-t)^",d-dd,"=",f,"+...";
return("hdepth =",dd);
}
else
{return(d);}
}
c1=sumcoef(f);
if(c1<0)
{
while(c1<0)
{
bound=bound+1;
f=jet( g*myinverse( (1-t)^(d-dd),2*bound ) , bound );
c1=sumcoef(f);
}
}
if(debug == 0)
{"G(t)/(1-t)^",d-dd,"=",f,"+...";}
}
ERROR("g was not a Hilbert Series since the coefficient sum is not > 0");
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,t,ds;
poly f = 2-3t-2t2+2t3+4t4;
hdepth_p(f,5,0);
hdepth_p(f,5,1);
}
///////////////////////////////////////////////////////////////////////////////
proc hdepth(module M, list #)
"USAGE: hdepth(M [,debug]); M is a module, if one want to print the steps debug = 0
RETURN: int
PURPOSE: compute the hdepth_1 of a module M
EXAMPLE: example hdepth; shows examples
"
{
int debug;
if(size(#)>0)
{
if(typeof(#[1])=="int")
{debug = #[1];}
}
else
{debug = 1;}
M = std(M);
int d=nvars(basering)-dim(M);
intvec v=hilb(M,2);
ring R = 0,t,ds;
poly hp=hilbconstruct(v);
if(debug == 0)
{"dim =",d;}
return(hdepth_p(hp,d,debug));
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,(x(1..10)),dp;
ideal i=maxideal(1);
module M=i;
hdepth(M);
hdepth(M,0);
hdepth(M,1);
}
|