This file is indexed.

/usr/share/singular/LIB/involut.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
///////////////////////////////////////////////////////////////////
version="version involut.lib 4.0.0.0 Jun_2013 "; // $Id: 864f88265ee45107261492c57d3979b1e7fa4982 $
category="Noncommutative";
info="
LIBRARY:  involut.lib  Computations and operations with involutions
AUTHORS:  Oleksandr Iena,       yena@mathematik.uni-kl.de,
@*        Markus Becker,        mbecker@mathematik.uni-kl.de,
@*        Viktor Levandovskyy,  levandov@mathematik.uni-kl.de

OVERVIEW:
Involution is an anti-automorphism of a non-commutative K-algebra
with the property that applied an involution twice, one gets an identity.
Involution is linear with respect to the ground field. In this library we
compute linear involutions, distinguishing the case of a diagonal matrix
(such involutions are called homothetic) and a general one.
Also, linear automorphisms of different order can be computed.

SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
and V. Levandovskyy), Uni Kaiserslautern

REMARK: This library provides algebraic tools for computations and operations
with algebraic involutions and linear automorphisms of non-commutative algebras

PROCEDURES:
findInvo();          computes linear involutions on a basering;
findInvoDiag();     computes homothetic (diagonal) involutions on a basering;
findAuto(n);          computes linear automorphisms of order n of a basering;
ncdetection();        computes an ideal, presenting an involution map on some particular noncommutative algebras;
involution(m,theta);  applies the involution to an object;
isInvolution(F); check whether a map F in an involution;
isAntiEndo(F);   check whether a map F in an antiendomorphism.
";

LIB "nctools.lib";
LIB "ncalg.lib";
LIB "poly.lib";
LIB "primdec.lib";
///////////////////////////////////////////////////////////////////////////////
proc ncdetection()
"USAGE:  ncdetection();
RETURN:  ideal, representing an involution map
PURPOSE: compute classical involutions (i.e. acting rather on operators than on variables) for some particular noncommutative algebras
ASSUME: the procedure is aimed at non-commutative algebras with differential, shift or advance operators arising in Control Theory.
It has to be executed in a ring.
EXAMPLE: example ncdetection; shows an example
"{
// in this procedure an involution map is generated from the NCRelations
// that will be used in the function involution
// in dieser proc. wird eine matrix erzeugt, die in der i-ten zeile die indices
// der differential-, shift- oder advance-operatoren enthaelt mit denen die i-te
// variable nicht kommutiert.
  if ( nameof(basering)=="basering" )
  {
    "No current ring defined.";
    return(ideal(0));
  }
  def r = basering;
  setring r;
  int i,j,k,LExp;
  int NVars  = nvars(r);
  matrix rel = ncRelations(r)[2];
  intmat M[NVars][3];
  int NRows = nrows(rel);
  intvec v,w;
  poly d,d_lead;
  ideal I;
  map theta;
  for( j=NRows; j>=2; j-- )
  {
   if( rel[j] == w )       //the whole column is zero
    {
      j--;
      continue;
    }
    for( i=1; i<j; i++ )
    {
      if( rel[i,j]==1 )        //relation of type var(j)*var(i) = var(i)*var(j) +1
      {
         M[i,1]=j;
      }
      if( rel[i,j] == -1 )    //relation of type var(i)*var(j) = var(j)*var(i) -1
      {
        M[j,1]=i;
      }
      d = rel[i,j];
      d_lead = lead(d);
      v = leadexp(d_lead); //in the next lines we check wether we have a  relation of differential or shift type
      LExp=0;
      for(k=1; k<=NVars; k++)
      {
        LExp = LExp + v[k];
      }
      //      if( (d-d_lead != 0) || (LExp > 1) )
if ( ( (d-d_lead) != 0) || (LExp > 1) || ( (LExp==0) && ((d_lead>1) || (d_lead<-1)) ) )
      {
        return(theta);
      }

      if( v[j] == 1)                   //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(j)
      {
        if (leadcoef(d) < 0)
        {
          M[i,2] = j;
        }
        else
        {
          M[i,3] = j;
        }
      }
      if( v[i]==1 )                    //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(i)
      {
        if (leadcoef(d) > 0)
        {
          M[j,2] = i;
        }
        else
        {
          M[j,3] = i;
        }
      }
    }
  }
  // from here on, the map is computed
  for(i=1;i<=NVars;i++)
  {
    I=I+var(i);
  }

  for(i=1;i<=NVars;i++)
  {
    if( M[i,1..3]==(0,0,0) )
    {
      i++;
      continue;
    }
    if( M[i,1]!=0 )
    {
      if( (M[i,2]!=0) && (M[i,3]!=0) )
      {
        I[M[i,1]] = -var(M[i,1]);
        I[M[i,2]] = var(M[i,3]);
        I[M[i,3]] = var(M[i,2]);
      }
      if( (M[i,2]==0) && (M[i,3]==0) )
      {
        I[M[i,1]] = -var(M[i,1]);
      }
      if( ( (M[i,2]!=0) && (M[i,3]==0) )|| ( (M[i,2]!=0) && (M[i,3]==0) )
)
      {
        I[i] = -var(i);
      }
    }
    else
    {
      if( (M[i,2]!=0) && (M[i,3]!=0) )
      {
        I[i] = -var(i);
        I[M[i,2]] = var(M[i,3]);
        I[M[i,3]] = var(M[i,2]);
      }
      else
      {
        I[i] = -var(i);
      }
    }
  }
  return(I);
}
example
{
  "EXAMPLE:"; echo = 2;
  ring R = 0,(x,y,z,D(1..3)),dp;
  matrix D[6][6];
  D[1,4]=1; D[2,5]=1;  D[3,6]=1;
  def r = nc_algebra(1,D); setring r;
  ncdetection();
  kill r, R;
  //----------------------------------------
  ring R=0,(x,S),dp;
  def r = nc_algebra(1,-S); setring r;
  ncdetection();
  kill r, R;
  //----------------------------------------
  ring R=0,(x,D(1),S),dp;
  matrix D[3][3];
  D[1,2]=1;  D[1,3]=-S;
  def r = nc_algebra(1,D); setring r;
  ncdetection();
}

static proc In_Poly(poly mm, list l, int NVars)
// applies the involution to the polynomial mm
// entries of a list l are images of variables under invo
// more general than invo_poly; used in many rings setting
{
  int i,j;
  intvec v;
  poly pp, zz;
  poly nn = 0;
  i = 1;
  while(mm[i]!=0)
  {
    v  = leadexp(mm[i]);
    zz = 1;
    for( j=NVars; j>=1; j--)
    {
      if (v[j]!=0)
      {
        pp = l[j];
        zz = zz*(pp^v[j]);
      }
    }
    nn = nn + (leadcoef(mm[i])*zz);
    i++;
  }
  return(nn);
}

static proc Hom_Poly(poly mm, list l, int NVars)
// applies the endomorphism to the polynomial mm
// entries of a list l are images of variables under endo
// should not be replaced by map-based stuff! used in
// many rings setting
{
  int i,j;
  intvec v;
  poly pp, zz;
  poly nn = 0;
  i = 1;
  while(mm[i]!=0)
  {
    v  = leadexp(mm[i]);
    zz = 1;
    for( j=NVars; j>=1; j--)
    {
      if (v[j]!=0)
      {
        pp = l[j];
        zz = (pp^v[j])*zz;
      }
    }
    nn = nn + (leadcoef(mm[i])*zz);
    i++;
  }
  return(nn);
}

static proc invo_poly(poly m, map theta)
// applies the involution map theta to m, where m=polynomial
{
  // compatibility:
  ideal l = ideal(theta);
  int i;
  list L;
  for (i=1; i<=size(l); i++)
  {
    L[i] = l[i];
  }
  int nv = nvars(basering);
  return (In_Poly(m,L,nv));
//   if (m==0) { return(m); }
//   int i,j;
//   intvec v;
//   poly p,z;
//   poly n = 0;
//   i = 1;
//   while(m[i]!=0)
//   {
//     v = leadexp(m[i]);
//     z =1;
//     for(j=nvars(basering); j>=1; j--)
//     {
//       if (v[j]!=0)
//       {
//         p = var(j);
//         p = theta(p);
//         z = z*(p^v[j]);
//       }
//     }
//     n = n + (leadcoef(m[i])*z);
//     i++;
//   }
//   return(n);
}
///////////////////////////////////////////////////////////////////////////////////
proc involution(def m, map theta)
"USAGE:  involution(m, theta); m is a poly/vector/ideal/matrix/module, theta is a map
RETURN:  object of the same type as m
PURPOSE: applies the involution, presented by theta to the object m
THEORY: for an involution theta and two polynomials a,b from the algebra,
@*  theta(ab) = theta(b) theta(a); theta is linear with respect to the ground field
NOTE: This is generalized ''theta(m)'' for data types unsupported by ''map''.
EXAMPLE: example involution; shows an example
"{
  // applies the involution map theta to m,
  // where m= vector, polynomial, module, matrix, ideal
  int i,j;
  intvec v;
  poly p,z;
  if (typeof(m)=="poly")
  {
    return (invo_poly(m,theta));
  }
  if ( typeof(m)=="ideal" )
  {
    ideal n;
    for (i=1; i<=size(m); i++)
    {
      n[i] = invo_poly(m[i], theta);
    }
    return(n);
  }
  if (typeof(m)=="vector")
  {
    for(i=1; i<=size(m); i++)
    {
      m[i] = invo_poly(m[i], theta);
    }
    return (m);
  }
  if ( (typeof(m)=="matrix") || (typeof(m)=="module"))
  {
    matrix n = matrix(m);
    int @R=nrows(n);
    int @C=ncols(n);
    for(i=1; i<=@R; i++)
    {
      for(j=1; j<=@C; j++)
      {
        if (m[i,j]!=0)
        {
          n[i,j] = invo_poly( m[i,j], theta);
        }
      }
    }
    if (typeof(m)=="module")
    {
      return (module(n));
    }
    else // matrix
    {
      return(n);
    }
  }
  // if m is not of the supported type:
  "Error: unsupported argument type!";
  return();
}
example
{
  "EXAMPLE:";echo = 2;
  ring R = 0,(x,d),dp;
  def r = nc_algebra(1,1); setring r; // Weyl-Algebra
  map F = r,x,-d;
  F(F);  // should be maxideal(1) for an involution
  poly f =  x*d^2+d;
  poly If = involution(f,F);
  f-If;
  poly g = x^2*d+2*x*d+3*x+7*d;
  poly tg = -d*x^2-2*d*x+3*x-7*d;
  poly Ig = involution(g,F);
  tg-Ig;
  ideal I = f,g;
  ideal II = involution(I,F);
  II;
  matrix(I) - involution(II,F);
  module M  = [f,g,0],[g,0,x^2*d];
  module IM = involution(M,F);
  print(IM);
  print(matrix(M) - involution(IM,F));
}
///////////////////////////////////////////////////////////////////////////////////
static proc new_var()
//generates a string of new variables
{

  int NVars=nvars(basering);
  int i,j;
  //  string s="@_1_1";
  string s="a11";
  for(i=1; i<=NVars; i++)
  {
    for(j=1; j<=NVars; j++)
    {
      if(i*j!=1)
      {
        s = s+ ","+NVAR(i,j);
      }
    }
  }
  return(s);
}

static proc NVAR(int i, int j)
{
  //  return("@_"+string(i)+"_"+string(j));
  return("a"+string(i)+string(j));
}
///////////////////////////////////////////////////////////////////////////////////
static proc new_var_special()
//generates a string of new variables
{
  int NVars=nvars(basering);
  int i;
  //  string s="@_1_1";
  string s="a11";
  for(i=2; i<=NVars; i++)
  {
    s = s+ ","+NVAR(i,i);
  }
  return(s);
}
///////////////////////////////////////////////////////////////////////////////////
static proc RelMatr()
// returns the matrix of relations
// only Lie-type relations x_j x_i= x_i x_j + .. are taken into account
{
  int i,j;
  int NVars = nvars(basering);
  matrix Rel[NVars][NVars];
  for(i=1; i<NVars; i++)
  {
    for(j=i+1; j<=NVars; j++)
    {
      Rel[i,j]=var(j)*var(i)-var(i)*var(j);
    }
  }
  return(Rel);
}
/////////////////////////////////////////////////////////////////
proc findInvo()
"USAGE: findInvo();
RETURN: a ring containing a list L of pairs, where
@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: computed the ideal of linear involutions of the basering
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: for convenience, the full ideal of relations @code{idJ}
and the initial matrix with indeterminates @code{matD} are exported in the output ring
SEE ALSO: findInvoDiag, involution
EXAMPLE: example findInvo; shows examples

"{
  def @B    = basering; //save the name of basering
  int NVars = nvars(@B); //number of variables in basering
  int i, j;

  // check basering is of Lie type:
  if (!isLieType())
  {
    ERROR("Assume violated: basering is of non-Lie type");
  }

  matrix Rel = RelMatr(); //the matrix of relations

  string @ss   = new_var(); //string of new variables
  string Par = parstr(@B); //string of parameters in old ring

  if (Par=="") // if there are no parameters
  {
    execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
  }
  else //if there exist parameters
  {
     execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
  }

  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring

  int Sz = NVars*NVars+NVars; // number of variables in new ring

  matrix M[Sz][Sz]; //to be the matrix of relations in new ring

  for(i=1; i<NVars; i++) //initialize that matrix of relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      M[i,j] = Rel[i,j];
    }
  }

  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring

  list l; //list to define an involution
  poly @@F;
  for(i=1; i<=NVars; i++) //initializing list for involution
  {
    @@F=0;
    for(j=1; j<=NVars; j++)
    {
      execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
    }
    l=l+list(@@F);
  }

  matrix N = imap(@@@KK,Rel);

  for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
    }
  }
  kill l;
  //---------------------------------------------
  //get the ideal of coefficients of N
  ideal J;
  ideal idN = simplify(ideal(N),2);
  J = ideal(coeffs( idN, var(1) ) );
  for(i=2; i<=NVars; i++)
  {
    J = ideal( coeffs( J, var(i) ) );
  }
  J = simplify(J,2);
  //-------------------------------------------------
  if ( Par=="" ) //initializes the ring of relations
  {
    execute("ring @@KK=0,("+@ss+"), dp;");
  }
  else
  {
    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
  }
  ideal J = imap(@@K,J); // ideal, considered in @@KK now
  string snv = "["+string(NVars)+"]";
  execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables

  J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
  J = simplify(J,2); // without extra zeros
  list mL = minAssGTZ(J); // components not in GB
  int sL  = size(mL);
  intvec saveopt=option(get);
  option(redSB);       // important for reduced GBs
  option(redTail);
  matrix IM = @@D;     // involution map
  list L    = list();  // the answer
  list TL;
  ideal tmp = 0;
  for (i=1; i<=sL; i++) // compute GBs of components
  {
    TL    = list();
    TL[1] = std(mL[i]);
    tmp   = NF( ideal(IM), TL[1] );
    TL[2] = matrix(tmp, NVars,NVars);
    L[i]  = TL;
  }
  export(L); // main export
  ideal idJ = J; // debug-comfortable exports
  matrix matD = @@D;
  export(idJ);
  export(matD);
  option(set,saveopt);
  return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
  def a = makeWeyl(1);
  setring a; // this algebra is a first Weyl algebra
  a;
  def X = findInvo();
  setring X; // ring with new variables, corr. to unknown coefficients
  X;
  L;
  // look at the matrix in the new variables, defining the linear involution
  print(L[1][2]);
  L[1][1];  // where new variables obey these relations
  idJ;
}
///////////////////////////////////////////////////////////////////////////
proc findInvoDiag()
"USAGE: findInvoDiag();
RETURN: a ring together with a list of pairs L, where
@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: compute homothetic (diagonal) involutions of the basering
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: for convenience, the full ideal of relations @code{idJ}
and the initial matrix with indeterminates @code{matD} are exported in the output ring
SEE ALSO: findInvo, involution
EXAMPLE: example findInvoDiag; shows examples
"{
  def @B    = basering; //save the name of basering
  int NVars = nvars(@B); //number of variables in basering
  int i, j;

  // check basering is of Lie type:
  if (!isLieType())
  {
    ERROR("Assume violated: basering is of non-Lie type");
  }

  matrix Rel = RelMatr(); //the matrix of relations

  string @ss   = new_var_special(); //string of new variables
  string Par = parstr(@B); //string of parameters in old ring

  if (Par=="") // if there are no parameters
  {
    execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
  }
  else //if there exist parameters
  {
    execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
  }

  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring

  int Sz = 2*NVars; // number of variables in new ring

  matrix M[Sz][Sz]; //to be the matrix of relations in new ring
  for(i=1; i<NVars; i++) //initialize that matrix of relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      M[i,j] = Rel[i,j];
    }
  }

  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring

  list l; //list to define an involution

  for(i=1; i<=NVars; i++) //initializing list for involution
  {
    execute( "l["+string(i)+"]="+NVAR(i,i)+"*"+string( var(i) )+";" );

  }
  matrix N = imap(@@@KK,Rel);

  for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
    }
  }
  kill l;
  //---------------------------------------------
  //get the ideal of coefficients of N

  ideal J;
  ideal idN = simplify(ideal(N),2);
  J = ideal(coeffs( idN, var(1) ) );
  for(i=2; i<=NVars; i++)
  {
    J = ideal( coeffs( J, var(i) ) );
  }
  J = simplify(J,2);
  //-------------------------------------------------

  if ( Par=="" ) //initializes the ring of relations
  {
    execute("ring @@KK=0,("+@ss+"), dp;");
  }
  else
  {
    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
  }

  ideal J = imap(@@K,J); // ideal, considered in @@KK now

  matrix @@D[NVars][NVars]; // matrix with entries=new variables to square i.e. @@D=@@D^2
  for(i=1;i<=NVars;i++)
  {
    execute("@@D["+string(i)+","+string(i)+"]="+NVAR(i,i)+";");
  }
  J = J, ideal( @@D*@@D - matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
  J = simplify(J,2); // without extra zeros

  list mL = minAssGTZ(J); // components not in GB
  int sL  = size(mL);
  intvec saveopt=option(get);
  option(redSB); // important for reduced GBs
  option(redTail);
  matrix IM = @@D; // involution map
  list L = list(); // the answer
  list TL;
  ideal tmp = 0;
  for (i=1; i<=sL; i++) // compute GBs of components
  {
    TL    = list();
    TL[1] = std(mL[i]);
    tmp   = NF( ideal(IM), TL[1] );
    TL[2] = matrix(tmp, NVars,NVars);
    L[i]  = TL;
  }
  export(L);
  ideal idJ = J; // debug-comfortable exports
  matrix matD = @@D;
  export(idJ);
  export(matD);
  option(set,saveopt);
  return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
  def a = makeWeyl(1);
  setring a; // this algebra is a first Weyl algebra
  a;
  def X = findInvoDiag();
  setring X; // ring with new variables, corresponding to unknown coefficients
  X;
  // print matrices, defining linear involutions
  print(L[1][2]);  // a first matrix: we see it is constant
  print(L[2][2]);  // and a second possible matrix; it is constant too
  L; // let us take a look on the whole list
  idJ;
}
/////////////////////////////////////////////////////////////////////
proc findAuto(int n)
"USAGE: findAuto(n); n an integer
RETURN: a ring together with a list of pairs L, where
@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: compute the ideal of linear automorphisms of the basering,
@*  given by a matrix, n-th power of which gives identity (i.e. unipotent matrix)
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: if n=0, a matrix, defining an automorphism is not assumed to be unipotent
@* but just non-degenerate. A nonzero parameter @code{@@p} is introduced as the value of
@* the determinant of the matrix above.
@* For convenience, the full ideal of relations @code{idJ} and the initial matrix with indeterminates
@* @code{matD} are mutually exported in the output ring
SEE ALSO: findInvo
EXAMPLE: example findAuto; shows examples
"{
  if ((n<0 ) || (n==1))
  {
    "The index of unipotency is too small.";
    return(0);
  }


  def @B    = basering; //save the name of basering
  int NVars = nvars(@B); //number of variables in basering
  int i, j;

  // check basering is of Lie type:
  if (!isLieType())
  {
    ERROR("Assume violated: basering is of non-Lie type");
  }

  matrix Rel = RelMatr(); //the matrix of relations

  string @ss = new_var(); //string of new variables
  string Par = parstr(@B); //string of parameters in old ring

  if (Par=="") // if there are no parameters
  {
    execute("ring @@@K=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
  }
  else //if there exist parameters
  {
     execute("ring @@@K=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
  }

  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring

  int Sz = NVars*NVars+NVars; // number of variables in new ring

  matrix M[Sz][Sz]; //to be the matrix of relations in new ring

  for(i=1; i<NVars; i++) //initialize that matrix of relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      M[i,j] = Rel[i,j];
    }
  }

  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring

  list l; //list to define a homomorphism(isomorphism)
  poly @@F;
  for(i=1; i<=NVars; i++) //initializing list for involution
  {
    @@F=0;
    for(j=1; j<=NVars; j++)
    {
      execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
    }
    l=l+list(@@F);
  }

  matrix N = imap(@@@K,Rel);

  for(i=1; i<NVars; i++)//get matrix by applying the homomorphism  to relations
  {
    for(j=i+1; j<=NVars; j++)
    {
      N[i,j]= l[j]*l[i] - l[i]*l[j] - Hom_Poly( N[i,j], l, NVars);
    }
  }
  kill l;
  //---------------------------------------------
  //get the ideal of coefficients of N
  ideal J;
  ideal idN = simplify(ideal(N),2);
  J = ideal(coeffs( idN, var(1) ) );
  for(i=2; i<=NVars; i++)
  {
    J = ideal( coeffs( J, var(i) ) );
  }
  J = simplify(J,2);
  //-------------------------------------------------
  if (( Par=="" ) && (n!=0)) //initializes the ring of relations
  {
    execute("ring @@KK=0,("+@ss+"), dp;");
  }
  if (( Par=="" ) && (n==0)) //initializes the ring of relations
  {
    execute("ring @@KK=(0,@p),("+@ss+"), dp;");
  }
  if ( Par!="" )
  {
    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
  }
  //  execute("setring @@KK;");
  //  basering;
  ideal J = imap(@@K,J); // ideal, considered in @@KK now
  string snv = "["+string(NVars)+"]";
  execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables

  if (n>=2)
  {
    J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that homomorphism to square is just identity
  }
  if (n==0)
  {
    J = J, det(@@D)-@p; // det of non-unipotent matrix is nonzero
  }
  J       = simplify(J,2); // without extra zeros
  list mL = minAssGTZ(J); // components not in GB
  int sL  = size(mL);
  intvec saveopt=option(get);
  option(redSB); // important for reduced GBs
  option(redTail);
  matrix IM = @@D; //  map
  list L = list(); // the answer
  list TL;
  ideal tmp = 0;
  for (i=1; i<=sL; i++)// compute GBs of components
  {
    TL    = list();
    TL[1] = std(mL[i]);
    tmp   = NF( ideal(IM), TL[1] );
    TL[2] = matrix(tmp,NVars, NVars);
    L[i]  = TL;
  }
  export(L);
  ideal idJ = J; // debug-comfortable exports
  matrix matD = @@D;
  export(idJ);
  export(matD);
  option(set,saveopt);
  return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
  def a = makeWeyl(1);
  setring a; // this algebra is a first Weyl algebra
  a;
  def X = findAuto(2);  // in contrast to findInvo look for automorphisms
  setring X; // ring with new variables - unknown coefficients
  X;
  size(L); // we have (size(L)) families in the answer
  // look at matrices, defining linear automorphisms:
  print(L[1][2]);  // a first one: we see it is the identity
  print(L[2][2]);  // and a second possible matrix; it is diagonal
  // L; // we can take a look on the whole list, too
  idJ;
  kill X; kill a;
  //----------- find all the linear automorphisms --------------------
  //----------- use the call findAuto(0)          --------------------
  ring R = 0,(x,s),dp;
  def r = nc_algebra(1,s); setring r; // the shift algebra
  s*x; // the only relation in the algebra is:
  def Y = findAuto(0);
  setring Y;
  size(L); // here, we have 1 parametrized family
  print(L[1][2]); // here, @p is a nonzero parameter
  det(L[1][2]-@p);  // check whether determinante is zero
}


proc isAntiEndo(def F)
"USAGE: isAntiEndo(F); F is a map from current ring to itself
RETURN: integer, 1 if F determines an antiendomorphism of
current ring and 0 otherwise
ASSUME: F is a map from current ring to itself
SEE ALSO: isInvolution, involution, findInvo
EXAMPLE: example isAntiEndo; shows examples
"
{
  // assumes:
  // (1) F is from br to br
  // I don't see how to check it; in case of error it will happen in the body
  // (2) do not assume: F is linear, F is bijective
  int n = nvars(basering);
  int i,j;
  poly pi,pj,q;
  int answer=1;
  ideal @f = ideal(F); list L=@f[1..ncols(@f)];
  for (i=1; i<n; i++)
  {
    for (j=i+1; j<=n; j++)
    {
      // F( x_j x_i) =def= F(x_i) F(x_j)
      pi = var(i);
      pj = var(j);
      //      q = involution(pj*pi,F) - F(pi)*F(pj);
      q = In_Poly(pj*pi,L,n) - F[i]*F[j];
      if (q!=0)
      {
        answer=0; return(answer);
      }
    }
  }
  return(answer);
}
example
{"EXAMPLE:";echo = 2;
  def A = makeUsl(2); setring A;
  map I = A,-e,-f,-h; //correct antiauto involution
  isAntiEndo(I);
  map J = A,3*e,1/3*f,-h; // antiauto but not involution
  isAntiEndo(J);
  map K = A,f,e,-h; // not antiendo
  isAntiEndo(K);
}


proc isInvolution(def F)
"USAGE: isInvolution(F); F is a map from current ring to itself
RETURN: integer, 1 if F determines an involution and 0 otherwise
THEORY: involution is an antiautomorphism of order 2
ASSUME: F is a map from current ring to itself
SEE ALSO: involution, findInvo, isAntiEndo
EXAMPLE: example isInvolution; shows examples
"
{
  // does not assume: F is an antiautomorphism, can be antiendo
  // allows to detect endos which are not autos
  // isInvolution == ( F isAntiEndo && F(F)==id )
  if (!isAntiEndo(F))
  {
    return(0);
  }
  //  def G = F(F);
  int j; poly p; ideal @f = ideal(F); list L=@f[1..ncols(@f)];
  int nv = nvars(basering);
  for(j=nv; j>=1; j--)
  {
    //    p = var(j); p = F(p); p = F(p) - var(j);
    //p = G(p) - p;
    p = In_Poly(var(j),L,nv);
    p = In_Poly(p,L,nv) -var(j) ;

    if (p!=0)
    {
      return(0);
    }
  }
  return(1);
}
example
{"EXAMPLE:";echo = 2;
  def A = makeUsl(2); setring A;
  map I = A,-e,-f,-h; //correct antiauto involution
  isInvolution(I);
  map J = A,3*e,1/3*f,-h; // antiauto but not involution
  isInvolution(J);
  map K = A,f,e,-h; // not antiauto
  isInvolution(K);
}