/usr/share/singular/LIB/jacobson.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | /////////////////////////////////////////////////////////////////////////////
version="version jacobson.lib 4.0.0.0 Jun_2013 "; // $Id: 89c042d436d3e016d3822e0d61e1c6850ea236de $
category="System and Control Theory";
info="
LIBRARY: jacobson.lib Algorithms for Smith and Jacobson Normal Form
AUTHOR: Kristina Schindelar, Kristina.Schindelar@math.rwth-aachen.de,
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
OVERVIEW:
We work over a ring R, that is an Euclidean principal ideal domain.
If R is commutative, we suppose R to be a polynomial ring in one variable.
If R is non-commutative, we suppose R to have two variables, say x and d.
We treat then the basering as the Ore localization of R
with respect to the mult. closed set S = K[x] without 0.
Thus, we treat basering as principal ideal ring with d a polynomial
variable and x an invertible one.
Note, that in computations no division by x will actually happen.
Given a rectangular matrix M over R, one can compute unimodular (that is
invertible) square matrices U and V, such that U*M*V=D is a diagonal matrix.
Depending on the ring, the diagonal entries of D have certain properties.
We call a square matrix D as before 'a weak Jacobson normal form of M'.
It is known, that over the first rational Weyl algebra K(x)<d>, D can be further
transformed into a diagonal matrix (1,1,...,1,f,0,..,0), where f is in K(x)<d>.
We call such a form of D the strong Jacobson normal form.
The existence of strong form in not guaranteed if one works with algebra,
which is not rational Weyl algebra.
REFERENCES:
@* [1] N. Jacobson, 'The theory of rings', AMS, 1943.
@* [2] Manuel Avelino Insua Hermo, 'Varias perspectives sobre las bases de Groebner :
@* Forma normal de Smith, Algorithme de Berlekamp y algebras de Leibniz'.
@* PhD thesis, Universidad de Santiago de Compostela, 2005.
@* [3] V. Levandovskyy, K. Schindelar 'Computing Jacobson normal form using Groebner bases',
@* to appear in Journal of Symbolic Computation, 2010.
PROCEDURES:
smith(M[,eng1,eng2]); compute the Smith Normal Form of M over commutative ring
jacobson(M[,eng]); compute a weak Jacobson Normal Form of M over non-commutative ring
divideUnits(L); create ones out of units in the output of smith or jacobson
SEE ALSO: control_lib
KEYWORDS: Jacobson form; Jacobson normal form; Smith form; Smith normal form; matrix diagonalization
";
LIB "poly.lib";
LIB "involut.lib"; // involution
LIB "dmodapp.lib"; // engine
LIB "qhmoduli.lib"; // Min
LIB "latex.lib"; // tex output for printlevel=4
proc tstjacobson()
{
/* tests all procs for consistency */
example divideUnits;
example smith;
example jacobson;
}
proc divideUnits(list L)
"USAGE: divideUnits(L); list L
RETURN: matrix or list of matrices
ASSUME: L is an output of @code{smith} or a @code{jacobson} procedures, that is
@* either L contains one rectangular matrix with elements only on the main diagonal
@* or L consists of three matrices, where L[1] and L[3] are square invertible matrices
@* while L[2] is a rectangular matrix with elements only on the main diagonal
PURPOSE: divide out units from the diagonal and reflect this in transformation matrices
EXAMPLE: example divideUnits; shows examples
"
{
// check assumptions
int s = size(L);
if ( (s!=1) && (s!=3) )
{
ERROR("The list has neither 1 nor 3 elements");
}
// check sizes of matrices
if (s==1)
{
list LL; LL[1] = L[1]; LL[2] = L[1];
L = LL;
}
// divide units out
matrix M = L[2];
int ncM = ncols(M); int nrM = nrows(M);
// matrix TM[nrM][nrM]; // m times m matrix
matrix TM = matrix(freemodule(nrM));
int i; int nsize = Min(intvec(nrM,ncM));
poly p; number n; intvec lexp;
for(i=1; i<=nsize; i++)
{
p = M[i,i];
lexp = leadexp(p);
// TM[i,i] = 1;
// check: is p a unit?
if (p!=0)
{
if ( lexp == 0)
{
// hence p = n*1
n = leadcoef(p);
TM[i,i] = 1/n;
}
}
}
int ppl = printlevel-voice+2;
dbprint(ppl,"divideUnits: extra transformation matrix is: ");
dbprint(ppl, TM);
L[2] = TM*L[2];
if (s==3)
{
L[1] = TM*L[1];
return(L);
}
else
{
return(L[2]);
}
}
example
{ "EXAMPLE:"; echo = 2;
ring R=(0,m,M,L1,L2,m1,m2,g), D, lp; // two pendula example
matrix P[3][4]=m1*L1*D^2,m2*L2*D^2,(M+m1+m2)*D^2,-1,
m1*L1^2*D^2-m1*L1*g,0,m1*L1*D^2,0,0,
m2*L2^2*D^2-m2*L2*g,m2*L2*D^2,0;
list s=smith(P,1); // returns a list with 3 entries
print(s[2]); // a diagonal form, close to the Smith form
print(s[1]); // U, left transformation matrix
list t = divideUnits(s);
print(t[2]); // the Smith form of the matrix P
print(t[1]); // U', modified left transformation matrix
}
proc smith(matrix MA, list #)
"USAGE: smith(M[, eng1, eng2]); M matrix, eng1 and eng2 are optional integers
RETURN: matrix or list of matrices, depending on arguments
ASSUME: Basering is a commutative polynomial ring in one variable
PURPOSE: compute the Smith Normal Form of M with (optionally) transformation matrices
THEORY: Groebner bases are used for the Smith form like in [2] and [3].
NOTE: By default, just the Smith normal form of M is returned.
@* If the optional integer @code{eng1} is non-zero, the list {U,D,V} is returned
@* where U*M*V = D and the diagonal field entries of D are not normalized.
@* The normalization of the latter can be done with the 'divideUnits' procedure.
@* U and V above are square unimodular (invertible) matrices.
@* Note, that the procedure works for a rectangular matrix M.
@*
@* The optional integer @code{eng2} determines the Groebner basis engine:
@* 0 (default) ensures the use of 'slimgb' , otherwise 'std' is used.
DISPLAY: If @code{printlevel}=1, progress debug messages will be printed,
@* if @code{printlevel}>=2, all the debug messages will be printed.
EXAMPLE: example smith; shows examples
SEE ALSO: divideUnits, jacobson
"
{
def R = basering;
// check assume: R must be a polynomial ring in 1 variable
setring R;
if (nvars(R) >1 )
{
ERROR("Basering must have exactly one variable");
}
int eng = 0;
int BASIS;
if ( size(#)>0 )
{
eng=1;
if (typeof(#[1])=="int")
{
eng=int(#[1]); // zero can also happen
}
}
if (size(#)==2)
{
BASIS=#[2];
}
else{BASIS=0;}
int ROW=ncols(MA);
int COL=nrows(MA);
//generate a module consisting of the columns of MA
module m=MA[1];
int i;
for(i=2;i<=ROW;i++)
{
m=m,MA[i];
}
//if MA eqauls the zero matrix give back MA
if ( (size(module(m))==0) and (size(transpose(module(m)))==0) )
{
module L=freemodule(COL);
matrix LM=L;
L=freemodule(ROW);
matrix RM=L;
list RUECK=RM;
RUECK=insert(RUECK,MA);
RUECK=insert(RUECK,LM);
return(RUECK);
}
if(eng==1)
{
list rueckLI=diagonal_with_trafo(R,MA,BASIS);
list rueckLII=divisibility(rueckLI[2]);
matrix CON=divideByContent(rueckLII[2]);
list rueckL=CON*rueckLII[1]*rueckLI[1], CON*rueckLII[2], rueckLI[3]*rueckLII[3];
return(rueckL);
}
else
{
matrix rueckm=diagonal_without_trafo(R,MA,BASIS);
list rueckL=divisibility(rueckm);
matrix CON=divideByContent(rueckm);
rueckm=CON*rueckL[2];
return(rueckm);
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,x,Dp;
matrix m[3][2]=x, x^4+x^2+21, x^4+x^2+x, x^3+x, 4*x^2+x, x;
list s=smith(m,1);
print(s[2]); // non-normalized Smith form of m
print(s[1]*m*s[3] - s[2]); // check U*M*V = D
list t = divideUnits(s);
print(t[2]); // the Smith form of m
}
static proc diagonal_with_trafo(def R, matrix MA, int B)
{
int ppl = printlevel-voice+2;
int BASIS=B;
int ROW=ncols(MA);
int COL=nrows(MA);
module m=MA[1];
int i,j,k;
for(i=2;i<=ROW;i++)
{
m=m,MA[i];
}
//add zero rows or columns
//add zero rows or columns
int adrow=0;
for(i=1;i<=COL;i++)
{
k=0;
for(j=1;j<=ROW;j++)
{
if(MA[i,j]!=0){k=1;}
}
if(k==0){adrow++;}
}
m=transpose(m);
for(i=1;i<=adrow;i++){m=m,0;}
m=transpose(m);
list RINGLIST=ringlist(R);
list o="C",0;
list oo="lp",1;
list ORD=o,oo;
RINGLIST[3]=ORD;
def r=ring(RINGLIST);
setring r;
//fix the required ordering
map MAP=R,var(1);
module m=MAP(m);
int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0)
module TrafoL=freemodule(COL);
module TrafoR=freemodule(ROW);
module EXL=freemodule(COL); //because we start with transpose(m)
module EXR=freemodule(ROW);
option(redSB);
option(redTail);
module STD_EX;
module Trafo;
int s,st,p,ff;
module LT,TSTD;
module STD=transpose(m);
int finish=0;
int fehlpos;
list pos;
matrix END;
matrix ENDSTD;
matrix STDFIN;
STDFIN=STD;
list COMPARE=STDFIN;
while(finish==0)
{
dbprint(ppl,"Going into the while cycle");
if(flag mod 2==1)
{
STD_EX=EXL,transpose(STD);
}
else
{
STD_EX=EXR,transpose(STD);
}
dbprint(ppl,"Computing Groebner basis: start");
dbprint(ppl-1,STD);
STD=engine(STD,BASIS);
dbprint(ppl,"Computing Groebner basis: finished");
dbprint(ppl-1,STD);
if(flag mod 2==1){s=ROW; st=COL;}else{s=COL; st=ROW;}
dbprint(ppl,"Computing Groebner basis for transformation matrix: start");
dbprint(ppl-1,STD_EX);
STD_EX=transpose(STD_EX);
STD_EX=engine(STD_EX,BASIS);
dbprint(ppl,"Computing Groebner basis for transformation matrix: finished");
dbprint(ppl-1,STD_EX);
//////// split STD_EX in STD and the transformation matrix
STD_EX=transpose(STD_EX);
STD=STD_EX[st+1];
LT=STD_EX[1];
ENDSTD=STD_EX;
for(i=2; i<=ncols(ENDSTD); i++)
{
if (i<=st)
{
LT=LT,STD_EX[i];
}
if (i>st+1)
{
STD=STD,STD_EX[i];
}
}
STD=transpose(STD);
LT=transpose(LT);
////////////////////// compute the transformation matrices
if (flag mod 2 ==1)
{
TrafoL=transpose(LT)*TrafoL;
}
else
{
TrafoR=TrafoR*LT;
}
STDFIN=STD;
/////////////////////////////////// check if the D-th row is finished ///////////////////////////////////
COMPARE=insert(COMPARE,STDFIN);
if(size(COMPARE)>=3)
{
if(STD==COMPARE[3]){finish=1;}
}
////////////////////////////////// change to the opposite module
TSTD=transpose(STD);
STD=TSTD;
flag++;
dbprint(ppl,"Finished one while cycle");
}
if (flag mod 2!=0) { STD=transpose(STD); }
//zero colums to the end
matrix STDMM=STD;
pos=list();
fehlpos=0;
while( size(STD)+fehlpos-ncols(STDMM) < 0)
{
for(i=1; i<=ncols(STDMM); i++)
{
ff=0;
for(j=1; j<=nrows(STDMM); j++)
{
if (STD[j,i]==0) { ff++; }
}
if(ff==nrows(STDMM))
{
pos=insert(pos,i); fehlpos++;
}
}
}
int fehlposc=fehlpos;
module SORT;
for(i=1; i<=fehlpos; i++)
{
SORT=gen(2);
for (j=3;j<=ROW;j++)
{
SORT=SORT,gen(j);
}
SORT=SORT,gen(1);
STD=STD*SORT;
TrafoR=TrafoR*SORT;
}
//zero rows to the end
STDMM=transpose(STD);
pos=list();
fehlpos=0;
while( size(transpose(STD))+fehlpos-ncols(STDMM) < 0)
{
for(i=1; i<=ncols(STDMM); i++)
{
ff=0; for(j=1; j<=nrows(STDMM); j++)
{
if(transpose(STD)[j,i]==0){ ff++;}}
if(ff==nrows(STDMM)) { pos=insert(pos,i); fehlpos++; }
}
}
int fehlposr=fehlpos;
for(i=1; i<=fehlpos; i++)
{
SORT=gen(2);
for(j=3;j<=COL;j++){SORT=SORT,gen(j);}
SORT=SORT,gen(1);
SORT=transpose(SORT);
STD=SORT*STD;
TrafoL=SORT*TrafoL;
}
setring R;
map MAPinv=r,var(1);
module STD=MAPinv(STD);
module TrafoL=MAPinv(TrafoL);
matrix TrafoLM=TrafoL;
module TrafoR=MAPinv(TrafoR);
matrix TrafoRM=TrafoR;
matrix STDM=STD;
//Test
if(TrafoLM*m*TrafoRM!=STDM){ return(0); }
list RUECK=TrafoRM;
RUECK=insert(RUECK,STDM);
RUECK=insert(RUECK,TrafoLM);
return(RUECK);
}
static proc divisibility(matrix M)
{
matrix STDM=M;
int i,j;
int ROW=nrows(M);
int COL=ncols(M);
module TrafoR=freemodule(COL);
module TrafoL=freemodule(ROW);
module SORT;
matrix TrafoRM=TrafoR;
matrix TrafoLM=TrafoL;
list posdeg0;
int posdeg=0;
int act;
int Sort=ROW;
if(size(std(STDM))!=0)
{ while( size(transpose(STDM)[Sort])==0 ){Sort--;}}
for(i=1;i<=Sort ;i++)
{
if(leadexp(STDM[i,i])==0){posdeg0=insert(posdeg0,i);posdeg++;}
}
//entries of degree 0 at the beginning
for(i=1; i<=posdeg; i++)
{
act=posdeg0[i];
SORT=gen(act);
for(j=1; j<=COL; j++){if(j!=act){SORT=SORT,gen(j);}}
STDM=STDM*SORT;
TrafoRM=TrafoRM*SORT;
SORT=gen(act);
for(j=1; j<=ROW; j++){if(j!=act){SORT=SORT,gen(j);}}
STDM=transpose(SORT)*STDM;
TrafoLM=transpose(SORT)*TrafoLM;
}
poly G;
module UNITL=freemodule(ROW);
matrix GCDL=UNITL;
module UNITR=freemodule(COL);
matrix GCDR=UNITR;
for(i=posdeg+1; i<=Sort; i++)
{
for(j=i+1; j<=Sort; j++)
{
GCDL=UNITL;
GCDR=UNITR;
G=gcd(STDM[i,i],STDM[j,j]);
ideal Z=STDM[i,i],STDM[j,j];
matrix T=lift(Z,G);
GCDL[i,i]=T[1,1];
GCDL[i,j]=T[2,1];
GCDL[j,i]=-STDM[j,j]/G;
GCDL[j,j]=STDM[i,i]/G;
GCDR[i,j]=T[2,1]*STDM[j,j]/G;
GCDR[j,j]=T[2,1]*STDM[j,j]/G-1;
GCDR[j,i]=1;
STDM=GCDL*STDM*GCDR;
TrafoLM=GCDL*TrafoLM;
TrafoRM=TrafoRM*GCDR;
}
}
list RUECK=TrafoRM;
RUECK=insert(RUECK,STDM);
RUECK=insert(RUECK,TrafoLM);
return(RUECK);
}
static proc diagonal_without_trafo( R, matrix MA, int B)
{
int ppl = printlevel-voice+2;
int BASIS=B;
int ROW=ncols(MA);
int COL=nrows(MA);
module m=MA[1];
int i;
for(i=2;i<=ROW;i++)
{m=m,MA[i];}
list RINGLIST=ringlist(R);
list o="C",0;
list oo="lp",1;
list ORD=o,oo;
RINGLIST[3]=ORD;
def r=ring(RINGLIST);
setring r;
//RICHTIGE ORDNUNG MACHEN
map MAP=R,var(1);
module m=MAP(m);
int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0)
int act, j, ff;
option(redSB);
option(redTail);
module STD=transpose(m);
module TSTD;
int finish=0;
matrix STDFIN;
STDFIN=STD;
list COMPARE=STDFIN;
while(finish==0)
{
dbprint(ppl,"Going into the while cycle");
dbprint(ppl,"Computing Groebner basis: start");
dbprint(ppl-1,STD);
STD=engine(STD,BASIS);
dbprint(ppl,"Computing Groebner basis: finished");
dbprint(ppl-1,STD);
STDFIN=STD;
/////////////////////////////////// check if the D-th row is finished ///////////////////////////////////
COMPARE=insert(COMPARE,STDFIN);
if(size(COMPARE)>=3)
{
if(STD==COMPARE[3]){finish=1;}
}
////////////////////////////////// change to the opposite module
TSTD=transpose(STD);
STD=TSTD;
flag++;
dbprint(ppl,"Finished one while cycle");
}
matrix STDMM=STD;
list pos=list();
int fehlpos=0;
while( size(STD)+fehlpos-ncols(STDMM) < 0)
{
for(i=1; i<=ncols(STDMM); i++)
{
ff=0;
for(j=1; j<=nrows(STDMM); j++)
{
if (STD[j,i]==0) { ff++; }
}
if(ff==nrows(STDMM))
{
pos=insert(pos,i); fehlpos++;
}
}
}
int fehlposc=fehlpos;
module SORT;
for(i=1; i<=fehlpos; i++)
{
SORT=gen(2);
for (j=3;j<=ROW;j++)
{
SORT=SORT,gen(j);
}
SORT=SORT,gen(1);
STD=STD*SORT;
}
//zero rows to the end
STDMM=transpose(STD);
pos=list();
fehlpos=0;
while( size(transpose(STD))+fehlpos-ncols(STDMM) < 0)
{
for(i=1; i<=ncols(STDMM); i++)
{
ff=0; for(j=1; j<=nrows(STDMM); j++)
{
if(transpose(STD)[j,i]==0){ ff++;}}
if(ff==nrows(STDMM)) { pos=insert(pos,i); fehlpos++; }
}
}
int fehlposr=fehlpos;
for(i=1; i<=fehlpos; i++)
{
SORT=gen(2);
for(j=3;j<=COL;j++){SORT=SORT,gen(j);}
SORT=SORT,gen(1);
SORT=transpose(SORT);
STD=SORT*STD;
}
//add zero rows or columns
int adrow=COL-size(transpose(STD));
int adcol=ROW-size(STD);
for(i=1;i<=adcol;i++){STD=STD,0;}
STD=transpose(STD);
for(i=1;i<=adrow;i++){STD=STD,0;}
STD=transpose(STD);
setring R;
map MAPinv=r,var(1);
module STD=MAPinv(STD);
matrix STDM=STD;
return(STDM);
}
// VL : engine replaced by the one from dmodapp.lib
// cases are changed
// static proc engine(module I, int i)
// {
// module J;
// if (i==0)
// {
// J = std(I);
// }
// if (i==1)
// {
// J = groebner(I);
// }
// if (i==2)
// {
// J = slimgb(I);
// }
// return(J);
// }
proc jacobson(matrix MA, list #)
"USAGE: jacobson(M, eng); M matrix, eng an optional int
RETURN: list
ASSUME: Basering is a (non-commutative) ring in two variables.
PURPOSE: compute a weak Jacobson normal form of M over the basering
THEORY: Groebner bases and involutions are used, following [3]
NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2],
@* where L[2] is a diagonal matrix and
@* L[1], L[3] are square invertible polynomial (unimodular) matrices.
@* Note, that M can be rectangular.
@* The optional integer @code{eng2} determines the Groebner basis engine:
@* 0 (default) ensures the use of 'slimgb' , otherwise 'std' is used.
DISPLAY: If @code{printlevel}=1, progress debug messages will be printed,
@* if @code{printlevel}>=2, all the debug messages will be printed.
EXAMPLE: example jacobson; shows examples
SEE ALSO: divideUnits, smith
"
{
def R = basering;
// check assume: R must be a polynomial ring in 2 variables
setring R;
if ( (nvars(R) !=2 ) )
{
ERROR("Basering must have exactly two variables");
}
// check if MA is zero matrix and return corr. U,V
if ( (size(module(MA))==0) and (size(transpose(module(MA)))==0) )
{
int nr = nrows(MA);
int nc = ncols(MA);
matrix U = matrix(freemodule(nr));
matrix V = matrix(freemodule(nc));
list L; L[1]=U; L[2] = MA; L[3] = V;
return(L);
}
int B=0;
if ( size(#)>0 )
{
B=1;
if (typeof(#[1])=="int")
{
B=int(#[1]); // zero can also happen
}
}
//change ring
list RINGLIST=ringlist(R);
list o="C",0;
intvec v=0,1;
list oo="a",v;
v=1,1;
list ooo="lp",v;
list ORD=o,oo,ooo;
RINGLIST[3]=ORD;
def r=ring(RINGLIST);
setring r;
//fix the required ordering
map MAP=R,var(1),var(2);
matrix M=MAP(MA);
module TrafoL, TrafoR;
list TRIANGLE;
TRIANGLE=triangle(M,B);
TrafoL=TRIANGLE[1];
TrafoR=TRIANGLE[3];
module m=TRIANGLE[2];
//back to the ring
setring R;
map MAPR=r,var(1),var(2);
module ma=MAPR(m);
matrix MAA=ma;
module TL=MAPR(TrafoL);
module TR=MAPR(TrafoR);
matrix TRR=TR;
matrix CON=divideByContent(MAA);
list RUECK=CON*TL, CON*MAA, TRR;
return(RUECK);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,d),Dp;
def R = nc_algebra(1,1); setring R; // the 1st Weyl algebra
matrix m[2][2] = d,x,0,d; print(m);
list J = jacobson(m); // returns a list with 3 entries
print(J[2]); // a Jacobson Form D for m
print(J[1]*m*J[3] - J[2]); // check that U*M*V = D
/* now, let us do the same for the shift algebra */
ring r2 = 0,(x,s),Dp;
def R2 = nc_algebra(1,s); setring R2; // the 1st shift algebra
matrix m[2][2] = s,x,0,s; print(m); // matrix of the same for as above
list J = jacobson(m);
print(J[2]); // a Jacobson Form D, quite different from above
print(J[1]*m*J[3] - J[2]); // check that U*M*V = D
}
//static
proc triangle(matrix MA, int B)
{
int ppl = printlevel-voice+2;
map inv=ncdetection();
int ROW=ncols(MA);
int COL=nrows(MA);
//generate a module consisting of the columns of MA
module m=MA[1];
int i,j,s,st,p,k,ff,ex, nz, ii,nextp;
for(i=2;i<=ROW;i++)
{
m=m,MA[i];
}
int BASIS=B;
//add zero rows or columns
int adrow=0;
for(i=1;i<=COL;i++)
{
k=0;
for(j=1;j<=ROW;j++)
{
if(MA[i,j]!=0){k=1;}
}
if(k==0){adrow++;}
}
m=transpose(m);
for(i=1;i<=adrow;i++){m=m,0;}
m=transpose(m);
int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0)
module TrafoL=freemodule(COL);
module TrafoR=freemodule(ROW);
module EXL=freemodule(COL); //because we start with transpose(m)
module EXR=freemodule(ROW);
option(redSB);
option(redTail);
module STD_EX,LT,TSTD, L, Trafo;
module STD=transpose(m);
int finish=0;
list pos, COM, COM_EX;
matrix END, ENDSTD, STDFIN;
STDFIN=STD;
list COMPARE=STDFIN;
string @s;
while(finish==0)
{
dbprint(ppl,"Going into the while cycle");
if(flag mod 2==1){STD_EX=EXL,transpose(STD); ex=2*COL;} else {STD_EX=EXR,transpose(STD); ex=2*ROW;}
dbprint(ppl,"Computing Groebner basis: start");
dbprint(ppl-1,STD);
STD=engine(STD,BASIS);
dbprint(ppl,"Computing Groebner basis: finished");
dbprint(ppl-1,STD);
if(flag mod 2==1){s=ROW; st=COL;}else{s=COL; st=ROW;}
STD_EX=transpose(STD_EX);
dbprint(ppl,"Computing Groebner basis for transformation matrix: start");
dbprint(ppl-1,STD_EX);
STD_EX=engine(STD_EX,BASIS);
dbprint(ppl,"Computing Groebner basis for transformation matrix: finished");
dbprint(ppl-1,STD_EX);
COM=1;
COM_EX=1;
for(i=2; i<=size(STD); i++)
{ COM=COM[1..size(COM)],i; COM_EX=COM_EX[1..size(COM_EX)],i; }
nz=size(STD_EX)-size(STD);
//zero rows in the begining
if(size(STD)!=size(STD_EX) )
{
for(i=1; i<=size(STD_EX)-size(STD); i++)
{
COM_EX=0,COM_EX[1..size(COM_EX)];
}
}
for(i=nz+1; i<=size(STD_EX); i++ )
{if( leadcoef(STD[i-nz])!=leadcoef(STD_EX[i]) ) {STD[i-nz]=leadcoef(STD_EX[i])*STD[i-nz];}
}
//assign the zero rows in STD_EX
for (j=2; j<=nz; j++)
{
p=0;
i=1;
while(STD_EX[j-1][i]==0){i++;}
p=i-1;
nextp=1;
k=0;
i=1;
while(STD_EX[j][i]==0 and i<=p)
{ k++; i++;}
if (k==p){ COM_EX[j]=-1; }
}
//assign the zero rows in STD
for (j=2; j<=size(STD); j++)
{
i=size(transpose(STD));
while(STD[j-1][i]==0){i--;}
p=i;
i=size(transpose(STD[j]));
while(STD[j][i]==0){i--;}
if (i==p){ COM[j]=-1; }
}
for(j=1; j<=size(COM); j++)
{
if(COM[j]<0){COM=delete(COM,j);}
}
for(i=1; i<=size(COM_EX); i++)
{ff=0;
if(COM_EX[i]==0){ff=1;}
else
{ for(j=1; j<=size(COM); j++)
{ if(COM_EX[i]==COM[j]){ff=1;} }
}
if(ff==0){COM_EX[i]=-1;}
}
L=STD_EX[1];
for(i=2; i<=size(COM_EX); i++)
{
if(COM_EX[i]!=-1){L=L,STD_EX[i];}
}
//////// split STD_EX in STD and the transformation matrix
L=transpose(L);
STD=L[st+1];
LT=L[1];
for(i=2; i<=s+st; i++)
{
if (i<=st)
{
LT=LT,L[i];
}
if (i>st+1)
{
STD=STD,L[i];
}
}
STD=transpose(STD);
STDFIN=matrix(STD);
COMPARE=insert(COMPARE,STDFIN);
LT=transpose(LT);
////////////////////// compute the transformation matrices
if (flag mod 2 ==1)
{
TrafoL=transpose(LT)*TrafoL;
dbprint(ppl-1,"Left transformation matrix:");
dbprint(ppl-1,TrafoL);
@s = texobj("",matrix(TrafoL));
dbprint(ppl-2,"Left transformation matrix in TeX format:");
dbprint(ppl-2,@s);
}
else
{
TrafoR=TrafoR*involution(LT,inv);
dbprint(ppl-1,"Right transformation matrix:");
dbprint(ppl-1,matrix(TrafoR));
@s = texobj("",TrafoR);
dbprint(ppl-2,"Right transformation matrix in TeX format:");
dbprint(ppl-2,@s);
}
///////////////////////// check whether the alg terminated /////////////////
if(size(COMPARE)>=3)
{
if(STD==COMPARE[3]){finish=1;}
}
////////////////////////////////// change to the opposite module
dbprint(ppl-1,"Matrix for the next step:");
dbprint(ppl-1,STD);
dbprint(ppl-2,"Matrix for the next step in TeX format:");
@s = texobj("",matrix(STD));
dbprint(ppl-2,@s);
TSTD=transpose(STD);
STD=involution(TSTD,inv);
flag++;
dbprint(ppl,"Finished one while cycle");
}
if (flag mod 2 ==0){ STD = involution(STD,inv);} else { STD = transpose(STD); }
list REVERSE=TrafoL,STD,TrafoR;
return(REVERSE);
}
static proc divideByContent(matrix M)
{
//find first entrie not equal to zero
int i,k;
k=1;
vector CON;
for(i=1;i<=ncols(M);i++)
{
if(leadcoef(M[i])!=0){CON=CON+leadcoef(M[i])*gen(k); k++;}
}
poly con=content(CON);
matrix TL=1/con*freemodule(nrows(M));
return(TL);
}
/////interesting examples for smith////////////////
/*
//static proc Ex_One_wheeled_bicycle()
{
ring RA=(0,m), D, lp;
matrix bicycle[2][3]=(1+m)*D^2, D^2, 1, D^2, D^2-1, 0;
list s=smith(bicycle, 1,0);
print(s[2]);
print(s[1]*bicycle*s[3]-s[2]);
}
//static proc Ex_RLC-circuit()
{
ring RA=(0,m,R1,R2,L,C), D, lp;
matrix circuit[2][3]=D+1/(R1*C), 0, -1/(R1*C), 0, D+R2/L, -1/L;
list s=smith(circuit, 1,0);
print(s[2]);
print(s[1]*circuit*s[3]-s[2]);
}
//static proc Ex_two_pendula()
{
ring RA=(0,m,M,L1,L2,m1,m2,g), D, lp;
matrix pendula[3][4]=m1*L1*D^2,m2*L2*D^2,(M+m1+m2)*D^2,-1,m1*L1^2*D^2-m1*L1*g,0,m1*L1*D^2,0,0,
m2*L2^2*D^2-m2*L2*g,m2*L2*D^2,0;
list s=smith(pendula, 1,0);
print(s[2]);
print(s[1]*pendula*s[3]-s[2]);
}
//static proc Ex_linerized_satellite_in_a_circular_equatorial_orbit()
{
ring RA=(0,m,omega,r,a,b), D, lp;
matrix satellite[4][6]=
D,-1,0,0,0,0,
-3*omega^2,D,0,-2*omega*r,-a/m,0,
0,0,D,-1,0,0,
0,2*omega/r,0,D,0,-b/(m*r);
list s=smith(satellite, 1,0);
print(s[2]);
print(s[1]*satellite*s[3]-s[2]);
}
//static proc Ex_flexible_one_link_robot()
{
ring RA=(0,M11,M12,M13,M21,M22,M31,M33,K1,K2), D, lp;
matrix robot[3][4]=M11*D^2,M12*D^2,M13*D^2,-1,M21*D^2,M22*D^2+K1,0,0,M31*D^2,0,M33*D^2+K2,0;
list s=smith(robot, 1,0);
print(s[2]);
print(s[1]*robot*s[3]-s[2]);
}
*/
/////interesting examples for jacobson////////////////
/*
//static proc Ex_compare_output_with_maple_package_JanetOre()
{
ring w = 0,(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[3][3]=[d2,d+1,0],[d+1,0,d3-x2*d],[2d+1, d3+d2, d2];
list J=jacobson(m,0);
print(J[1]*m*J[3]);
print(J[2]);
print(J[1]);
print(J[3]);
print(J[1]*m*J[3]-J[2]);
}
// modification for shift algebra
{
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s);
setring W;
matrix m[3][3]=[s^2,s+1,0],[s+1,0,s^3-x^2*s],[2*s+1, s^3+s^2, s^2];
list J=jacobson(m,0);
print(J[1]*m*J[3]);
print(J[2]);
print(J[1]);
print(J[3]);
print(J[1]*m*J[3]-J[2]);
}
//static proc Ex_cyclic()
{
ring w = 0,(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[3][3]=d,0,0,x*d+1,d,0,0,x*d,d;
list J=jacobson(m,0);
print(J[1]*m*J[3]);
print(J[2]);
print(J[1]);
print(J[3]);
print(J[1]*m*J[3]-J[2]);
}
// modification for shift algebra: gives a module with ann = s^2
{
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s);
setring W;
matrix m[3][3]=s,0,0,x*s+1,s,0,0,x*s,s;
list J=jacobson(m,0);
print(J[1]*m*J[3]);
print(J[2]);
print(J[1]);
print(J[3]);
print(J[1]*m*J[3]-J[2]);
}
// yet another modification for shift algebra: gives a module with ann = s
// xs+1 is replaced by x*s+s
{
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s);
setring W;
matrix m[3][3]=s,0,0,x*s+s,s,0,0,x*s,s;
list J=jacobson(m,0);
print(J[1]*m*J[3]);
print(J[2]);
print(J[1]);
print(J[3]);
print(J[1]*m*J[3]-J[2]);
}
// variations for above setup with shift algebra:
// easy but instructive one: see the difference to Weyl case!
matrix m[2][2]=s,x,0,s; print(m);
// more interesting:
matrix n[3][3]=s,x,0,0,s,x,s,0,x;
// things blow up
matrix m[2][3] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3;
matrix m[2][3] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+s)^2; // variation
matrix m[2][4] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3, (x+s)^2, x*s; // bug (matrix sizes
matrix m[3][4] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3, (x+s)^2, x*s; // here the last row contains zeros
// this one is quite nasty and time consumig
matrix m[3][4] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3, (x+s)^2, x*s,x,x^2,x^3,s;
// example from the paper:
ring w = 0,(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[2][2]=d^2-1,d+1,d^2+1,d-x;
list J=jacobson(m,0);
print(J[1]*m*J[3]); print(J[2]); print(J[1]); print(J[3]);
print(J[1]*m*J[3]-J[2]);
ring w2 = 0,(x,s),Dp;
def W2=nc_algebra(1,s);
setring W2;
poly d = s;
matrix m[2][2]=d^2-1,d+1,d^2+1,d-x;
list J=jacobson(m,0);
print(J[1]*m*J[3]); print(J[2]); print(J[1]); print(J[3]);
print(J[1]*m*J[3]-J[2]);
// here, both JNFs are cyclic
// another example from the paper:
ring w = 0,(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[2][2]=-x*d+1, x^2*d, -d, x*d+1;
list J=jacobson(m,0);
print(J[1]*m*J[3]); print(J[2]); print(J[1]); print(J[3]);
print(J[1]*m*J[3]-J[2]);
ring w2 = 0,(x,s),Dp;
def W2=nc_algebra(1,s);
setring W2;
poly d = s;
matrix m[2][2]=-x*d+1, x^2*d, -d, x*d+1;
list J=jacobson(m,0);
print(J[1]*m*J[3]); print(J[2]); print(J[1]); print(J[3]);
print(J[1]*m*J[3]-J[2]);
// yet another example from the paper, also Middeke
ring w = (0,y),(x,d),Dp;
def W=nc_algebra(1,1);
setring W;
matrix m[2][2]=y^2*d^2+d+1, 1, x*d, x^2*d^2+d+y;
list J=jacobson(m,0);
print(J[1]*m*J[3]); print(J[2]); print(J[1]); print(J[3]);
print(J[1]*m*J[3]-J[2]);
*/
|