This file is indexed.

/usr/share/singular/LIB/kskernel.lib is in singular-data 4.0.3+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
///////////////////////////////////////////////////////////////
version="version kskernel.lib 4.0.0.0 Jun_2013 "; // $Id: e020a13d553fef7586c1f2e634c1fe11b3635ab5 $
category="General purpose";
info="
LIBRARY:  kskernel.lib   PROCEDURES FOR COMPUTING THE KERNEL
                         OF THE KODAIRA-SPENCER MAP

AUTHOR:   Tetyana Povalyaeva, povalyae@mathematik.uni-kl.de

PROCEDURES:
 KSker(p,q);          kernel of the Kodaira-Spencer map of
                      a versal deformation of an irreducible
                      plane curve singularity
 KSconvert(M);        kernel of the Kodaira-Spencer map in
                      quasihomogeneous variables T with
                      corresponding negative degrees
 KSlinear(M);         matrix of linear terms of the kernel of
                      the Kodaira-Spencer map
 KScoef(i,j,P,Q,qq);  coefficient of the given term in the matrix
                      of kernel of the Kodaira-Spencer map
 StringF(i,j,p,q);    expression in variables T(i) with non-resolved
                      brackets for the further computation of
                      coefficient in the matrix of kernel of the
                      Kodaira-Spencer map
";
LIB "general.lib";
////////////////////////////////////////////////////////////////

//-------------------------- ALGORITHM II ---------------------

//---------------------------- sub procedure ------------------
// used in sorter
proc minim(intmat M, int t)
{
  int m=v[t];
  int i,k,done;
  k=0;done=0;
  for (i=t+1;i<nrows(M);i++)
  {
    if (m>v[i])  { m=v[i];k=i;done=1; }
  }
  if (done==1)
  {
    for (i=1;i<=3;i++)
    {
      done=M[k,i];M[k,i]=M[t,i];M[t,i]=done;
    }
    i=v[k];v[k]=v[t];v[t]=i;
  }
  return(M);
}

//---------------------------- sub procedure --------------------
// sorts M by the third row, ascending
proc sorter(intmat M)
{
  intvec v;
  int i;
  for (i=1;i<=nrows(M);i++)
  { v[i]=M[i,3]; }
  export (v);
  int n=1;
  while (n<=nrows(M))
  {
    M=minim(M,n);
    n++;
  }
  kill v;
  return(M);
}

//---------------------------- sub procedure --------------------
// M is a sorted matrix of triples {i,j,k(i,j)}
// returns a list of coefficients of p
// w.r.t. the base {x^i y^j,(i,j) in (M[i,j,k])}=B_u
proc MonoDec(poly p, matrix M)
{
  poly q=p;
  intvec V;
  list C;
  int nM=nrows(M); //cardinality of B_u
  vector VC=gen(nM+1);
  int k=1; int i=1; int j=1;
  while (q!=0)
  {
    V=leadexp(q);
    while ( !((V[1]==M[k,1]) && (V[2]==M[k,2])) )
    {
      if (k>=nM)
      {
        ERROR("error in monomial base");
        return(0);
      }
      k++;
    }
    VC=VC+leadcoef(q)*gen(k);
    q=q-lead(q);
    k=1;
  }
  VC=VC-gen(nM+1);
  return(VC);
}

//----------------------------- main program --------------------
proc KSker (int p,int q)
"USAGE:  KSker(int p,q); p,q relatively prime integers
RETURN:  nothing; exports ring KSring, matrix KSkernel and list 'weights';
         KSkernel is a matrix of coefficients of the
         generators of the kernel of Kodaira-Spencer map,
         'weights' is a list of degrees for variables T
EXAMPLE: example KSker; shows an example
"
{
  option(redSB);
  option(redTail);
  int c;
  int i,j;
  int k=0;
  list LM;
  list tmp;
  for (i=0;i<=p-2;i++)
  {
    for (j=0;j<=q-2;j++)
    {
      c=(i*q)+(j*p)-(p*q);
      if (c>0)
      {
        k++;
        tmp[1]=i;
        tmp[2]=j;
        tmp[3]=c; // index of T
        LM[k]=tmp;
        tmp=0;
      }
    }
  }
  if (k==0)
  {
    "The kernel of the Kodaira-Spencer map equals zero";
    return();
  }
  if (k==1)
  {
    ring KSring=0,(T(1)),ws(c);
    matrix KSkernel[1][1]=c*T(1);
    export(KSring);
    export(KSkernel);
    return();
  }
  int cnt=k; // the total number of T's, now k>1
  intmat M[k][3]; // matrix with triples (i,j,k)
  for (i=1; i<=k; i++)
  {
    M[i,1] = LM[i][1];
    M[i,2] = LM[i][2];
    M[i,3] = LM[i][3];
  }
  kill LM;
  M = sorter(M); // now the third column of M contains ordered ascending values
  list weights;
  for (i=1; i<=k; i++)
  {
    weights[i] = M[i,3]; // positive weights for Ws ordering
    M[i,3]   = i;
  }
  export(weights);
  ring RT=0,(x,y,T(1..k)),(Ws(q,p),dp);
  poly F=x^p+y^q;
  i=0;j=0;
  for (k=1;k<=cnt;k++)
  {
    i = M[k,1];
    j = M[k,2];
    F = F + T(k)*x^i*y^j;
  }
  ideal I = diff(F,x),diff(F,y);
  I = std(I);
  k=0;
  list normal;
  poly mul;
  for (i=0;i<=p-2;i++)
  {
    for (j=0;j<=q-2;j++)
    {
      c = p*q - ((i+2)*q+(j+2)*p);
      if ( c > 0 )
      {
        mul = x^i*y^j*p*q*F;
        k++;
        normal[k] = NF(mul,I);
      }
    }
  }
  // now we separate T's from (x,y) by treating T's as parameters
  ring ST=(0,T(1..k)),(x,y),Ws(q,p);
  setring ST;
  list Snormal = imap(RT,normal);
  ideal SI = imap(RT,I);
  kill RT;
  SI = std(SI);
  module L;
  for (i=1; i<=size(Snormal); i++)
  {
    Snormal[i] = NF(Snormal[i],SI);
    L[i] = MonoDec(Snormal[i],M);
    if (L[i]==0) // MonoDec has detected non-basis element
    {
      "Try reducing the input";
      return(0);
    }
  }
  // now L is a module in T's
  ring KSring=0,(T(1..k)),(C,ws(-weights[1..k]));
  module TL=imap(ST,L);
  kill ST;
  // sort it descendently
  TL = sort(TL)[1];
  // make the coefficients positive
  if ((leadcoef(TL[1,1])<0) || (leadcoef(TL[k,k])<0)) { TL = -TL;}
  matrix KSkernel=matrix(TL);
  export(KSring);
  export(KSkernel);
  kill M;
  return();
}
example
{ "EXAMPLE:"; echo=2;
   int p=6;
   int q=7;
   KSker(p,q);
   setring Kskernel::KSring;
   print(KSkernel);
}

//---------------------------- sub procedure ------------------
// converts T(1..k) to T(w(1),..w(k)),
// need global variable "weights"
proc KSconvert(matrix M)
"USAGE:  KSconvert(matrix M);
         M is a matrix of coefficients of the generators of
         the kernel of Kodaira-Spencer map in variables T(i)
         from the basering. To be called after the procedure
         KSker(p,q)
RETURN:  nothing; exports ring KSring2 and matrix KSkernel2 within it,
         such that KSring2 resp. KSkernel2 are in variables
         T(w) with weights -w. These weights are computed
         in the procedure KSker(p,q)
EXAMPLE: example KSconvert; shows an example
"
{
  int s=ncols(M); // the total numbers of T's
  ring T1=0,(T(1..weights[s])),dp;
  matrix TM=imap(KSring,M);
  int i;
  for (i=s;i>=1;i--)
  {
    TM=subst(TM,T(i),T(weights[i]));
  }
  string Tw="0,(";
  string Ww="Ws(";
  string tempo="";
  for (i=1; i<=s; i++)
  {
    tempo=string(weights[i]);
    Tw = Tw+"T("+tempo+"),";
    Ww = Ww+"-"+tempo+",";
  }
  Tw[size(Tw)] = ")";
  Ww[size(Ww)] = ")";
  Tw=Tw+","+Ww+";";
  execute("ring KSring2="+Tw);
  matrix KSkernel2=imap(T1,TM);
  kill T1;
  export KSring2;
  export(KSring2);
  export KSkernel2;
  return();
}
example
{ "EXAMPLE:"; echo=2;
   int p=6;
   int q=7;
   KSker(p,q);
   setring Kskernel::KSring;
   KSconvert(KSkernel);
   setring Kskernel::KSring2;
   print(KSkernel2);
}

proc KSlinear(matrix M)
"USAGE:  KSlinear(matrix M);
         computes matrix of linear terms of the kernel of the
         Kodaira-Spencer map. To be called after the procedure
         KSker(p,q)
RETURN:  nothing; but replaces elements of the matrix KSkernel
         in the ring Ksring with their leading monomials
         w.r.t. the local ordering (ls)
EXAMPLE: example KSlinear; shows an example
"
{
  int s=ncols(M); // the total numbers of T's
  ring T1=0,(T(1..weights[s])),ls;
  matrix TM=imap(KSring,M);
  int i; int j;
  for (i=1; i<=s;i++)
  {
    for (j=1; j<=s;j++)
    {
      if (TM[i,j]!=0) { TM[i,j]=lead(TM[i,j]); }
    }
  }
  setring KSring;
  KSkernel=imap(T1,TM);
  kill T1;
}
example
{ "EXAMPLE:"; echo=2;
   int p=6;
   int q=7;
   KSker(p,q);
   setring Kskernel::KSring;
   KSlinear(KSkernel);
   print(KSkernel);
}

//-------------------------- ALGORITHM I ----------------------

//---------------------------- sub procedure ------------------
proc seq(int p,int q)
// computes u,v such that 1<=u<=p-1, qu=1(mod p)
//                        1<=v<=q-1, pv=1(mod q)
{
  int u=1;  int v=1;
  for(u=1; u<=p-1; u++)
  {
    if (((q*u)%p)==1) {break;}
   }
  for(v=1; v<=q-1; v++)
  {
    if (((p*v)%q)==1) {break;}
  }
  return(u,v);
}

//---------------------------- sub procedure ------------------
// returns maximal number i such that u(i)<=b
proc mix(int b, list u)
{
  int result=0;
  int s=size(u);
  int w=s;
  if (s==0) { "size of list is 0"; return(result); }
  if (b<0 ) { "negative b in MIX"; return(result); }
  while ((w>1) && (u[w]>b)) { w--;} // min w=1
  if (w>1)
  {
    return(w);
  }
  else // w<=1
  {
    if ( (w==1) && (u[w]> b) )
    {
      w=0;
      return(w);
    }
  }
  return(w);
}

//---------------------------- sub procedure ------------------
proc bracket_k(int r, int s)
{
  int b=s-r;
  int q;
  int k=1;
  int SF;
  F=F+"*(";
  while (b>0) // simulate repeat ... until b==0
  {
    q=mix(b,u);
    while (q>0)
    {
      b=u[q]-1;
      if (u[q]==(s-r))   // adding T's of max degree
      {
        F=F+"T("+ string(q) +")"+ "+";
      }
      else
      {
        if (S[(1+r+u[q])]!="u")
        {
          F=F+"T("+ string(q) +")";
          bracket_k(r+u[q],s);
         }
      }
      q=mix(b,u);
      if (q==0) {b=0;}
    } // end  while q>0
    SF=size(F);
    if (F[SF]!="+")
    {
      if (SF<=2) { F="";}
      else { F=F[1..SF-2];}
    }
    if (b==0) { break; }   // ... until b==0
  }
  F[size(F)]=")";
  F=F+"+";
}

//---------------------------- sub procedure ------------------
// exports S, l, u
proc StringS(int p, int q)
{
  int i=1; int j=0;
  int e,e1=0,0;
  string S="";
  list l,u=0,0;
  S="l";
  l[1]=0;
  int a,b=seq(p,q);
  int k=1;
  for (k=1;k<=(p*q-2*p-2*q);k++)
  {
    e=(e+a)%p; e1=(e1+b)%q;
    if ( (e==(p-1)) || (e1==(q-1)) ) { S=S+" "; }
    else
    {
      if ((e*q+e1*p) <= (p*q))
      {
        i++; l[i]=k; S=S+"l";
      }
      else
      {
        j++; u[j]=k; S=S+"u";
      }
    }
  }
  export S;
  export u;
  export l;
}

//---------------------------- main procedures ----------------
proc StringF(int i, int j,int p, int q)
"USAGE:  StringF(int i,j,p,q);
RETURN:  nothing; exports string F which contains an expression
         in variables T(i) with non-resolved brackets
EXAMPLE: example StringF; shows an example
"
{
  string F;
  export F;exportto(Top,F);
  StringS(p,q);
  bracket_k(l[i],u[j]);
  F=F[3..(size(F)-2)];
}
example
{ "EXAMPLE:"; echo=2;
 int p=5; int q=14;
 int i=2; int j=9;
 StringF(i,j,p,q);
 F;
}

proc KScoef(int i,int j,int P,int Q, list qq);
"USAGE:  KScoef(int i,j,P,Q, list qq);
RETURN:  exports ring RC and number C within it. C is
         the coefficient of the word defined in the list qq,
         being a part of C[i,j] for x^p+y^q
EXAMPLE: example KScoef; shows an example
"
// qq is a list of integers, representing
// monomial T_q[1] * ...* T_q[s]
// returns a ring RC in char 0 and number C in it
{
  int s=size(qq);
  int U,V=seq(P,Q);
  StringS(P,Q);
  int n=l[i];
  int d=P*Q;
  int k=1; int m=1;
  ring RC=0,x,dp;
  number C=0;
  number aux=0;
  int t=0;
  int e=0;
  int e1=0;
  aux = u[(qq[1])];
  C = ((-1)^s)*(aux/d);
  for (k=2; k<=s; k++)
  {
    t  = u[(qq[k-1])];
    e  = (U*n)%P;
    e  = e+ ((U*t)%P);
    e1 = (V*n)%Q;
    e1 = e1 + ((V*t)%Q);
    n  = n + qq[k-1];
    t  = u[(qq[k])];
    if (e>=(P-1))
    {
      aux = (U*t)%P;
      aux = aux/P;
      C = C*aux;
    }
    else
    {
      if (e1>=(Q-1))
      {
        aux = (V*t)%Q;
        aux = aux/Q;
        C = C*aux;
      }
    }
  }
  export RC;exportto(Top,RC);
  export C;
}
example
{ "EXAMPLE:"; echo=2;
 int p=5; int q=14;
 int i=2; int j=9;
 list L;
 ring r=0,x,dp;
 number c;
 L[1]=3; L[2]=1; L[3]=3; L[4]=2;
 KScoef(i,j,p,q,L);
 c=imap(RC,C);
 c;
 L[1]=3; L[2]=1; L[3]=2; L[4]=3;
 KScoef(i,j,p,q,L);
 c=c+imap(RC,C);
 c; // it is a coefficient of T1*T2*T3^2 in C[2,9] for x^5+y^14
}