/usr/share/singular/LIB/lejeune.lib is in singular-data 4.0.3+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | ////////////////////-*- mode:C++;-*-
version="version lejeune.lib 4.0.0.0 Jun_2013 "; // $Id: 12e1a48cb218a96d24dd2632d03eb273769cbd38 $
category="??";
info="
LIBRARY: lejeune.lib Arc space computations
AUTHOR: Nadine Cremer, nadine.cremer@gmx.de
PROCEDURES:
fgset(f,H); returns simultaneously the sets F and G corresponding
to H as described by M. Lejeune
trunc(f,i); returns the set Tr(i) as described by M. Lejeune
";
LIB "ring.lib";
LIB "general.lib";
LIB "primdec.lib";
LIB "standard.lib";
LIB "sing.lib";
//////////////////////////////////////////////////////////////////////
proc trunc (poly f, int i)
"USAGE: trunc(f,i); (f polynomial, i integer)
CREATE: list, contains lists, each one consisting of two ideals:
the first one giving equations, the second one giving
inequations for a part of Tr(i). All of them together give a
complete description of Tr(i)
RETURN: ring, corresponds to f and i, i.e. plugging in a polynomial
in t of degree i for each variable of f yields a ring whose
variables are the original variables of f, t and the
according t-coefficients
EXAMPLE: example trunc; shows an example"
{
def r=basering;
// we make sure that we obtain Tr(i), which requires
// computations up to m*i, where m is minimal s.th.
// x(j)^m in J(f) for each variable x(j) involved in f
int m=minpower(f);
int mi=m*i;
int k;
int l=order(f);
int s0=mi+1;
int s=l*(mi+1);
int z1=nvars(r)*(i+1)+2;
int z2=nvars(r)*k+1;
intvec H=l;
// initialization of an intvec H of size m*i
for(k=1;k<=mi;k++)
{
H[k+1]=1;
}
// this is the ring in which result lies
def R1=ringchange(i);
setring R1;
ideal I,J;
list intersec=I,J;
// will save the results:
list fresult,gresult;
list result;
// consider all possible H's
while(sum(H)<=s)
{
setring r;
def tmp=fgset(f,H);
setring R1;
intersec=imap(tmp,fgresult);
kill tmp;
// simplifications
intersec[1]=simplifymodd(interred(intersec[1]));
intersec[2]=simplifymodd(interred(intersec[2]));
//option(redSB);
//intersec[1]=std(intersec[1]);
//intersec[2]=std(intersec[2]);
intersec[1]=simplifymodd(intersec[1]);
intersec[2]=simplifymodd(intersec[2]);
intersec[1]=simplifymodd(intersec[1]);
intersec[2]=simplifymodd(intersec[2]);
// remove lists which contain
// the same ideal twice and
// therefore define the empty
// set
if(equalitytest(intersec[1],intersec[2])==1)
{
H=Hnew(H);
continue;
}
intersec[1]=radical(intersec[1]);
intersec[2]=radical(intersec[2]);
// remove lists which contain
// the same ideal twice and
// therefore define the empty
// set
if(equalitytest(intersec[1],intersec[2])==1)
{
H=Hnew(H);
continue;
}
result=insert(result,intersec);
H=Hnew(H);
}
// output:
int u=size(result);
newline;
" We obtain the following sets of equations
and inequations for Tr(" +string(i)+"). In order to be
contained in Tr(" +string(i)+"), a point has to fulfill
the conditions of one of those set, i.e. it has to be
in the zero-set of the first ideal without
the zero-set of the second ideal.";
newline;
string ending;
for(k=1;k<=u;k++)
{
if((k mod 10==1) && (k mod 100!=11))
{ending="st";}
else
{
if((k mod 10==2) && (k mod 100!=12))
{ending="nd";}
else
{
if((k mod 10==3) && (k mod 100!=13))
{ending="rd";}
else
{ending="th";}
}
}
print(string(k)+ending+" set of equations:"+newline);
print(result[k]);
newline;
}
// return the ring
return(R1);
}
example
{
"EXAMPLE:"; echo=2;
def r=basering;
poly f=y2-x3;
def R=trunc(f,3);
setring R;
print(result);
setring r;
def R1=trunc(f,6);
setring R1;
print(result);
}
//////////////////////////////////////////////////////////////////////
// //
// COMPUTATION OF F AND G SIMULTANEOUSLY //
// //
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
proc fgset (poly f,intvec H)
"USAGE: fgset(f,H); f polynomial, H integer vector
CREATE: list, consists two ideals, the first one giving equations,
the second one giving inequations to be satisfied by the set
corresponding to H
RETURN: ring, corresponds to f and size(H)-1, i.e. plugging in a
polynomial in t of degree size(H)-1 for each variable of f
yields a ring whose variables are the original variables of f,
t and the according t-coefficients
EXAMPLE: example fgset; shows an example"
{
def r=basering;
int p;
int m0=order(f);
int b=size(H);
if(H[1]!=m0) // input admissible?!
{
ERROR("H[1]=ord(f) necessary");
}
for(p=1;p<b;p++)
{
if(H[p]<H[p+1])
{
ERROR("Inadmissible input, H[1]<=...<=H[b] necessary");
}
}
def R=ringchange(b-1);
setring R;
list l;
ideal fresult,gresult;
list fgresult;
for(p=2;p<=b;p++)
{
setring r;
def tmp=formaldiff(f,intvec(H[1..p]));
setring R;
l=imap(tmp,resultdiff);
kill tmp;
fresult=fresult,l[1];
}
gresult=fresult; // use computation of f for g
setring r; // last step, special for G
def tmp=formaldiff(f,H);;
setring R;
l=imap(tmp,resultdiff);
kill tmp;
gresult=gresult,l[2];
fresult=simplify(fresult,6);
gresult=simplify(gresult,6);
fgresult=fresult,gresult;
export(fgresult);
//fgresult;
return(R);
}
example
{
"EXAMPLE:"; echo=2;
def r= basering;
poly f=y2-x3;
intvec H1=2,2,2;
intvec H2=2,2,2,1;
def R1=fgset(f,H1);
def R2=fgset(f,H2);
setring R1;
print(fgresult);
setring R2;
print(fgresult);
}
//////////////////////////////////////////////////////////////////////
// //
// PREPARATORY WORK: PLUGGING IN AND DIFFERENTIATING //
// //
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
static proc plugincoeffs (poly f,int i)
"USAGE: plugincoeffs(f,i); f polynomial, i integer
CREATE: matrix, the t-coefficients obtained by plugging in a
polynomial in t of degree i in each variable of f
RETURN: ring, corresponds to f and i, i.e. plugging in a polynomial
in t of degree i for each variable of f yields a ring whose
variables are the original variables of f, t and the
according t-coefficients"
{
int startvar=nvars(basering);
def r=basering;
def R=ringchange(i); // changes the ring
setring R; // makes it new basering;
ideal I=tpolys(i,startvar);
poly g=imap(r,f); // maps f to new basering
export(g); // export it
map h=r,I; // define map according to our purpose
ideal J=h(f); // gives f with power series plugged in
export(h);
matrix resultplug=coeffs(J[1],t); // gives the t-coefficients
export resultplug; // export it i.o. to use it later on
return(R); // return ring (ring change!)
}
//////////////////////////////////////////////////////////////////////
static proc tpolys (int i,int k)
"USAGE: tpolys(i,i); i,k integer
RETURN: ideal, generated by k general polynomials in t of degree i
without constant term
NOTE: called from plugincoeffs"
{ // has to be called from pluin_coeffs
int s,t; // loop variables
int v;
poly sum;
ideal I;
for(t=1;t<=k;t++)
{
v=(t-1)*i;
for(s=1;s<=i;s++)
{
sum=sum+var(1+k+v+s)*var(k+1)^s; // clumsy: working with "var(1)",
} // depends on form of basering
I[t]=sum;
sum=0;
}
return(I);
}
//////////////////////////////////////////////////////////////////////
static proc formaldiff (poly f,intvec H)
"USAGE: formaldiff(f,H); f polynomial, H integer vector
CREATE: list, containing two ideals. Polynomials in t of
degree size(H)-1 are plugged into f. H defines, if and how
often we differentiate each t-coefficient. We distinguish
two different cases, the only difference being that we
diffentiate more often in the second case (this is still
defined by H). This leads to two systems of equations,
each one defining a Zariski-closed set and the second one
being contained in the first one
RETURN: ring, corresponds to f and size(H)-1, i.e. plugging in a
polynomial in t of degree size(H)-1 for each variable of f
yields a ring whose variables are the original variables of f,
t and the according t-coefficients"
{
int startvar=nvars(basering);
int s,t,v; // loop variables
int u;
int i=size(H)-1;
int c=sum(H,1..i);
int k=H[i+1];
def R=plugincoeffs(f,i); // plugs the power series in...
setring R; // changes the ring
matrix coe=resultplug; // gives the t-coeff. after plugging in
poly fkv; // need this stuff for the following
ideal step=diffidealstep(i,startvar);
list resultdiff;
ideal m,power,diffstep,J,gresultdiff,fresultdiff;
for(v=1;v<=k;v++) // consider the different t-coeff.
{
if(c+v>nrows(coe))
{
fkv=0;
}
else
{
fkv=coe[c+v,1];
}
m=fkv;
J=fkv;
for(s=1;s<=k-v+1;s++) // "s<=k-v+1" special for G, ONLY DIFF.!
{
if(s==k-v+1) // equations for F!
{
fresultdiff=fresultdiff,J;
}
power=step^s;
u=size(power);
for(t=1;t<=u;t++)
{
diffstep=contract(power[t],m); // actual differentiation
J=J,diffstep;
}
}
gresultdiff=gresultdiff,J;
}
resultdiff=fresultdiff,gresultdiff;
export(resultdiff); // exports the result
return(R); // return the ring
}
//////////////////////////////////////////////////////////////////////
// //
// CONSTRUCTING THE NEW RING //
// //
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
static proc ringchange (int i)
"USAGE: ringchange(i); i integer
RETURN: ring, extends basering by variables t and
#(variables of basering)*i new variables"
{
def R=changevar(""+varstr(basering)+",t,"+variables_list(nvars(basering),i)+"");
return(R);
}
//////////////////////////////////////////////////////////////////////
static proc variables_list (int k,int i)
"USAGE: variables_list(k,i); k,i integer
RETURN: string of the names of the additional variables
NOTE: called from ringchange, we use this procedure to obtain
a convenient shape of the ring created in ringchange"
{
list l;
int s,u; // loop variables
string str;
for (u=1;u<=k;u++)
{
for (s=1;s<=i;s++)
{
str=""+atoz(u)+"("+string(s)+")"; // creates new variables
l[(u-1)*i+s]=str; // saves them in a list
}
}
string str1=string(l); // makes the list into a string,
return(str1); // (needed for ring change)
}
//////////////////////////////////////////////////////////////////////
static proc atoz (int n)
"USAGE: atoz(n); n integer
RETURN: string, the nth letter of the alphabet"
{
if(1>n>26)
{
ERROR("n must range between 1 and 26!");
}
string s="ring r=0,("+A_Z("a",n)+"),ds;";
execute(s);
return (string(var(n)));
}
//////////////////////////////////////////////////////////////////////
// //
// AUXILIARY PROCEDURES //
// //
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
static proc diffidealstep (int i, int N)
"USAGE: diffidealstep(i,N); i,N integer
RETURN: ideal, generated by variables specified by i,N
NOTE: called from formaldiff, gives the variables by which is
differentiated in a certain step"
{
ideal I=var(N+1+i);
int j;
for(j=2;j<=N;j++)
{
I=I,var(N+1+j*i);
}
return(I);
}
//////////////////////////////////////////////////////////////////////
static proc order (poly f)
"USAGE: order(f); f polynomial
RETURN: int, the multiplicity of V(f) in 0
NOTE: this order partly directs the differentiation in formaldiff
and, together with minpower, gives the size of the
integer vector in fgset"
{
poly g=homog(f,var(1));
int k=deg(g);
int i;
for(i=1;i<=k;i++)
{
if(jet(f,i)!=0)
{
return(i);
}
}
}
//////////////////////////////////////////////////////////////////////
static proc simplifyvar (ideal I)
"USAGE: simplifyvar(I); I ideal
RETURN: ideal defining the same zeroset as I: if any generator
of I is a power of one single variable, replace it by the
variable
NOTE: this procedure is supposed to simplify and clarify the
output of the calculations made in fgset, trunc a.o.
without using radical"
{
int i,j;
int divisornumber=0;
int pos;
I=simplify(I,6);
for(j=1;j<=ncols(I);j++)
{
if(size(I[j])==1)
{
for(i=1;i<=nvars(basering);i++)
{
if(modd(I[j],var(i))==0)
{
divisornumber++;
pos=i;
}
}
}
if(divisornumber==1)
{
I[j]=var(pos);
}
divisornumber=0;
}
return(I);
}
//////////////////////////////////////////////////////////////////////
static proc modd (poly f, poly g)
"USAGE: modd(f,g); f,g polynomials
RETURN: poly, f mod g modulo operation in the polynomial ring
NOTE: called from idealsimplify1 where it is used to simplify
a generating set of an ideal"
{
poly result=f-(f/g)*g;
return(result);
}
//////////////////////////////////////////////////////////////////////
static proc Hnew (intvec H)
"USAGE: Hnew(H); H integer vector
RETURN: intvec, the vector needed in the following step of trunc"
{
intvec H1=H;
int k;
int l=size(H);
for(k=0;k<=l-2;k++)
{
if(H[l-k]<H[l-k-1])
{
H[l-k]=H[l-k]+1;
break;
}
}
if(H==H1)
{
H[l]=H[l]+1;
}
return(intvec(H));
}
//////////////////////////////////////////////////////////////////////
static proc simplifymodd (ideal I)
"USAGE: simplifymodd(I); I ideal
RETURN: ideal defining the same zeroset as I: replace certain
generators of I by the generator modulo the other generators.
NOTE: this procedure is supposed to simplify and clarify the
output of the calculations made in fgset, trunc a.o.
without using radical"
{
int i,j;
I=simplify(I,6);
for(j=2;j<=ncols(I);j++) // reduce with higher element
{
for(i=1;i<j;i++)
{
if(I[i]!=0)
{
I[j]=modd(I[j],I[i]);
}
}
}
for(j=ncols(I)-1;j>=1;j--) // reduce with lower elements
{
for(i=ncols(I);i>j;i--)
{
if(I[i]!=0)
{
I[j]=modd(I[j],I[i]);
}
}
}
I=simplify(simplifyvar(I),6);
return(I);
}
//////////////////////////////////////////////////////////////////////
static proc minpower (poly f)
"USAGE: minpower(f); f polynomial
RETURN: int, the minimal z>=1 s.th. v^z in J(f) for each variable v
of the basering
NOTE: called from trunc, gives; together with i, the size of the
integer vectors to be considered in trunc(f,i)"
{
ideal J=jacob(f);
int s=ncols(J);
int control=0; // control if conditions for ny are fulfilled
int control1=0;
int n=nvars(basering);
int ny=1;
int i,j;
while (control==0) // while var(i)^ny not in J(f)...
{
for(i=1;i<=n;i++) // consider all variables
{
control1=0;
for(j=1;j<=s;j++) // consider all elements of J
{
if (modd(var(i)^ny,J[j])==0) // var(i)^ny in J(f)?
{
control1=1;
break;
}
}
if (control1==0) // increment ny if no var(i)^nt in J(f)
{
ny++;
break;
}
}
if (control1==1) // if each step was successful...
{
control=1;
}
}
return(ny);
}
static proc equalitytest (ideal I,ideal J)
"USAGE: equalitytest(I,J); I,J ideals
RETURN: 1, if I=J, 0 else
NOTE: we assume I contained in J already"
{
int s=ncols(J);
int i;
int p=0;
I=std(I);
for(i=1;i<=s;i++)
{
if(reduce(J[i],I)!=0)
{
p=1;
}
}
if(p==1)
{
return(0);
}
else{return(1);}
}
|